
SCIENTIFIC
ERIC

COMPUTERSOFTVVARE $2.50

rQ/rptunbev 1984

© 1984 SCIENTIFIC AMERICAN, INC

Pen-Pal
___ fIIOI.UIII

© 1984 SCIENTIFIC AMERICAN, INC

1:yping
Tulorm�

© 1984 SCIENTIFIC AMERICAN, INC

Bl

1 00%

© 1984 SCIENTIFIC AMERICAN, INC

Established 1845
SCIENTIFIC
AMERICAN

ARTICLES

September 1984

52 COMPUTER SOFTWARE, by Alan Kay

Volume 251 Number 3

Presenting an issue on the concepts and techniques that give form to the programmable machine.

60 DATA STRUCTURES AND ALGORITHMS, by Niklaus W irth

They are the essential elements of a computer program and the key to verifying its correctness.

70 PROGRAMMING LANGUAGES, by Lawrence G. Tesler

A language transforms a computer into a "virtual machine" with features determined by software.

94 OPERATING SYSTEMS, by Peter J. Denning and Robert L. Brown

They span layers of complexity from keyboard commands to the details of electronic switching.

130 COMPUTER SOFTWARE FOR W ORKING W ITH LANGUAGE, by Terry W inograd

Programs readily manipulate linguistic symbols, but understanding is hampered by ambiguity.

146 COMPUTER SOFTWARE FOR GRAPHICS, by Andries van Dam

Interactive graphics is rapidly becoming the standard medium of communication with computers.

162 COMPUTER SOFTWARE FOR INFORMATION MANAGEMENT, by Michael Lesk

Stored data are of use only if information can be retrieved quickly in an understandable form.

174 COMPUTER SOFTWARE FOR PROCESS CONTROL, by Alfred Z. Spector

A process-control program cannot set its own pace but must respond to events in the real world.

188 COMPUTER SOFTWARE IN SCIENCE AND MATHEMATICS, by Stephen Wolfram

Simulation programs offer a new way to study natural phenomena and mathematical concepts.

204 COMPUTER SOFTWARE FOR INTELLIGENT SYSTEMS, by Douglas B. Lenat

Intelligence in problem solving is primarily a matter of constraining the search for solutions.

DEPARTMENTS

11 LETTERS

14 50 AND 100 YEARS AGO

18 THE AUTHORS

22 COMPUTER RECREATIONS

39 BOOKS

82 SCIENCE AND THE CITIZEN

215 THE AMATEUR SCIENTIST

228 BIBLIOGRAPHY

BOARD OF EDITORS Gerard Piel (Publisher), Dennis Flanagan (Editor), Brian P. Hayes (Associate Editor), Philip Morrison (Book Editor),
Tim Appenzeller, John M. Benditt, Peter G. Brown, Ari W. Epstein, Michael Feirtag, Robert Kunzig,
Jonathan B. Piel, James T. Rogers, Armand Schwab, Jr., Joseph Wisnovsky

ART DEPARTMENT Samuel L. Howard (Art Director), Steven R. Black (Assistant Art Director), I1il Arbel, Edward Bell

PRODUCTION DEPARTMENT Richard Sasso (Production Manager), Carol Eisler and Leo J. Petruzzi (Assistants to the Production Manager),
Carol Hansen (Electronic Composition Manager), Carol Albert, Karen Friedman, Karen O'Connor, Julio E.
Xavier

COPY DEPARTMENT Sally Porter Jenks (Copy Chief), Debra Q. Bennett, Mary Knight, Dorothy R. Patterson

GENERAL MANAGER George S. Conn

ADVERTISING DIRECTOR C. John Kirby

CIRCULATION MANAGER William H. Yokel

SECRETARY Arlene Wright

SCIENTIFIC AMERICAN (ISSN 0036-8733). PUBLISHED MONTHLY BY SCIENTIFIC AMERICAN, INC., 415 MADISON AVENUE, NEW YORK, N.Y. 10017. COPYRIGHT © 1984 BY SCIENTIFIC AMER·

ICAN. INC. ALL RIGHTS RESERVED. PRINTED IN THE U.S.A. NO PART OF THIS ISSUE MAY BE REPRODUCED BY ANY MECHANICAL, PHOTOGRAPHIC OR ELECTRONIC PROCESS.

OR IN THE FOAM OF A PHONOGRAPHIC RECORDING, NOR MAY IT BE STORED IN A RETRIEVAL SYSTEM, TRANSMITTED OR OTHERWISE COPIED FOR PUBLIC OR PRIVATE USE WITH

OUT WRITTEN PERMISSION OF THE PUBLISHER. SECOND-CLASS POSTAGE PAID AT NEW YORK, N.Y., AND AT ADDITIONAL MAILING OFFICES. AUTHORIZED AS SECOND

CLASS MAIL BY THE POST OFFICE DEPARTMENT, OTTAWA, CANADA, AND FOR PAYMENT OF· POSTAGE IN CASH. SUBSCRIPTION RATE: $24 PER YEAR IN THE U.s. AND ITS

POSSESSIONS; $33 PER YEAR IN ALL OTHER COUNTRIES. POSTMASTER: SEND ADDRESS CHANGES TO SCIENTIr-IC AMERICAN, 415 MADISON AVENUE, NEW YORK, N.Y. 10017

3
© 1984 SCIENTIFIC AMERICAN, INC

4

'easke
an encore.

Ronald J. Cook,
Senior Vice President,

E.F. Hutton & Company Inc.
He helped pioneer the investment .

industry's first direct client com
munication service.

© 1984 SCIENTIFIC AMERICAN, INC

"We've been using
172-3™ from Lotus™
almost from the day it .
was introduced.

.

"It's the one .
. software program
we've tried that meets
the analytical needs .
of almost every department.
From Equity Research to Cor- '
porate Finance. Right now,
we're using 1-2-3 for planning,
forecasting, and decision
support.

"W ith the success we're
having with 1-2-3, we were
naturally excited about new
Symphony:M Symphony's word
processing simplifies our prep
aration of in-house reports
and with Symphony's com
munication capability we can
easily access a wide range of
information sources.

"We also recommend Symphony to
our clients because it's the ideal complement to

1-2-3, Lotus and Symphony are trademarks of Lotus Development Corporation.
© 1984., Lotus Development Corporation.
Huttonline is a trademark of E.F. Hutton & Company Inc.

gave us

phony."

Huttonline'M-our online
service that gives clients

direct access to their
portfolios, stock quotes

and critical investment
research. All this right on
their own PC's.

"W ith Symphony, our
clients can now get this infor
mation in really useable terms,
and in exactly the format they
want: spreadsheet, graphics,
database, or words. And like
1-2-3, Symphony comes with
everything in one package.

"In a business where
timely information is every
thing, Symphony clearly meets
our needs."

To find out which Lotus
product is best for you, visit
your authorized Lotus dealer.

:iJLotU5
One great idea ·after another.'"

5

© 1984 SCIENTIFIC AMERICAN, INC

SCIENTIFIC
AMERICAN

CORRESPONDENCE

Offprillts of more>than J:;OOO selected articles
from earlier issue\;. oLthis magazine, listed in
an annual catalogue, are available at $1.25
each»Correspondence, orders and requests for
the catalogue should be addressed to W. H
Freeman and Company, 4419 West 1980
South, Salt Lake City, UT 84121. Offprints
adopted for classroom use may be ordered di
rect or through a college bookstore. Sets of
10 or more Offprints are collated by the pub
lisher and are delivered as sets to bookstores_

Photocopying rights are hereby granted by
Scientific American, Inc., to libraries and oth
ers registered with the Copyright Clearance
Center (CCC) to photocopy articles in this issue
of SCIENTIFIC AMERICAN for the flat fee of $1.25
per copy of each article or any part thereof.
Such clearance does not extend to the photo
copying of articles for promotion or other com
mercial purposes. Correspondence and pay
ment should be addressed to Copyright Clear
ance Center, Inc., 21 Congress Street, Salem,
MA 01970. Specify CCC Refer.ence Number
ISSN 0036-8733/84. $1.25 + 0.00 ..

Editorial correspondence should be ad
dressed to The Editors, SCIENTIFIC AMEHICAN,
415 Madison Avenue, New York, NY 10017.
Manuscripts are submitted at the. authors' risk
and will not be returned unless they are ac
companied by postage.

Advertising corresppndence should be ad·
dressed to C. lohn Kirb.y, Advertising Direc·
tor, SCIENTIFIC AMERICAN, 415 Madison Ave
nue,.New York, NY 10017 ..

Subscription correspondence should be
addressed to Subscription Manager, SCIENTIFIC
AMERICAN, P.O. Box 5969, New York, NY
10017. The date of the last issue on your
subscription is shown in the upper right-hand
corner of each month's mailing label. For
change.of address·notify us at least four weeks
in advance. Please send. your old 'address (if
convenient, on a mailing label of a recent i,,·
sue) as well as the new one.

Name �=--------------------- -

New Address

Street

City

State and ZIP

Old Address

Street

City

State and ZIP

6

THE COVER

The illustration on the cover symbolizes the theme of this issue of SCIENTIFIC
AMERICAN: computer software. The illustration is itself software: it i·s a program'
In a pictorIal language called Mandala, under development by Jaron Z. Lanier
and his colleagues at VPL.Research in Palo Alto, Calif. Instructions are given to
the computer by arranging icons, or small, graphic symbols, on a display screen
and setting them in motion. At the top a kangaroo·nops from a triple-clef icon,
which activates a program for playing three-part canons,- to an icon that 'allows
musical data to be viewed in traditional music notation and then to an ice cube,'
where the sequence of hops is "frozen" so that it can be referred-to 'by a single_
symbol. An Icon can represent a 'hierarchy of programming structures. The
triple clef "expands" into the loop shown below it; the loop is executed once,
launching (at intervals of four measures) the three birds that perform-the can
on. The sequence of instructions embodied in each bird is shown to the right of
the loop. If a bird. flying along> the score is 'at a note; it soundS' the note; other- "
wise, if it is 'at the end of the score, it returns to the beginning. The canon
Itself was composed by Lanier with the aid of the illustrated Mandala program.

THE ILLUSTRATIONS

Cover illustration by Jerome Kuhl

Page S'ource Page Source

27-34· Alan D. Iselin 154 Evans & Sutberiand

52 Timothy C. May, 155 Lee Westover and Turner
Intel Corporation Whitted, Uni¥ersity'of ..

54-56 Jerome Kuhl North Carolina and

58-59 Alan Kay
Numerical Design Ltd.

