
CUDA, Supercomputing for the Masses: Part 1

CUDA lets you work with familiar programming concepts while developing software that can run on a GPU

By Rob Farber

April 15, 2008

URL:http://www.ddj.com/high-performance-computing/207200659

Rob Farber is a senior scientist at Pacific Northwest National Laboratory. He has worked in massively parallel computing at several national

laboratories and as co-founder of several startups. He can be reached at rmfarber@gmail.com.

Are you interested in getting orders-of-magnitude performance increases over standard multi-core processors, while programming with a high-level

language such as C? And would you like that capability to scale across many devices as well?

Many people (myself included) have achieved this level of performance and scalability on non-trivial problems by using CUDA (short for "Compute

Unified Device Architecture") from NVIDIA to program inexpensive multi-threaded GPUs. I purposefully stress "programming" because CUDA is an

architecture designed to let you do your work, rather than forcing your work to fit within a limited set of performance libraries. With CUDA, you get to

exploit your abilities to design software to achieve best performance on your multi-threaded hardware -- and have fun as well because figuring out the right

mapping is captivating, plus the software development environment is both reasonable and straightforward.

This is the first of a series of articles to introduce you to the power of CUDA -- through working code -- and to the thought process to help you map

applications onto multi-threaded hardware (such as GPUs) to get big performance increases. Of course, not all problems can be mapped efficiently onto

multi-threaded hardware, so part of my thought process will be to distinguish what will and what won't work, plus provide a common-sense idea of what

might work "well-enough".

"CUDA programming" and "GPGPU programming" are not the same (although CUDA runs on GPUs). Previously, writing software for a GPU meant

programming in the language of the GPU. An acquaintance of mine once described this as a process similar to pulling data out of your elbow to get it to

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

1 of 8 11/30/2010 12:54 PM

where you could look at it with your eyes. CUDA permits working with familiar programming concepts while developing software that can run on a GPU.

It also avoids the performance overhead of graphics layer APIs by compiling your software directly to the hardware (GPU assembly language, for

instance), thereby providing great performance.

The choice of CUDA device is up to you. Figures 1 and 2 show the CUDA N-body simulation program running on both a laptop and a discrete GPU based

desktop PC.

Figure 1: nBody Astrophysics Simulation running on a Quadro FX 570M enabled laptop.

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

2 of 8 11/30/2010 12:54 PM

Figure 2: nBody Astrophysics Simulation running on a GeForce 8800 GTS 512MB enabled desktop

Can CUDA really increase application performance by one to two orders of magnitude -- or is all this hype rather than reality?

CUDA is a fairly new technology but there are already many examples in the literature and on the Internet highlighting significant performance boosts

using current commodity GPU hardware. Tables 1 and 2 show summaries posted on the NVIDIA and Beckman Institute websites. At the heart of CUDA is

the ability for programmers to keep thousands of threads busy. The current generation of NVIDIA GPUs can efficiently support a very large number of

threads, and as a result they can deliver one to two orders of magnitude performance increase in application performance. These graphics processors are

widely available to anyone at almost any price point. Newer boards will expand CUDA's capabilities by providing greater memory bandwidth,

asynchronous data transfer, atomic operations, and double-precision floating point arithmetic among many hardware improvements. Look for the CUDA

software environment to expand as the technology evolves and we eventually lose the distinction between GPUs and "many-core" processors. As

developers, we have to anticipate that applications with many thousands of active threads will become common-place and look for CUDA to run on many

platforms, including general-purpose processors.