60--'69 Alan D. Iselin 158-159, Alvy Ray Smith,
Lucasfilm Ltd.

71 Steven P. Reiss,
Brown University 160 Huseyin Kocak,

72-78 Alan. D. Iselin-
Brown University

82D Rudolph' Turner, 161 Bryce Flynn, .

Indiana .university The Picture Group, Inc.

87 I1il Arbel 162 Michael Lesk

88 Frank Schottler 164-170 Edward Bell
and Kevin S. Lee,

172 Michael Lesk
University of California
at Irvine 174 Aydin Controls

95-106 Gabor Kiss 176-186 Hank Iken,
130-144 Hank Iken, Walken Graphics

Wa1ken Graphics
189 Quesada/Burke

147 Ned. Greene,
New York Institute. 190-197, I1il Arbel

of Technology 198-200 QuesadalB'urke
148 Ian. W orpole 203 I1il Arbel
150 James K. Rinzler,

Brown University 205 Douglas B. Lenat,

lSI Ian Worpole
Stanford University

152 James K. Rinzler,
206-212 I1il Arbel

Brown University 215-227. Michael Goodman

© 1984 SCIENTIFIC AMERICAN, INC

A year's worth of reports, plans,
schedules, charts, graphs,
files, facts and figures and it
could all be lost in the blink of an eye.

The most important part of your
computer may be the part you've considered
least- the floppy disk. After all, there doesn't
seem to be much difference between one disk
and another. But now Fuj i introduces a floppy
disk that's worth a second look.

We designed our disk with the under,
standing that one microscopic imperfection can
erase pages of crucial data. That's why every Fuji
Film Floppy Disk is rigidly inspected after each
production process. And that's why each one is

backed with a lifetime warranty.
We've even considered how carefully

a disk has to be handled, so we designed user,
friendly packaging that makes it easier to get

the disk out of the box. And we provided
plenty of labeling space, so you won't have

any trouble telling which disk is which.
So think twice before buying a floppy

-. .. '..
disk. And then buy the one you won't

have any second thoughts about.
Fuji Film Floppy Disks.

-

FUJI.
Nobody gives you __ _

better performance.

101984 Fuji Photo Film U.S.A .. Inc., Magnetic Products Div., 350 Fifth Avenue, NY, Ny 10118

© 1984 SCIENTIFIC AMERICAN, INC

Artificial Intelligence at Sikorsky Aircraft

Exelo�the
evolution of
vertical t-at

the speed of light.

The dragonfly perfected the
fine art of vertical flight about 250
million years ago. Nature's organic
design system gave us a perfect
example of form following function.

Today, United Technologies
Sikorsky Aircraft is building an
"organic" design system for
advanced vertical flight aircraft.
And it's an information challenge
that staggers the imagination.

Says Joe Piteo, Sikorsky Chief
of CAD/CAM: "Our goal is to
gather in one central system
everything our engineers know. We
want to extract and store the very
process of their decision-making.
Once we've added this 'creative
logic component,' our system will

© 1984 SCIENTIFIC AMERICAN, INC

make a quantum leap
from being merely a repository
for data, to being an information
base that is truly 'intelligent.' "

Using CAD/CAM software and
two high-speed IBM 3081 computer
systems, the Sikorsky team has
tackled the design and manufacture

With the help of an "intelligent" system,
fluid line systems like these can be designed
in minutes instead of weeks.

of fluid lines.
More than 2,000 tube
drawings and their related
design and manufacturing logic
have been fed into the data system.

"Down the line," Michael
Adami, project coordinator, says,
"as more and more parameters are
included in the software, the system
will be able to 'see' more and more
of the overall design. Ultimately,
for example, the aircraft's tubing
could be considered as a structural

element and, as such,
used in achievingJhe

ideal blend of function,
weight and strength."

"Our goal;' says Piteo, "is to
weld together these islands of

knowledge and the automation of
industrial design into a powerfully
productive 'organism' which under
stands the relationship of its parts
and works toward a common end."

For more information on
IBM's programs for engineers and
scientists write IBM Engineering
and Scientific Marketing, 1133
Westchester Ave., ==-=.::®

White Plains, =::...: =-_-=
NY 10604. ..:.. ..:.: .: ';' :.

© 1984 SCIENTIFIC AMERICAN, INC

Searching for a shipwreck under the Arctic ice is not for
ordinary divers. Or ordinary watches.
Temperatures reach 50° below zero. The wind chill
factor: -100°F. Ice floes are a constant hazard.

For Dr. Joe MacInnis, the conditions were perfect.
In this hostile world lay a unique treasure: the

HMS Breadalbane, a three-masted British barque
lost in 1853 during the search for the Northwest
Passage. MacInnis was determined to find her.

Using delicate sonar, he was able to pinpoint the
location of the vessel 340 feet below the surface, near
Beechey Island. Divers discovered one of the most
perfectly preserved shipwrecks found in any ocean.

© 1984 Rolex Watch, U.S.A., Inc.

�
ROLEX

In the Arctic, ordinary divers find it difficult to
function. So do ordinary watches. For the past 15
years, Dr. MacInnis, the first to dive and film under
the North Pole, has chosen one watch: the Rolex
Submariner.

"I've worn it everywhere. From the North Pole
... to the Red Sea."

As for the future, there are still more explorer
ships resting on the Arctic floor.

A fitting challenge for Dr. Joe MacInnis and
his Rolex.

Pictured: The Role� Submariner Date Chronometer. Pressure-proof to 1,000 feet.
Write for brochure, Rolex Watch, US.A., Inc., Dept.542, Rolex Building, 665 Fifth Avenue, New York, New York 10022-5383.

World headquarters in Geneva. Other offices in Canada and major countries around the world.

© 1984 SCIENTIFIC AMERICAN, INC

LETTERS

Sirs:
I cannot resist tweaking the toes of

Alan H. Guth and Paul J. Steinhardt for
propagating, in their otherwise excellent
article ["The Inflationary Universe,"
SOENTIFIC AMERICAN, May], an old
myth, namely that the universe, accord
ing to Einstein's theory of gravity, must
be infinite if its energy density is less
than the critical density for recollapse.

When the energy density is too low for
recollapse to occur, the average curva
ture of three-dimensional space must be
either negative or zero (flat). It has long
been known to mathematicians that
a world of negative or zero curvature
need not have infinite volume. The men
tal block that appears to afflict many
cosmologists is their inability to visual
ize anything but 3-spheres (positively
curved spaces) and infinite hyperboloids
(negatively curved spaces). Even if the
energy density is supercritical, the uni
verse need not be a 3-sphere topologi
cally. It could be what mathematicians
call a quotient space, the divisor being
any discrete subgroup of the symmetry
group of the 3-sphere. Hyperboloids
too can be factored into finite quo
tient spaces.

Although the possibility that an ever
expanding universe might be finite can
not do much to help the horizon prob
lem that besets the original big-bang
model, it is by no means inconsistent
with either the isotropy of the three
degree background radiation or the in
flationary model.

BRYCE S. DEWITT

University of Texas at Austin

Sirs:
We agree with Professor DeWitt that

a universe with an energy density less
than the critical density need not be infi
nite, as quotient spaces exemplify. In
stead these more exotic spaces are char
acterized by a periodicity. An observer
who can see to distances greater than or
equal to the periodicity length would see
images of himself.

In the context of standard cosmolo
gy these possibilities are frequently ne
glected because they violate the assump
tion of uniformity, which states that
the universe should appear the same in
all directions to observers at all points
in space. A quotient space is locally
uniform in that the universe appears
the same to all "nearsighted" observers:
those who cannot see their own images
a periodicity length away. It is globally
nonuniform in that "farsighted" observ
ers would see different patterns.

Thus if the energy density is less than

the critical density and one assumes the
'universe is globally uniform, it must be
infinite. On the other hand, one might
assume only local uniformity, in which
case quotient spaces of finite volume
would be allowed. Because the inflation
ary model can explain the creation of
huge regions of homogeneity even in an
inhomogeneous universe,. however; it
seems to us that one might just as well
gi¥e up the assumption of local homoge-'
neity as well. One can simply assume
that the universe might do almost any
thing at distances far beyond those we .
observe. In that case it would be possible
for the universe to have a finite volume
even without the fancy topology of a
quotient space.

ALANH.GUTH

Massachusetts Institute of Technology
Cambridge

PAULJ. STEINHARDT

University of Pennsylvania
Philadelphia

Sirs:
We appreciate the general accuracy

of your summary of our paper on the
low-fertility zone in sub-Saharan Afri
ca ["Science and the Citizen," SCIENTIF

IC AMERICAN, April]. An essential point
was missed, however.

The low-fertility zone developed af
ter the establishment of the Congo Free
State and the French Congo, two areas
of unusually ruthless colonization: Even
those societies that were fairly permis
sive about premarital sexual relations
did not allow 10-year-old girls to have
intercourse until. the social order fell
apart as a result of massive terror and
the breaking up of families. Such early
sexual relations are probably the only
explanation for sterility on such a scale
by 15 or 16 years of age.

Since we first discussed these findings
a dozen years ago, David Voas, for a
Ph.D. dissertation at the University of
Cambridge, has checked out the the
sis in great detail and has shown the.
extremely close geographical ideritifi-.
cation between the areas of low fertil
ity and those of maximum social dis
ruption. Where an area has maintained
high fertility in spite of being included'
in a colonial concession, it turns out the·
company involved failed to exploit that
part of the concession.

JOHN C. CALDWELL

PAT CALDWELL

Department of Demography
Research School of Social Sciences
Australian National University
Canberra

© 1984 SCIENTIFIC AMERICAN, INC

Software that

Summary:
GTE computer scientists are pro
ducing software to help develop'
a variety of things, from tele- .
phone networks to integrated.
circuits - software that writes
other software; software that
designs microcircuits;
even software that has-its own
intelligence.

Modern telephone systems are
essentially special-purpose com
puters. Their software represents
more than half of their cost, and this
figure is rising.

GTE research is aiming to
improve both productivity in soft
ware design and its quality. Two dif
ferent compiling systems are helping
us (compilers aren't new, of course,
but these are special).

New-generation software
compiler.

Our General-Purpose Compiling
System (GPCS) does not work with

only one language and computer as
ordinary compilers do. GPCS was
designed to be independent of host
and target machine, and support
Pascal, Ada and CHILL. It was also
designed to permit'automatic lan
guage translation between these sup
ported languages.

Our researchers have completed
work on GPCS, and it is now in our
software development facilities.
There, it will write software for new
switching systems at increased pro
ductivity levels.

Designing hardware with
software.

The demand for more and more
function has inevitably led to higher
costs for designing very large-scale
integrated circuits. Designing a 32-
bit microprocessor with today's tools,
for instance, can take over 100 man-

\. .

I .

years. Our silicon compiler project
promises to reduce this time by 90 to
95 percent.

Using this design-automation tool,
designers will describe what the cir
cuit should do functionally, rather
than graphically. The tool will trans
late (compile) requests into appropri
ate geometry without the laborious
circuit layout and routing formerly
required.

It is interesting to note that this
project may result in the use of
custom-logic circuits where micro
processors are used today. After all,
when VLSI circuits become cheap
and easy enough to produce, it may
be preferable to integrate them into
systems rather than write software
for a microprocessor.

•

•

•

..

I
1

© 1984 SCIENTIFIC AMERICAN, INC

creates softvvare.

Simplifying database
access.

With the advent of communica
tions networks like GTE Telenet,

'many databases have become acces
sible at relatively low cost. Each,
however, may have its own access
control mechanism, command lan
guage, "and output format; and users
may want to switch from one data
base to another with a transparent
interface.

We have been working on a way
for data-network subscribers to use
natural language"which is translated
into the various formats required by
the different database services. It is
called FRED-Front End for Data
bases. This technology incorporates
natural-language processing and the
expert systems areas of Artificial
Intelligence.

FRED acts like a librarian. It rec
ognizes the meaning of natural
language input and sends a request
to the appropriate database.

Not all our computer science proj
ects have the drama of artificial
intelligence research, of course.
However, our goal in all these inves
tigations is to create software to help
improve quality and productivity for
advanced communications products
and services.

The box at the right lists some of
the pertinent papers GTE people
have published on software and
related sUbjects. For any of these
you are invited to write GTE Mar
keting Services Center, Department
TPIIIA, 70 Empire Drive, West
Seneca, NY 14224 or call 1-800-828-
7280 (in N. Y. State 1-800-462-1075).

Pertinent Papers.

The System Compiler, 1983 IEEE
International Symposium on Circuits.

The MacPitts Silicon Compiler: A
View from the Telecommunications
Industry, VLSI Design, May-June,
1983.
An Intelligent Communication Assist
ant for Databases, Proceedings of the
IEEE COMPSAC 83.
A Natural Language Interface for
Medical Information Retrieval,
AAMSI Congress, Computer Applica
tions in Medicine.

Separate Compilation for Block Struc
tured Languages: A Comparative
Study of CH I LL and Ada Compiling
Systems, Proceedings of the IEEE
Symposium on Application and
Assessment of Automated Tools for
Software Development.

An Efficient Compilation Strategy
for Very Large Programs, ACM
SIGPLAN 82 Symposium on
Compiler Construction, June, 1982.

© 1984 SCIENTIFIC AMERICAN, INC

50 AND 100
YEARS�AGO.

SCIENTIFIC
AMERICAN

SEPTEMBER, 1934: "A seasoned
army of hard-rock miners is pressing'
forward, out on the California desert,
on the largest tunnel-driving program
ever undertaken in the history of en
gineering. They are excavating 29 18-
foot bores, totaling 91 miles in length,
through ,the bleak mountairk ranges'
between the .. Colorado RIver and the
Coastal' Plain of southern California.
Through these tunnels eventually will
be turned a billion gallons of water daily
to serve.the 13 municipalities that com
prise the- Metropolitan Water District
of Southern California. Longest of the
aq ued uct tunnels is the East Coachella
bore, 18 miles from end to end. The
aqueduct depends upon Boulder Dam
for proper regulation of the Colorado
River and for' cheap. electric energy
needed. to pump the aqueduct water
over the mountain ranges. Thirty-six
per cent of the power generated at Boul
der Dam will be used for this purpose.
Few realize that the aqueduct overshad
ows the dam in size. Cost- of- the dam
proper is about 100,000,000 dollars,
whereas·the aqueduct-bond issue, voted
in 1931, was for 220,000,000 dollars."

"The America's Cup has become the
symbol of supremacy under sail. It is not
to be wondered, therefore, that in a me
chanical age the boats built to challenge
or defend should have become mech
anized to an extent· that would have
caused sailors of the old school of beef
and brawn to blush with. shame. The
chief interest centers in the new yacht,
Rainbow. Perhaps the greatest engineer
ing feat in the construction of the new
boat is her mast of duralumin, some '165

feet in ·Iength. It is pear-shaped in sec
tion, being about 30 inches in diame
ter fore and aft by 18 inches the other
way. It was made by the Glenn L. Mar
tin Company, airplane manufacturers.
The British. challenger,- again calling
upon the knowledge of aerodynamics
acquired in airplane development, has
done much experimenting with model
sails in wind tunnels."

"The newspapers have given the pub
lic more than adeq uate information on
the plans and prospects of the strato-.
sphere flight by Major W. E. Kepner and
Captain A. W. Stevens. The balloon is
the world's largest and has a capacity of
3,000,000 cubic feet When leaving the

14

ground the balloon will be less than one
tenth filled with hydrogen, which will
gradually expand as the balloon rises to
the thinner air. At the top of its flight,
nearly 15.miles above sea level, the bal
loon will have become a sphere 180 feet
in diameter."

"The 'synthetic rubber' tire is now an -
accomplished fact! These relatively in
significant words tell a story of tremen
dous economic significance. They indi
cate the successful solution of a long
fight to ensure for the United States a
source of rubber goods and in particular
tires which would make us independent
of foreign producers of rubber in time
of war. Tires made entirely of Du Prene,
the so-called synthetic rubber developed
by the Du Pont company, have been
built by the Dayton Rubber- Manufac
turing Company, and severe tests have
proved these. as tough and durable as
tires made of natural rubber."

SEPTEMBER, 1884: "Rufus Porter,
the original founder of the SCIENTIFIC

AMERICAN, died recently at New Haven,
Conn., in the 93rd year of his age. He
was a remarkable natural genius. He
was in school learning Noah Webster'S
spelling book at the age of four; spent six
months at Fryburg Academy when 12

years old; beyond this he had no educa
tional advantages. He had become quite
an adept in the making of all sorts of
mechanism. He was also something of a
musician; he played the fife and the vio
lin, and wrote poetry. In 1807 his family
concluded it would be best for him not.
to fiddle any longer with life, but to set
tle down to something 'Solid and useful,
in short, become a shoemaker, like his
elder brother. But it was soon seen that
he was not cut out fo'r this species of
industry. In 1810 he was apprenticed
to a house painterj in 1813 he painted
sleighs, beat the drum for the soldiers,
taught others to do the same and wrote
a book on the art of drumming. In 1814

he was enrolled in -the militia; after this
he· taught school at Baldwin, married
at Portland, taught at Waterford, made
wind grist mills at Portland, painted in
Boston, the same onlhr:ough New York
to Alexandria, Va'. A peculiarity which.
he developed about this time, and which

. continued through life, was a frequent
change of place ·and occupation. One
of his most profitable businesses at this
time was por·trait painting_ He made a
camera obscura and was enabled to pro
duce a satisfactory portrait in 15 min
utes, for which his customers readily
paid a dollar. He adorned his camera
box with bright colors, bought'a light
handcart for locomotion, planted a. flag
on his vehicle, and with this attractive

establishment was. welcomed in every
town and village. He invented a re
volving almanac and suddenly stopped
painting to make and introduce it In
1824 he adopted the profession of land
scape painter. In 1825 he invented a suc
cessful cord-making machine. From this
time on he figures very often as .an .in
ventor, producing am0ng' other things
a wonderful' clock, a steam carriage,
washing machine, signal telegraph and
fire alarm. In 1840 he was offered an
interest in a newspaper called .the· New
York Mechanic and at once decided -to
become an editor. He made it ostensibly
a scientific newspaper, the first of its
kind in the country. The paper pros
pered, but his attention was as usual
diverted' to' something else, and in a
few months' time the publication was
stopped. He next learned the art of
electroplating, and did profitable work.
About this time the religious mania of
the Millerite people struck him, and he
was among the most ardent believers
who hourly expected the second advent
of the Messiah. In 1845 he was again in
New York, doing electroplating. Here
he wrote a prospectus for a new paper,
which he entitled the SCIENTIFIC AMERI
CAN, and began its issue weekly, with
a cash capital of one hundred dollars.
He did not, however, continue long in
charge of the publication. After running
it for six months the desire and necessi
ty for a change once again came over
him. During the remaining half-centu
ry, nearly, 01 his life he was chiefly oc-

c cupied with his inventions and regular£
ly moved from place to phice, but did
not so often recur to h·is old profession
of portrait painting.�'

"To give an idea·.of the rapid develop
ment of telephonic communication, it
may be interesting to show how the Bos
ton exchange has grown to its present
proportions. Besides the. principal ex
change there are now two branch offices
and 17 suburban exchanges in direct.
connection, and more than 200. cities
and villages in New England may be
reached by telephone from Boston. The
new 'central office' together with the two
branch offices gives Boston a capacity
for 6,000 lines. Taking the increase in
the United States, the figures are even'
more startling. In May, 1877, there was ..
but one. exchange with five subscrib
ers; in January, 1884, there were 906 ex
changes with 123,625'subscribers."

"Madame Kowalevsh a native of
Russia, is a celebrated mathematician,
who lectured last winter at the'Universi
ty of Stockholm, and.who has just been
appointed Professor of Mathematics at
that university. We· belie.ve this is the
first time, since the . .middle ages (in it
aly), that a woman has been appoint
ed to an academical chair at any univer
sity in Europe."

© 1984 SCIENTIFIC AMERICAN, INC

© NYNEX Corporation 1984

NYNE..�
© 1984 SCIENTIFIC AMERICAN, INC

WHAT SHOULD YOU

WORKING "PARTNERSHIP"

�II

"At Container Corporation
of America, an UP computer
network helps us respond to
customers faster, and saves us
$600,000 a year.

"It used to take us two days to esti
mate the cost of a job for a customer.
With the UP network we can come
up with an accurate figure in
minutes. We now have the infor
mation we need to provide better
quality packaging."

Container Corporation of America is
one of the nation's leading paper
board packaging manufacturers.
The company has a network of 47
HP 3000 computers operating in 78
manufacturing plants.

At company headquarters in
Chicago, Jeff Norkin, Vice President,
says, "Using HP's Productivity
Tools, our staff developed a wood
costing and payables system in half
the time it took to develop a similar
system in the past. The flexibility of
the HP 3000 network enables us to
design and implement additional
systems as we need them, without
costly conversions.