Example Applications URL Application Speedup

Seismic Database http://www.headwave.com 66x to 100x

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

3 of 8 11/30/2010 12:54 PM

Mobile Phone Antenna

Simulation

http://www.acceleware.com 45x

Molecular Dynamics http://www.ks.uiuc.edu/Research/vmd 21x to 100x

Neuron Simulation http://www.evolvedmachines.com 100x

MRI processing http://bic-test.beckman.uiuc.edu 245x to 415x

Atmospheric Cloud

Simulation

http://www.cs.clemson.edu/~jesteel/clouds.html 50x

Table 1: NVIDIA summary from www.nvidia.com/object/IO_43499.html

GPU Performance Results, March 2008

GeForce8800GTX w/ CUDA 1.1, Driver 169.09

Calculation / Algorithm Algorithm class Speedup vs. Intel QX6700 CPU

Fluorescence microphotolysis Iterative matrix / stencil 12x

Pairlist calculation Particle pair distance test 10x to 11x

Pairlist update Particle pair distance test 5x to 15x

Molecular dynamics nonbonded

force calculation

N-body cutoff force calculations 10x to 20x

Cutoff electron density sum Particle-grid w/ cutoff 15x to 23x

Cutoff potential summation Particle-grid w/ cutoff 12x to 21x

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

4 of 8 11/30/2010 12:54 PM

Direct Coulomb summation Particle-grid 44x

Table 2: Beckman Institute table from www.ks.uiuc.edu/Research/vmd/publications/siam2008vmdcuda.pdf

As a scientist at Los Alamos National Laboratory in the 1980s, I had the pleasure of working with the massively parallel 65,536 processor Thinking

Machines supercomputers. CUDA has proved to be a natural framework to again start working in a modern massively-parallel (i.e., highly-threaded)

environment. Performance is clearly there. One of my production codes, now written in CUDA and running on NVIDIA GPUs, shows both linear scaling

and a nearly two orders of magnitude speed increase over a 2.6-Ghz quad-core Opteron system.

CUDA-enabled graphics processors operate as co-processors within the host computer. This means that each GPU is considered to have its own memory

and processing elements that are separate from the host computer. To perform useful work, data must be transferred between the memory space of the host

computer and CUDA device(s). For this reason, performance results must include IO time to be informative. Colleagues have also referred to these as

"Honest Flops" because they more accurately reflect the performance applications will deliver in production.

I claim that a one or two orders of magnitude performance increase over existing technology is a disruptive change that can dramatically alter some aspects

of computing. For example, computational tasks that previously would have taken a year can now complete in a few days, hour long computations

suddenly become interactive because they be completed in seconds with the new technology, and previously intractable real-time processing tasks now

becomes tractable. Finally, lucrative opportunities can present themselves for consultants and engineers with the right skill set and capabilities to write

highly-threaded (or massively parallel) software. What about you? How can this type of computing capability benefit your career, applications or real-time

processing needs?

Getting started costs nothing and is as easy as downloading CUDA from the CUDA Zone homepage (look for "Get CUDA"). After that, follow the

installation instructions for your particular operating system. You don't even need a graphics processor because you can start working right away by using

the software emulator to run on your current laptop or workstation. Of course, much better performance will be achieved by running with a CUDA-enabled

GPU. Perhaps your computer already has one. Check out the "CUDA-enabled GPUs" link on the CUDA Zone homepage to see. (A CUDA-enabled GPU

includes shared on-chip memory and thread management.)

If purchasing a new graphics processor card, I suggest following this article series because I will discuss how various hardware characteristics (such as

memory bandwidth, number of registers, atomic operations, and so on) will affect application performance, which will assist you in selecting the

appropriate hardware for your application. Also, the CUDA Zone forums provide a wealth of information on all things CUDA, including discussions about

what hardware to purchase.

Once installed, the CUDA Toolkit provides a reasonable set of tools for C language application development. This includes:

The nvcc C compiler

CUDA FFT and BLAS libraries for the GPU

A profiler

An alpha version (as of March 2008) of the gdb debugger for the GPU

CUDA runtime driver (now also available in the standard NVIDIA GPU driver)

CUDA programming manual

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

5 of 8 11/30/2010 12:54 PM

The nvcc C compiler does most of the work in converting C code into an executable that will run on a GPU or the emulator. Happily, assembly-language

programming is not required to achieve high performance. Future articles will discuss working with CUDA from other high-level languages including C++,

FORTRAN, and Python. I assume that you're familiar with C/C++. No previous parallel programming or CUDA experience is required. This is consistent

with the existing CUDA documentation.