"We've seen that we can count on
UP's technical expertise to provide
solutions to new challenges as they
arise. Based on our success with HP
systems, we plan to expand our net
work with 10 additional UP 3000s."

© 1984 SCIENTIFIC AMERICAN, INC

EXPECT FROM A
a

WITH HEWLETT-PACKARD?

;, At Fairview Hospital,
an UP CareNet system
facilitates critical care and
saves $54,000 a year in
monitoring costs.

"Because the HP computer-based
system delivers extremely accurate
vital sign data, we no longer have
to repeat procedures or revert to
manual methods. On-line monitor
ing eliminates the need for outside
hemodynamic monitoring services,
so our staff accesses critical data
immediately. "

At Fairview Hospital in Minneap
olis, Bill Maxwell, Hospital Admin
istrator, says: "HP offered us a total
solution to intensive care monitor
ing-a means to deliver cost-effec
tive quality care. HP CareNet gives
us control over our monitoring strat
egy. And we can continuously
monitor all patients from any loca
tion in the network.
liThe flexibility of HP hardware will
enable us to expand our network
threefold without significantly in
creasing our hardware costs. And
through HP's upgrade program, we
can put tomorrow's technology on
today's system without increasing
our capital investment.
"Our HP system is maintaining
close to 100% uptime. The reliabil
ity of our HP network and HP's sup
port team has convinced us to equip
another Fairview intensive care unit
with an HP CareNet system."

=--illm= •

Results with assurance.

r/iO- HEWLETT
�� PACKARD

0002407A

© 1984 SCIENTIFIC AMERICAN, INC

THE AUTHORS
ALAN KAY ("Computer Software")

is an Apple Fellow at Apple Computer,
Inc. While pursuing a vocation as a jazz
musician, he earned B.A degrees in
pure mathematics and in molecular bi
ology at the University of Colorado at
Boulder and then did doctoral work at
the University of Utah. He joined the
Stanford Artificial Intelligence Labora
tory and became a founding member of
the Palo Alto Research Center (PARC)
set up by the Xerox Corporation in
1971. There Kay and others developed a
prototype of the first personal comput
er. Kay was instrumental in two person
al-computer developments: "windows,"
separate areas of the computer display
in which different tasks can be accom
plished side by side, and the "mouse,"
a desktop controller that allows rapid
movement of a screen cursor. In 1981
Kay joined Atari, Inc., where until this
May he was chief scientist.

NIKLAUS WIRTH ("Data Struc
tures and Algorithms") heads the divi
sion of computer science at the Swiss
Federal Institute of Technology (ETH) in
Zurich. A boyhood enthusiasm for ra
dio-controlled model airplanes led him
to study electronics, and he earned de
grees in electrical engineering from ETH
(1959) and Laval University in Quebec
(1960). He went on to graduate studies
in the U.S. at the University of Califor
nia at Berkeley, where he received his
doctorate in 1963. There he became in
terested in computer languages; as assis
tant professor in Stanford University's
newly formed computer-science depart
ment from 1963 to 1967 he took part in
the development of the computer lan
guage Algol W. After returning to Switz
erland he created the structured pro
gramming language Pascal. Recently
Wirth has explored the concept of tai
loring hardware to software.

LAWRENCE G. TESLER ("Pro
gramming Languages") manages a soft
ware-development group in the Macin
tosh Division of Apple Computer, Inc.
While studying at Stanford University
for his bachelor's degree, which he got
in 1965, he founded a small software
company. He remained in business for
five years, then joined the Stanford Arti
ficial Intelligence Laboratory, where he
did research in cognitive simulation and
document formatting. In 1973 he moved
to the Xerox Corporation's Palo Alto
Research Center, where his work fo
cused on software for personal comput
ers. He began his career at Apple in
1980 as manager of applications-soft
ware development for the Lisa com
puter. Tesler writes: "Although I have
worked in many areas of software engi-

18

neering and computer science during the
past 24 years, a recurring theme has
been the user interface: making it eas
ier for people to get computers to do
their bidding."

PETER J. DENNING and ROBERT
L. BRO WN ("Operating Systems") are
specialists in computer systems organi
zation at the Research Institute for Ad
vanced Computer Science (RIACS), part
of the National Aeronautics and Space
Administration's Ames Research Cen
ter in Mountain View, Calif. Denning is
director of RIACS and Brown is a staff
scientist. Denning's degrees are in elec
trical engineering: a B.E.E. (1964) from
Manhattan College and an M.S. (1965)
and a Ph.D. (1968) from the Massachu
setts Institute of Technology. He has
taught electrical engineering at Prince
ton University and computer science at
Purdue University. Brown was graduat
ed from Ohio Wesleyan University in
1975 with a bachelor's degree in mathe
matics and is working toward a Ph.D.
in computer science at Purdue.

TERRY WINOGRAD ("Computer
Software for Working with Language")
is associate professor of computer sci
ence and linguistics at Stanford Univer
sity. He is a graduate of Colorado Col-

- lege and the Massachusetts Institute of
Technology, where he received his doc
torate in applied mathematics in 1970.
He taught at M.LT. until 1973 and then
joined the Stanford faculty. Since 1973
he has served concurrently as a consul
tant at the Xerox Corporation's Palo
Alto Research Center. Winograd pur
sues his research interests-artificial in
telligence, computational linguistics and
cognitive modeling-at Stanford's Cen
ter for the Study of Language and Infor
mation, and in addition he is a member
of the National Executive Committee
of Computer Professionals for Social
Responsibility.

ANDRIES VAN DAM ("Computer
Software for Graphics") is chairman of
the department of computer science at
Brown University. A native of Holland,
he studied at Swarthmore College and
the University of Pennsylvania, where
in 1966 he obtained a Ph.D. in computer
science-only the second to have been
awarded in the U.S. At Brown he was
a founder of the computer-science de
partment, and he has "been instrumental
in initiating the campus-wide installa
tion of computer work stations. Van
Dam is coauthor of Fundamentals 0/ In
teractive Computer Graphics.

MICHAEL LESK ("Computer Soft
ware for Information Management") is

Division Manager of Computer Science
Research at Bell Communications Re
search, Inc., in Murray Hill, N.J. After
earning a Ph.D. in chemical physics at
Harvard University in 1969, he joined
the technical staff of Bell Laboratories.
His interest in data bases has led him to
develop a program for automobile route
finding and to experiment with a com
puterized library-cataloguing system.
Recently Lesk has taught at Columbia
University as an adjunct lecturer in the
department of computer science.

ALFRED Z. SPECTOR ("Computer
Software for Process Control") teaches
computer science at Carnegie-Mellon
University. He went to Harvard Col
lege, where he got an AB. in applied
mathematics, and Stanford University,
where he was awarded a Ph.D. in com
puter science in 1981. While studying
for his doctorate, he worked at IBM's
San Jose Research Laboratory. He took
up his current job in 1981. Over the past
two years he has helped to design an
integrated file system for a campus com
puterization project undertaken jointly
by Carnegie-Mellon and IBM. Spector
writes: "I like designing and program
ming complex computer systems be
cause of the challenge of integrating di
verse techniques into cohesive systems
that solve practical problems."

STEPHEN WOLFRAM ("Computer
Software in Science and Mathematics")
has been a member of the Institute
for Advanced Study at Princeton since
1982. Born in London, he was educated
at Eton College and the University of
Oxford and then came to the U.S. to
study at the California Institute of Tech
nology, where he received a Ph.D. in
theoretical physics in 1979. In 1980 he
joined the faculty of Cal Tech, and
he remained there until he accepted
his present position. Wolfram has done
work in high-energy physics, cosmology
and statistical mechanics, and in 1981
he was awarded a MacArthur Founda
tion Prize Fellowship.

DOUGLAS B. LENAT ("Computer
Software for Intelligent Systems") is a
specialist in artificial intelligence who
holds an assistant professorship in com
puter science at Stanford University.
His B.A and M.S. degrees are from
the University of Pennsylvania; in 1976
he obtained his Ph.D. in computer sci
ence from Stanford. In his doctoral the
sis he showed that a computer can be
programmed to propose original mathe
matical theorems. Since then he has pur
sued an inquiry into the nature of heu
ristic reasoning. He taught for a year at
Carnegie-Mellon University before tak
ing up his present post. Lenat is associat
ed with a number of corporations, or
ganizations and journals specializing in
artificial intelligence.

© 1984 SCIENTIFIC AMERICAN, INC

TAKE THE 3·VOlUME

HANDBOOK OF ARTIFICIAL INTElliGENCE
(A $141.95 VALUE) FOR ONLY $4.95

when you join the Library of Computer and Information Sciences.
You simply agree to buy 3 more books-at handsome discounts-within the next 12 months.

'"'. .,.> ""�.,.:' " " .•... �"

Just the massive,' 3- . " .

H A N DB OOK O F AR T I F I C I A L
INTELLIGENCE promises to. beco.me
the standard reference wo.rk in the grow
ing AI field.

Co.nceived and pro.duced by leading
scientists and researchers at Stanfo.rd
University, with co.ntributio.ns from uni
versities and labo.rato.ries acro.ss .the
natio.n, the Handbook makes available to.
scientists, engineers, students, and hob
byists who. are enco.unteringAI fo.r the
first time the techniques and co.ncepts in'
this rapidly expanding co.mputer uni
verse.

The 200 articles co.ver the emergi,ng
issues, technical problems, and ,design.
strategies which have been develo.ped
during the past 25 years o.f research. The
Handbook has been written fo.r peo.ple
with no. background in AI; jargo.n has
been eliminated; and, the
hierarchical organizatio.n· o.f
the boo.k allo.ws the reader to.
delve deeply into. a particular
subject or browse the articles
which serve as o.verviews o.f
the vario.us subfields.

The 15 chapters (5 per vo.l
ume) include: th e histo.ry,
go.als, and current areas o.f
research activity; the key co.n
cept of "search"; research o.n
"natural languages"; the
design o.f p r o. g r a m s t h a t
understand spo.ken language;
a p pl i c ations-o.riented AI

The co.mprehensive
HANDBOOK OF
ARTIFICIAL
INTELLIGENCE
answers questio.ns like:
• W hat is a "heuristic

problem-so.lving
pro.gram?"

-. Ho.w do. co.mputers
.understand English?

• Can co.mputer programs
. outperfo.rm human
experts?

AND INCWDES:
• o.ver 1,450 pages.
• Mo.re than 200 articles

in 15 chapters.
• With numero.us charts,

tables, and schematics.
.� Edited by Avro.n B arr,

Paul Co.hen and Edward
Feigenbaum.

science, medicine,

catio.n; auto.matic pro.gramming; mo.dels
o.f co.gnitio.n; automatic deductio.n; visio.n
and learning research; and, planning and
problem so.lving.

. The Library of Computer and Infor-
. mation.Sciences is the o.ldest and largest

bo.o.k club especially designed fo.r the
co.mputer professio.naL In the incredibly
fast-mo.ving wo.rld o.f data. pro.cessing,
where up-to.-date kno.wledge is essential,
we make it easy fo.r yo.u to. keep to.tally
info.rmed o.n all areas o.f the info.rmatio.n
sciences.

Begin enjo.y ing the club's benefits
to.day!
MEMBERSHIP BENEFITS: In addition to get·
ting the 3-volume Handbook of Artificial Intelli
gence for only $4.95, when you join, you keep

. saving substantially on the books you
buy. Also, you will immediately be
come eligible to participate in our
Bonus Book Plan, with savings of up
to 70% off the publishers� prices. At
3-4 week intervals (16 times per year)
you will receive the Book Club News,
describing the. coming Main Selec
tion, and Alternate Selections, to
gether with a dated reply card. If you
want the Main Selection, do nothing
and it will be sent to you automati
cally. If you prefer another selection,
or nO'book at all, simply indicate your
choice on the card, and return it by the
date specified. You will have at least
10 days to decide. If, because of late .
mail delivery of the News, you should
receive a book you do not want, we

guarantee return postage.

If the reply card has been removed,
please write to:

The Library of Computer and
Information Sciences

Dept. 7-CE2, Riverside, N.J. 08075
to obtain membership information

and an application.

19
© 1984 SCIENTIFIC AMERICAN, INC

We can't do anything about your taxes. Or
the rush-hour traffic. Or the person who keeps
stealing lunches out of the office refrigerator.

But we can take a big load off your mind
when it comes to diskettes.

3M diskettes are certified 100% error-free.
And guaranteed for life.

No floppy is more reliable. .
There's no way one could be. Because only 3M

controls every aspect of the manufacturing process.
We make our own magnetic oxides. And

the binders that attach them to the dimensionally
stable substrate. W hich we make ourselves from
liquid polyester. W hich we make ourselves.

We also test our floppies. At least 327 ways.
And not just on exotic lab equipment with per
fectly aligned, spotless heads. But also on office
equipment like yours.

We even reject a floppy if its label is crooked.
Some people think we're a little crazy to

go to all that trouble. After all, do you really
need a diskette that can make one read/write

© 1984 SCIENTIFIC AMERICAN, INC

pass on every track , every hour, every day for
the next 200 years?

Not really.
But now that you know a 3M floppy can

do it , you can relax.
And worry about other things.
Like who stole your lunch from the office

refrigerator.

One less thing to
worry about.

© 1984 SCIENTIFIC AMERICAN, INC

COMPUTER
RECREATIONS

The failings of a digital eye suggest
there can be no sight without insight

by A. K. Dewdney

I
magine a black box rather like a cam

era. At the front is a lens and on one
side is a dial with various settings

such as "Tree," "House," "Cat" and so
on. With the dial set to "Cat" we go for a
walk and presently encounter a cat sit
ting on a neighbor's porch. When the
box is aimed at the cat, a red light goes
on. When the box is aimed at anything
else, the light remains dark.

Inside the box is a digital retina send
ing impulses to a two-layer logical net
work: an instance of the device called a
perceptron. At one time it was hoped
that perceptrons would ultimately be
capable of real-world recognition tasks
like the one described in the fantasy
above. But something went wrong.

The 1950's and 1960's were years of
tremendous creativity and experimen
tation in the newly developing field of
computer science. Romantic paradigms
such as self-organizing systems, learn
ing machines· and intelligent computers
influenced many scientists, and I. am
tempted to call the period the Cybernet
ic Age. Incredible machines that could··
see or think or even reproduce them
selves seemed just around the corner.
The simplest of these machines was the
perceptron.

Aperceptron consists of a finite grid
like retina subdivided into cells that

receive light. Like certain cells in the
human retina, each perceptron cell turns
on if it receives enough light; otherwise
it stays off. It is therefore reasonable to
think of the image a perceptron analyzes
as a grid of light and dark sq uares,.as in
the illustration on page 27.

Besides the retina, a perceptron con
sists of a great many primitive decision
making elements I shall call local de
mons. Each local demon examines a
fixed subset of the retinal cells and re
ports on conditions there to a more com
plex decision maker I may as well call
the head demon. Specifically, each local
demon is equipped with a notebook list
ing certain patterns it must watch for in
its locale, the subset of retinal cells un- .
der its jurisdiction. If any of the listed

22

patterns appears, the local.demon sends
a signal to the head demon; otherwis.e
it remains silent. The head demon's job
is more complicated in that it must do
some arithmetic. · Each signal from a
local demon is mUltiplied by a specific
positive or negative integer (the local de
mon's assigned "weight") and the result
ing numbers are added. If the sum is at
least as great as a fixed threshold, the
head demon says yes; otherwise it says
no. To avoid making any assumptions
about what the various demons look like
I have shown them in the illustration on
page 27 as boxes.

Demons are often given dangerous or·
even impossible jobs such as opening
tiny doors in the wall of a container to
let molecules pass through. In compari
son, the demons of the perceptron have
quite easy jobs. Indeed, the local de
mons could be replaced by simple log
ic circuits, and the head demon's job
could easily be done by a few registers,
an adder and a comparator (elements
of the central-processing unit of any
computer). Demons, however, have a
romantic charm that electronic devices
cannot match.

A perceptron's job is to say yes when
certain patterns are presented to it and
to say no to all others. The former pat
terns are said to be recognized by the
perceptron. Although it is highly doubt
ful that a cat-recognizing perceptron
could ever be built, other recognition
tasks are attainable.

A perceptron can be programmed, af
ter a fashion, to recognize a given class
of patterns by adjusting the weights and
the threshold. Local demons supplying
evidence in favor of the class are weight
ed positively and those providing evi
dence against it are weighted negatively.
The magnitude of each weight reflects
the value or importance of the evi
dence. Although the perceptrons dis
cussed here operate with a fixed set of
weights, the notion of programming
plays a central role in the theory of per
ceptrons developed in the 1950's.

The following perceptron recogJ)izes
a dark rectangle of any size or shape

placed anywhere on its retina. In fact, it
recognizes any number of such rectan
gles (including zero), provided no two of

. them touch along a side or at a corner.
There are three steps in the construction
of the perceptron. First, install a local
demon at each 2 X 2 locale in the retina.
Then put all the subpatterns in list P [see
top illustration all page 29] on each local
demon's list. Third, set all the head de
mon's weights to + 1 and set the thresh
old to d, the number of local demons.

This design calls for quite a few de
mons: if the perceptron has an n X n

retina, there will be (n - 1)2 local
demons. They are all given positive
weights, indicating they all supply posi
tive evidence toward the recognition of
rectangles. For example, it is not hard to
see that when a single rectangle is pro
jected onto the perceptron's retina, each
2 X 2 set of cells must contain one of
the subpatterns in list P. It follows that
every local demon sends a signal to the
head demon and the weighted sum of
the signals is, of course, d. The head
demon says yes. On the other hand, if
one of the dark shapes is not a rectangle
or if two rectangles touch, then at least
one of the 2 X 2 sets contains a subpat
tern from list N in the top illustration
on page 29. Hence at least one of the lo
cal demons fails to report and the head
demon develops a sum no greater than
d - 1. It says no.

An equivalent perceptron could be
designed in which each local demon
uses the smaller list N. In this case all
the weights would be - I and the thresh
old would be zero. Each local demon
would supply negative evidence toward
a pattern of rectangles and the head
demon would say yes only if none of
the local demons sent it a signal.

The style of perceptron defined above
has many interesting properties, and it
seems worthwhile to give it a name.

. Without specifying what list of subpat
terns all the local demons use, a device
of this kind will be called a window per
ceptron because each local demon looks
at the input pattern through a 2 X 2
window. For an n X n retina there are
(1/ - 1)2 demons, and the threshold is
equal to this number.

Genecally speaking, perceptrons seem
to be best at recognizing geometric fig
ures. Window perceptrons can recog
nize not only rectangles but also "black
holes" (isolated .dark cells), vertical and
horizontal lines, stairways, checker
boards and _many other patterns. It .all
depends on what set of 2 X 2 subpat
terns is chosen for the local demon lists
[see illustration on page 34]. Indeed, each
subset of the 16 possible 2 X 2 subpat
terns defines a different window percep
tron, and each of the resulting 65,536
window perceptrons recognizes a cer
tain class of patterns. Or does it?

The window perceptron based on the

© 1984 SCIENTIFIC AMERICAN, INC

Hayes. Leading the way
with quality teJecomputing
systems for the personal
computers that businesses
use most.
When it comes to communicating
computer to computer-Hayes says it
best. Let a Hayes telecomputing
system handle your communications.
Instantly. Accurately. Economically.

All you need is a Hayes Smart
modem (it's like a telephone for your
computer) and Smartcom If softWare.
In no time at all you can create. send
and store files. and automatically log
on to information services. The com
munication possibilities are endless!

Introducing our new Smartcom II.
More connection capabilities.

More convenience.

Compatibility. Now Smartcom II is
available for more than 16 personal
computers (With more to come). That
means you can communicate. Smart
com to Smartcom. with an IBM PC.
DEC Rainbow 100. HP 150. TI Profes
sional Computer* and many others.

Two popular protocols. In addition
to the Hayes Veiification protocol.
our new Smartcom II includes the
XMODEM protocol. for error-free
transmission to a wide range of per
sonal computers and mainframes at
information services.

1erminal emulation. Smartcom II
also allows your computer to "emulate"
the DEC VT100 and VT52 terminals.
opening the door to a vast number of
DEC minicomputers.

Voice to data communications. With
Smartcom II you can easily switch from
voice to data transmission (and back
again). all in the same phone call. This
saves you time and money. since you
don't have to hang up and dial again.

Unattended operation. Smartcom II
makes telecomputing simple. even
when you're not there. It can take a
message when you're out. and leave it
on your disk or printer. And you can
tell Smartcom II to "save" the messages
you've created during the day. and
automatically send them at night.
when phone rates are lowest.

Get your hands on the leadeL
Hayes Smartmodem.