Creating and running a CUDA C language program follows the same workflow as other C programming environments. Explicit build and run instructions

for Windows and Linux environments are in the CUDA documentation, but simply stated they are:

Create or edit the CUDA program with your favorite editor. Note: CUDA C language programs have the suffix ".cu".1.

Compile the program with nvcc to create the executable. (NVIDIA provides sane makefiles with the examples. Generally all you need to type is

"make" to build for a CUDA device or "make emu=1" to build for the emulator.)

2.

Run the executable.3.

Listing One is a simple CUDA program to get you started. It is is nothing more than a program that calls the CUDA API to move data to and from the

CUDA device. Nothing new is added that might cause confusion in learning how to use the tools to build and run a CUDA program. In the next article, I

will discuss what is going on and start using the CUDA device to perform some work.

// moveArrays.cu
//
// demonstrates CUDA interface to data allocation on device (GPU)
// and data movement between host (CPU) and device.

#include <stdio.h>
#include <assert.h>
#include <cuda.h>
int main(void)
{
 float *a_h, *b_h; // pointers to host memory
 float *a_d, *b_d; // pointers to device memory
 int N = 14;
 int i;
 // allocate arrays on host
 a_h = (float *)malloc(sizeof(float)*N);
 b_h = (float *)malloc(sizeof(float)*N);
 // allocate arrays on device
 cudaMalloc((void **) &a_d, sizeof(float)*N);
 cudaMalloc((void **) &b_d, sizeof(float)*N);
 // initialize host data
 for (i=0; i<N; i++) {
 a_h[i] = 10.f+i;
 b_h[i] = 0.f;
 }
 // send data from host to device: a_h to a_d
 cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
 // copy data within device: a_d to b_d
 cudaMemcpy(b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice);

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

6 of 8 11/30/2010 12:54 PM

 // retrieve data from device: b_d to b_h
 cudaMemcpy(b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // check result
 for (i=0; i<N; i++)
 assert(a_h[i] == b_h[i]);
 // cleanup
 free(a_h); free(b_h);
 cudaFree(a_d); cudaFree(b_d);

Listing One

Give it a try and play around with the development tools. A quick note to newbies: You can use printf statements to see what is happening on the GPU

when running under the emulator (build the executable with make emu=1). Also, feel free to try out the alpha version of the debugger.

For More Information

CUDA, Supercomputing for the Masses: Part 20

CUDA, Supercomputing for the Masses: Part 19

CUDA, Supercomputing for the Masses: Part 18

CUDA, Supercomputing for the Masses: Part 17

CUDA, Supercomputing for the Masses: Part 16

CUDA, Supercomputing for the Masses: Part 15

CUDA, Supercomputing for the Masses: Part 14

CUDA, Supercomputing for the Masses: Part 13

CUDA, Supercomputing for the Masses: Part 12

CUDA, Supercomputing for the Masses: Part 11

CUDA, Supercomputing for the Masses: Part 10

CUDA, Supercomputing for the Masses: Part 9

CUDA, Supercomputing for the Masses: Part 8

CUDA, Supercomputing for the Masses: Part 7

CUDA, Supercomputing for the Masses: Part 6

CUDA, Supercomputing for the Masses: Part 5

CUDA, Supercomputing for the Masses: Part 4

CUDA, Supercomputing for the Masses: Part 3

CUDA, Supercomputing for the Masses: Part 2

CUDA, Supercomputing for the Masses: Part 1

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

7 of 8 11/30/2010 12:54 PM

Dr. Dobb's | CUDA, Supercomputing for the Masses: Part 1 | April 15, 2008 http://www.drdobbs.com/article/printableArticle.jhtml;jsessionid=10WQG4GGXFQ13QE1G...

8 of 8 11/30/2010 12:54 PM