With an unsurpassed record of rehability.
it's a small wonder Smartrnodem is
such a smart buy! Smartmodem 3OO™

(the first of the Smartrnodem series).
transmits and receives data at UQ to
300 bps. For longer distances and
greater volume. Smartrnodem 12oo™
and Smartmodem 1200BTM (it plugs into
an expansion slot inside an IBM PC or
com..patible) provid� �gh-speed. high
perrormance supenonty.

Visit your computer dealer for a
hands-on demonstration of Smart
modem and Smartcom II. A complete.
rehable telecomputing system for your
personal computer.

Hayes Microcomputer Products. Inc ..
5923 Peachtree Inaustrial Blvd ..
Norcross. Georgia 30092. 404/441-1617.

Smarfcom II is a registered trademark of Hayes Microcomputer Products, Inc. Smartrnodem 300, Smartrnodem 1200, and Smartrnodem 1200B are trademarks of Hayes Microcomputer Products, Inc.
'1l:ademarks of Intemational Business MaChines Corp., Digital Equipment Corporation, Hewlett·Packard and lexas Instruments. ©1984 Hayes Microcomputer Products, Inc.

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

Nile dial: A few years back, faced with explosive
urban growth and an inadequate telephone
system , the' Egyptian governm ent en gaged
Continental Telecom Inc. to redesign its communi
cations system. A massive research and planning
pro gram to achieve this

metamorphosis was
initiated and carried out by Contel Page, Contel's
engineering and construction subsidiary. Today,
one of the world's most up-to-the-minute com-

o munications systems is becoming a reality in one
of the world's most andent hubs. From telephony
to satellites. Architects of telecommunication.
WRITE CONTEL, DEPT. 504, 245 PERIMETER CENTER PKWY. ATLANTA GA 30346 © 1983 CONTINENTAL TELECOM, INC. .- -. - - - __ ------

�--�-- ---
- - - - -
�--�-- - ----
��------

�� --- ---

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

two subpatterns below does not recog
nize anything.

EEEE
The reason is simple. Assuming a fair
ly large retina, select a 2 X 2 window
somewhere in the middle of it. If the
window contains the first'of the two sub
patterns above, examine the window
one cell to the right: it will have a dark
cell in its upper left corner, and so the
demon in charge of that locale will send
no signal to the head.demon. Remember
that in a window perceptron all the local
demons must report in for a pattern to
be recognized. If the second subpattern
is present, shifting the window one cell
to the left yields a similar contradiction.

Which subsets of the 16 subpatterns
give rise to window perceptrons

that actually recognize something? The
question is probably hard to answer, but
it illustrates very well the kind of ques
tion an interested computer scientist
or mathematician might ask when con
fronted by the phenomenon of a percep
tron that recognizes nothing. Because of
the large number of such perceptrons,
the answer would best take the form of
some easily applied criterion or test: giv-

.............................
.........

/

A perceptron attempts to recognize a cat

en a subset of 2 X 2 subpatterns, one
applies the test and obtains an answer
for that particular subset.

The point of these remarks is that pro
fessional standing as a computer theo
rist is not always needed to answer such
questions. Although they go somewhat
beyond the kind of puzzle commonly
given in recreational-mathematics col
umns, they call for the same kind of
thinking. Readers who have solved at
least one of Martin Gardner's puzzles in
the "Mathematical Games" department
of SCientific American should be able to
make some progress with the question
above. In theoretical research, as in ex
perimental science, a partial answer is
better than no answer at all.

Work in perceptrons was pioneered
by Frank Rosenblatt of Cornell Univer
sity in the 1950's. Rosenblatt and his co
workers, both at Cornell and elsewhere,
became optimistic about the prospects
for perceptrons as useful pattern-recog
nizing devices. The "convergence theo
rem" told them that in principle percep
trons could learn to recognize patterns
by making the weights used by the head
demon subject to automatic control.
The theorem states that any adjustment
of weights in the direction of improved
powers of recognition can serve as the
basis of still further improvements. Ac
tual perceptrons were built, and in some

.............

/
/

........ ----

/
/

/
/

/
/

/
/

/
/

/

-....

/
/

/

........ -

/
/

/

/
/

/

tests on simple patterns they achieved
high recognition scores.

What seemed encouraging progress at
the time was, in a sense, illusory. Ac
cording to Marvin L. Minsky and Sey
mour Papert of the Massachusetts Insti
tute of Technology, the enthusiasts for
perceptrons had been beguiled by the
simplicity and apparent success of their
devices. Below the surface lay some
grave defects in the concept. In 1969
Minsky and Papert issued Perceptrons, a
book that effectively punctured the bal
loon by pointing out (and proving) sev
eral things perceptrons cannot do.

One of the most dramatic failures dis
covered by Minsky and Papert was the
inability of certain perceptrons to recog
nize when a figure is connected (that is,
all in one piece). Assuming each local
demon inspects only a limited locale,
Minsky and Papert gave examples of
four patterns designed so that one of
them always stumps a perceptron whose
job is to recognize connectivity. The pat
terns are shown in the bottom illustra
tion on page 29. Two of them (b and c)
are connected figures and the other two
(a and d) are not.

Suppose someone claims to have de
signed a diameter-limited percep

tron capable of distinguishing between
connected and unconnected patterns. By

27
© 1984 SCIENTIFIC AMERICAN, INC

28

Now,
a micro--based DBMS

for the rich and
powerful.

reQ,.ICS(is a trademark o(Sysn!m Automation Corporation.

There are well over a hundred bundles
of ones and zeroes called Data Base
Management Software.

Sometimes it seems that there's an
answer for every hacker, a system for
every machine.

And there's the rub.
If you have a data base, and more

than one user, and more than one kind
of desktop micro, then you might well
envy the meek.

They have their answers. Where are
yours?

We submit reQuest: an easy-to-use
DBMS for people who really need one.

reQuest: the answer to corporate
multiplication.
Look around at the desktop micros.
You'll see IBM PC, and its compatibles:
NCR. Burroughs. HP. Gould.
Datapoint.

Look at the people. They come from
every discipline, every specialty, every
level of computer awareness.

It's a jumble out there. How can you
accommodate all these people, at all
these levels, with all these pieces of
hardware, using so many operating sys
tems (MS-OOS, PC-OOS, CT-OS)?
Answer: reQuest. It can run any of these
systems. And network within each
system.

Nobody else can do all that.

reQuest: Not off-the-shelf; on the line.
Guaranteed.
Yes, you can buy a DBMS off the shelf.
You get a disk, a book, and the best
wishes of the people who sold their soft
ware to you and their company to
somebody else.

But after 17 years in the business, we
can promise you this: When you buy
reQuest, you buy us. All of us. All of the
time. For training. For re-training. And
phone rights. And visitation rights.
And, if all that doesn't work, your
money back.

Nobody else does all that, either. If
you don't believe it, ask your data base.
If it doesn't answer, call 301-565-9400.

System Automation
Corporation, Inc.
8555 Sixteenth Street
Silver Spring, MD 20910

© 1984 SCIENTIFIC AMERICAN, INC

tE EBffiLEtBffiEELE

tE LEffitEEBEBEEtE
\-----------------------y�--------------------�) _----------�y�----------�)

p N
The 2 X 2 sllbpattems recognized by positive(P) and negalil'e (N) local demons

diameter-limited I mean that for some
number m every local demon can exam
ine only the squares within an m X m
window. To test the claim Minsky and
Papert would prepare versions of their
four patterns, with each pattern adjust
ed to be more than m cells long. The
local demons can then be classified in
three disjoint sets. Left Demons exam
ine at least one cell on the left edge of the
figure. Right Demons examine at least
one cell on the right edge. Other De
lions are neither Left nor Right.

When the proposed connectivity per
ceptron is presented with pattern a, it
either fails (by saying yes) or succeeds
(by saying no). If it fails, of course, the
test is over. If it succeeds, the next step is
to examine the sum developed by the
head demon and split it into three parts:
L. 0 and R. representing the weighted
sums of the Left, Other and Right de-

a

c

'.' " '. 1'.�i\4,
I��,

mons that signal the head demon when
pattern a is projected on the retina. Since
the connectivity perceptron says no, the
sum of L. 0 and R falls short of the
threshold. If pattern a is now replaced
by pattern b, only the Left Demons
change their response, since only the
cells along the left edge of the figure
change. Suppose the partial sum L be
comes L'. On the other hand, if pattern a
is replaced by pattern c, only the cells
along the right edge change and only the
Right Demons change their response,
say from R to R'.

Now the perceptron has got itself into
a most curious position. Since band c
are connected, it must answer yes in
both cases, and so the sums L' + 0 + R
and L + 0 + R' must be at least as large
as the threshold. It is already known,
however, that L + 0 + R is less than the
threshold because a was not connected.

b

.,'" ., l':

It follows that L' isiarger than Land R'
is larger than R. The deathblow comes
when the perceptron faces pattern d.
Here both the left- and the right-hand
cells of the figure have changed from
the state they had in pattern a, and the
head demon finds itself computing the
sum L' + 0 + R', which is certainly
greater than the threshold. The head de
mon says yes. It is wrong.

Additional failings of perceptrons dis
covered by Minsky and Papert include
the unrealistically large number of local
demons needed for some recognition
tasks and the low rate of learning (or
convergence) for other tasks.

Perhaps it is not surprising that per
ceptrons should fail in many cases

where the human visual system suc
ceeds. I noted above that the local de
mons and head demon could be replaced

I · l,��1�; t·· : . "

"15 . :.� ::>"
�.: .'::�'

.. : .,:'

d

FOllrjigllres designed 10 con/lise a connectil'il), perceplron

29
© 1984 SCIENTIFIC AMERICAN, INC

$49.95
Fine Tuned For Scientific, Business

and Engineering Applications

(And perfect for the Weekend· Programmer too)
"Finally, somebody has done it right. A powerful Pascal Z80 or
8086/88 single pass native code compiler together with a full

screen editor and error checking to make a super programming

development package."

Dave Carroll, M/crosystems, February 1984
• Automatic overlays (no address.es or memory space to calculate)

• Optional 8087 support (available for an additional charge)

• Full-screen, interactive editor

• Windowing (for IBM PC or Jr.)

• Full support of operating system facilities

• Full heap management-via dispose procedure

• Graphics, sound and color support for IBM PC or Jr.·

• Occupies only 35K including editor!!!
• Extended Pascal for your IBM PC, PC Jr., Apple CP/M, MS DOS,

CP/M 86,CCP/M 860r CP/M 80 computer.

"It is, simply put, the best software deal t6 come along in a long
time ... buy it."

Bruce Webster, Softalk IBM, March 1984
To order your copy of Turbo Pascal2�O can: .

1-800-255-8008
in CA 1-800-742-1133

Dealer and Distributor Inquiries welcome

408-438-8400
�---

CHOOSE·ONE:'
o Turbo Pascal version 2.0 $49.95 + $5.00 shipping peJ copy.. _

o Turbo Pascal 2.0 with 8087 support $89.95 + $5.00 shipping.per co.py-

Check _._. __ MoneyOrder __ · _ Mysystemis:8bit� 16bit __ _
VISA- MasterCard'- Operating System: CP/M 813 � __ _
Card #: CP/M 86 _ MS DOS _PC DOS _
Exp. date.: Shipped UPS Computer: __ Disk Format: __

.) BORLAnD'

.)} INTER-NATIONAL
Borland International
4113 Scotts Valley Drive
Scotts Valley. California 95066
TELEX: 172373

Please be sure model number & format are correct.

NAME:
ADDRESS:
CITY/STATE/ZIP: _____ _

TELEPHONE: ______ __
California residents add 6% sales tax. Outside U.S.A.
add $15.00. (I f outside of U.s.A., payment must be by
bank draft payable in the U.S. an'd in U.S. dollars.) Sorry,
no C.O.D. or Purchase Orders. E3

by simple computational circuits. They
could also be replaced by the formal
neurons first described in the 1940's by
Warren S. McCulloch and Walter H.
Pitts in their classic work on neural net
works. These formal neurons are much
simpler than human neurons; likewise
the complexity of a perceptron orga
nized as a two-layer neural network
does not come close to the complexity of
the first two layers of the human visual
cortex. Moreover, "behind" the visual
cortex, as it were, there is an amazing
and almost completely unknown analyt
ic apparatus-something that is entirely
lacking in the perceptron model of vi
sion, To even begin modeling this great
er complexity one would have to replace
the head demon by a Turing machine,
but here the argument sinks into a sea of
uninformed speculation, and so I shall
call a halt.

Even if perceptrons are eyes without
minds, they have a certain charming
simplicity and, for some patterns at
least, definite powers of recognition.
I wonder what other patterns readers
might discover to be within the compe
tence of the window perceptron. Those
wishing to explore the tougher question
of which subsets of the 16 2 X 2 subpat
terns lead to "good" window percep
trons (those that recognize at least one
pattern) will find the question somewhat
cleaner to handle if a constraint is add
ed: the patterns recognized should be
"translatable"-it should be possible to
shift them on the retina without chang

. ing the fact that they are recognized.
This requirement not only rules out
certain overspecialized window percep
trons (for example the one that recog
nizes a single dark cell in the upper right
corner of its retina) but also reflects the
notion that the perceptron is looking at a
real scene that shifts across the retina as
the black box in my fantasy scans it.

Although diameter-limited percep
trons are unable to distinguish connect
ed figures from unconnected ones, it
may be possible to recognize connectivi
ty in certain classes of figures. For exam
ple, within the class of all multiple-rec
tangle patterns the connected figures
would be those that include exactly one
rectangle. Can you design a percep
tron that recognizes just such patterns?
Your local demons must use 2 X 2
windows, but you may hire additional
demons if necessary.

I implied above that perceptron re-
- search came to an end with the publica

tion of Minsky and Papert's Perceptrons.
This is true in the sense that a certain
woolly and wishful attitude toward per
ceptrons and their powers of recognition
is no longer possible. On the other hand,
it was far from Minsky and Papert's in
tention that all research in perceptron
theory be stopped. The precise powers
of these simple but sometimes effective
devices have yet to be discovered.

© 1984 SCIENTIFIC AMERICAN, INC

Rosenblatt, whose work extended into
psychology and neurobiology, died in
a tragic boating accident on his 43rd
birthday, July 11, 1971, in Maryland.

Deader response to the column on ana
n. log gadgets was gratifying, with no
fewer than 17 new gadgets being sug
gested. Three correct solutions to the
light-in-a-mirrored-box problem were
also submitted.

Before taking up these matters, how
ever, I must correct an error. To my
knowledge the fastest digital-computer
algorithm for finding the convex hull of
a set of points in the plane requires on
the order of n log n operations, not n
log log n. The string analog gadget that
solves the same problem was invented in
1957 by George J. Minty, Jr., o(lndiana
University. Minty also points out that
the soap-film technique for finding mini
mum Steiner trees originated with Wil
liam Wiehle in 1958.

The laser gadget for discovering
whether a number n is prime was criti
cized by David Zimmerman of Beaver
Dam, Wis. The light must be reflected n
times in going from the laser to the de
tector, he notes, and since the speed of
light is finite, the solution time is propor
tional to n. If the problem size is defined
as the number of digits in n, the solution
time grows exponentially and the device
is no faster than a digital algorithm.

The finite speed of light also bothered
Steven P. Hendrix of New Braunfels,
Tex., who remarked that in the mir
rored-box problem one might have to
wait a very long time for the light to
emerge. I asked what property of the
light path the mirrored box measures.
Hendrix was among those who solved
the problem by noting that the question
of whether the light emerges is equiva
lent to the question of whether an infi
nite straight line in the plane intersects a
point with integer coordinates.

Imagine an infinite orchard with infi
nitely thin trees planted on a sq uare grid.
If a bullet is fired from one tree in an
arbitrary direction, will it ever strike an
other tree? It will if the angle with re
spect to the rows of trees has a rational
slope. If the tree struck is p rows north
and q rows east of the firing point, the
slope is pi q. The mirrors in the box
merely fold up the path of the bullet.
John Dewey J ones of Farmington Hills,
Mich., and Paul Kingsberg of Imperial,
Pa., also solved the problem.

The only way to do justice to the
wealth of gadgets described by readers
is to devote a second column to the sub
ject, probably early in 1985. Meanwhile
I shall at least mention some of the more
interesting gadgets.

Peter F. Ash of St. Joseph's Universi
ty reported on solving a cubic equation
by immersing solids in a tank of water.
Tom Digby of Los Angeles remarked
that the computational power of an ana-

For personally signed Ken Davies print, 18" x 19", send $10. payable to "ANCO". Box 2832·SN. NYC, 10163

Always On The Move
The Wild Turkey instinctively

seeks "elbow room:' If the bird
senses any encroachment on its
territory, it will travel many miles
a day in search of a remote
swamp or forest preserve .

Native only to the American
continent , the Wild Turkey
is a fitting symbol for America's
greatest native whiskey-
Wild Turkey.

WILD TURKEY®/IOI PROOF/8 YEARS OLD
AUSTIN�NICHOLS DISTILLING co., LAWRENCEBURG, KENTUCKY � 1982

31
© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

And it's no surprise.

Only one software company so completely covers business, home and education.

Only one is backed by the resources of the world's largest
independent producer of mainframe software,
Management &ience America, Inc. (MSA).

And only one offers you the most complete line
for microcomputers. Peachtree Software � �->-�'��iIIIIII......
The pioneer that's still pioneering.
With 25 new products this season, 67 in all.
And with applications for IBM, Apple
and most leading microcomputers.

Case in point: our neW"
Decision Manager. Created to
give executives higher productivity on the
job than ever before. With up to ten windows
displayed at once, dramatic graphic capability,
mainframe communications link and much, much more.
The perfect companion to our PeachText 5000.

Case in point: our famous PeachText 5000 1M. A complete
package for better office productivity, including word processing, financial spreadsheet,
Random House thesaurus, spelling proofreader and list manager. Even includes
free special instructional software for a limited time.

Case in point: our neW" Back To Basics Accounting System.
Created for the small businessman with a new PCjr 1M, Apple, Atari,
Commodore or almost any leading microcomputer. Lets him set
up his basic accounting system even if he has little or no previous
accounting knowledge.

Whether it's for business, home or education, America's software grows on the
Peachtree. Look for all our products wherever software is sold, or send us the coupon
for a free brochure.

Better productivity grows on the Peachtree. Reach for it.
r---------------------�

America's Software
grows on the Peachtree ..

PCjr is a trademark of International Business Machines Corporation.

Peachtree and Peachtree Software are registered trademarks of Peachtree
Software Incorporated. an MSA Company. CC> 1984.

Peachtree Software
3445 Peachtree Road NE
Atlanta, GA 3032(') • 1-800-554-8900

Please send me more infonnation about Peachtree Software.

I'm interested in software for () business, () home, () education.

Name ____________________________________ ___

Address __________________________________ _

City _________________ _ State ___ Zip ___ _

Phone ________________ _ DC 09014AB

© 1984 SCIENTIFIC AMERICAN, INC

EE EB EEEB
STAIRS

EEEE EE
VER T ICAL LINES

EEEBEEEEtE
EE EEEB

MULTIPLE REC TANGLES

EEEE
CHECKERBOARD

I

EE EBEEEEEB
"BLACK HOLES"

.�
I .I

I

I
4

I

EBtEEE
DIAGONAL LINES

Some patterns recogllized by willdow perceptrolls

34

log gadget can be attributed to its ability
to carry out many processes in parallel.
He showed how to set up n digital com
puters to sort n numbers in linear time,
equaling the performance of the spa
ghetti analog gadget.

Eric Halsey of the University of Wash
ington described a longest-path

gadget made out of "snakes." Each edge
of the graph is represented by an elastic
string threaded through an integer num
ber of beads. Does the longest path
stand out when the gadget is stretched
and then released? Another of his gad
gets measures the length of the shortest
path between two vertexes in a graph.
Make each edge a piece of fuse and put
a firecracker at the second vertex. Now
light the fuses at the first vertex and
stand back: the time until the firecrack
er explodes is proportional to the length
of the shortest path.

I was reminded by Palmer O. Hansen,
Jr., of Largo, Fla., that the planime
ter, a mechanical device for measuring
area, could qualify as an analog gadget.
Dale T. Hoffman of Bellevue Commu
nity College in Washington pointed out
some additional problems that can be
solved by soap films, including a clever
computation of Snell's law. David Kim
ball of San Diego solves mazes by
pumping water into the maze and fol
lowing the current to the exit. Another
pretty gadget was described by J. H.
Lueth of the United States Metals Refin
ing Company in Carteret, N.J. SLAG (the
smelter-location analog gadget) finds
the location for a smelter that minimizes
transportation costs for limestone, coal
and ore. Three holes in a board and
three weights tied together with string
solve the problem. The same device was
also mentioned by Hendrix.

Tony Mansfield of the British Nation
al Physical Laboratory in Teddington
solves linear-programming problems
with a framework made up of parts
from a toy construction set. Thomas A.
Reisner of Universite Laval in Quebec
generates a contour map of a surface
by spreading mosquito netting over it.
A strong overhead light creates a moi
re pattern as the net interferes with its
own shadow.

The U.S. citrus industry apparently
uses an analog gadget to sort fruit. Or
anges roll in the channel between two
not quite parallel pipes and fall through
when the distance between the pipes is
equal to the diameter of the orange.
John P. Schwenker of Louisville, Colo.,
once found the center of gravity of a
piece of equipment by a variant of Ron
ald L. Graham'S plate-balancing tech
niq ue. When the eq uipment is dragged
by a rope across a smooth surface, the
vertical plane passing through the rope
also passes through the center of gravi
ty. The intersection of three such planes
identifies the center of gravity itself.

© 1984 SCIENTIFIC AMERICAN, INC

Is This a
Black Hole

at the
Core of

our Milky Way
Galaxy?

Black holes are conjecture-hypothetical bodies so dense that
the gravity field around them does not allow light or anything else
to escape. Yet they appear to exist at the core of all galaxies. And
perhaps elsewhere.

The mass of three Suns crushed into
a space smaller than this period (.)!

When a large star has spent its nuclear fuel, it blows apart in a
colossal explosion which we call a supernova. All that remains is
a tiny, hot, burned-out core. Compressed by its own gravity, the
core shrinks, becoming denser and denser. If the star is heavier
than three Suns, gravity crushes its matter into a space smaller
than the period at the end of this sentence. The star "blinks off'
and a black hole is the result.

An incredibly destructive force? Yes, but astronomers think the
black hole-or whatever it is-at the core of the Milky Way may
have been there from the beginning. And it may hold the secret
to how the Galaxy began as well as how it might end.

Are we alone in the Uniuerse?
Astronomers may get to the heart of the matter (in the ultimate
sense!) within your lifetime-maybe within the next few years.
Meanwhile, other fascinating discoveries are taking place.

Astronomers have recently discovered bands of solid particles
orbiting several other stars, including such naked eye stars as
Vega and Fomalhaut. These stars are surrounded by rings of
relatively cool, small solid material perhaps no larger than grains
of sand which may be the stuff of planets in some early stage of
creation. The system of planets we inhabit may not be unique
after all.

There are billions of stars in our Galaxy alone-so somewhere
else in the Galaxy there may be a solar system like ours. It's
perhaps the most exciting indication yet that "mankind is not
alone."

Presenting ASTRONOMY Magazine,
If discoveries such as these interest, enthrall, or excite you, then
join us now in the quest for knowledge as a subscriber to
ASTRONOMY Magazine. By reading ASTRONOMY every month,
you'll appreciate the significance of discoveries that few other
people even begin to grasp.

ASTRONOMY is brilliantly illustrated-mainly in color-for
astronomy is the most beautiful of all sciences. The magazine is
authoritative-it's written largely by astronomers-but edited for

the layman. Articles take you step by step from the basics all the
way to the frontiers of astronomical knowledge!

While other people remain Earthbound, you can be exploring
the solar system, the Galaxy, the outer reaches of space. You can
be eye-witnessing the most awesome phenomena. Contemplat
ing the most astonishing possibilities. Challenging your mind
and stretching your imagination.

You'll be inuolued!
ASTRONOMY involves you-intellectually and emotionally. And
if you choose to become one of the tens of thousands of
amateur astronomers, ASTRONOMY will be your guide also.
We'll show you how to observe and photograph the planets, the
stars, and celestial phenomena. How to use a telescope-or
build one from scratch.

Discouer ASTRONOMY Magazine now
and receiue a Free 'MAN FLIES FREE" Poster

Return this coupon today. You'll receive 12 issues of
ASTRONOMY for only $15-$9 off the single-copy price. And
with your paid subscription, you'll receive a free color 21" x 30"
wall poster commemorating the historic space walk made from
the Shuttle Challenger, when "man flew free" for the first time
-no tether, no lifeline.

r--�------------------------------------

ASTRONOMY Y
ES. I'm fascinated

by it all and I want to
know more. Start

my trial subscription to
ASTRONOMY -satisfaction
guaranteed. My introductory
price is just $15 for a full
year-12 monthly issues.
I save $9 off the single
copy price. And I get a free
21" x 30" M A N FLIES
FREE poster with my paid
subscription.

D Bill me later.

o Payment encJosed
send poster right away.

MME _______________________________________ _

ADDRESS ____________________ APT. # ___________ __

01Y _______________________________________ _

STATE ZIP _____________ _
Mail to: 5194

ASTRONOMY

P.O. Box 92788. Milwaukee. WI 53202

GUARANTEE
If you don't agree that ASTRONOMY is out of this world, you can
cancel at any time, receive your money back on all unmailed
issues, and still keep your MAN FLIES FREE poster free!

35
© 1984 SCIENTIFIC AMERICAN, INC

If a word process�
these 8 toofs for better
1 Pop-up menus-so you

can start writing
better right away.

You can't write better if you're not
writing. So Perfect WriterT" has pop-up
menus that make it extra easy to use.
They guide you through every function
with simple English language words. So
you don't have to struggle with compli
cated commands.

2 Simple function that
lets you keep your mind
on what you're writing.

3 Powerful editing features at the touch . of a single key.
Perfect Writer makes it extra easy to make changes for the better.

One key at a time is all it takes to move text. Search and replace. Add or
delete words, sentences, even entire paragraphs.

Instead of hard to find function or control
keys, Perfect Writer lets you edit with the
keys right under your fingertips. And
because our menus appear right on the
screen with your document, you never
have to leave your text. And lose your
thoughts.

4 A 50,000 word 'dictionary .
that helps you correct spelling
mistakes.

Nothing destroys good writing faster than bad spelling.
So Perfect Speller'" checks your document and points
out spelling errors automatically.

5 A Perfect Thesaurus T"
to help you choose
exactly the right word.

Are you pleased? Happy? Delighted? Good
writing should say exactly what you mean!
And with our built-in Perfect Thesaurus,T" the
precise word you want is always at your
fingertips.

IBM pC

J
r.

J
t

© 1984 SCIENTIFIC AMERICAN, INC

program doesn't give you
writmg, it's not Perfect:

·J.d,

7AutomatiC formatting to make your
writing look even better on paper.
Perfect Writer works with most popular printers. And with

our special document appearance features, your letter, memo,
report or paper will look like a masterpiece.

Boldface and italics let
you write with new
emphasis.

If you want page num· Perfect Writer automat·
bers, Perfect Writer can ically numbers, posi·
handle it-automatically. tions and prints out

footnotes. Whew.

6 Split-screen windows that
help keep your thoughts
organized-while you write.

It's like having a notepad right on your screen.
You can use one window to jot down notes,
key points or an outline-as you develop your
text in the other window. See? With Perfect
Writer, you can really compose your prose.

8 PerfectT"
integration
witt! other Perfect software.

Perfect Writer is just part of the complete,
integrated Perfect Software family. There's also
Perfect CalcT" spreadsheet. Perfect FilerT"
database management . And Perfect LinkT" tele
communications software. You can share
information between programs. And, each pro
gram uses common commands. So they work
PerfectT" together-to help you work better.

Why settle for anything less than PerfectT"?

ThePerfecf
way to

,.write better.
1HORN EMI Computer Software. Inc.

THORN EMI Computer Soltware, Inc., 3187 C Airway Avenue, Costa Mesa, CA 92626

Perfect Software is available for the IBM® PC. IBM PCjr, Apple® lie and Apple IIc com pulers, as well as
for computers that use MSN·DOS, CP/M® 80 and CP/M® 86.
IBM is a registered trademark of International Business Machines Corporation. Apple is a registered
trademark of Apple Computer Corporation. MS-OOS is a trademark of Microsoft Corporation.
CP/M is a registered trademark of Digital Research Corporation.

© 1984 SCIENTIFIC AMERICAN, INC

While some disks lose their way in the torrid zone of drive heat,
Maxell guarantees safe passage.

A lifetime warranty. And manufac
turing standards that make it almost
unnecessary.

Consider this: Every time you take
your disk for a little spin, you expose
it to drive heat that can sidetrack data.
Worse, take it to the point of no return.
Maxell's Gold Standard jacket construc
tion defies heat of 140°F. And keeps
your information on track.

And Maxell runs clean. A unique
process impregnates lubricants through
out the oxide layer. Extending media
and head life. How good is Gold?

Maxell's the disk that many drive manu
facturers trust to put new equipment
through its paces. It's that bug-free.

So you can drive a bargain. But in
accelerated tests, Maxell was an
industry leader in error-free perform
ance and durability. Proving that if
you can't stand the heat you don't
stand a chance.

maxelt
IT'S WORTH IT

Maxcll Corporation of America, 60 Oxford Drive. Moonachie, N.J. 07074 201·440·8020

© 1984 SCIENTIFIC AMERICAN, INC

BOOKS

The numbers of physics, a life in molecular
biology, a 2-D world, ecology of body size

by Philip Morrison

THE CONSTANTS OF PHYSICS, edited
by W. H. McCrea and M. J. Rees.
The Royal Society, 6 Carlton

House Terrace, London SWIY 5AG,
England (23.40 pounds sterling or dollar
equivalent). Looking from the summit
of success climbed in the past decade,
the gauge-field theorists think they see
a grander unification at the horizon,
and they have boldly marched toward
it. The ir vision is wide indeed, albeit
distant; it joins an understanding of the
inwardness of the quarks to an unprec
edented familiarity with the expand ing
universe past and present.

This book is a collection of a dozen
and a half related papers buoyed by the
cresting wave of theory. Some take only
a page or two and can be easily under
stood by the informed general reader,
some are long and difficult summaries
meant for hard-bitten traffickers in d if
ferential equations. Most of them are
followed by a transcript of brief d iscus
sion, since the thin volume records a
meeting held by the Royal Society in
May of last year. Those present includ
ed a wide international cut of physicists,
some of them bearing very well-known
names. Their topic is the key num bers,
-in our quantum epoch easily put into
d imensionless form, that measure the
intrinsic strengths of all the forces that
couple particles, along with certain oth
er parameters of microcosm and macro
cosm that underlie the particulate uni
verse we inhabit. The meeting recorded
opinion almost at its most sanguine. In
the past year there have come several
hints from the big laboratories and the
underground experiments, some con
firming the electroweak theory brilliant
ly at the energies we now command,
some more recently hinting that nature's
way may not after all follow the sim
plest of erudite conjectures out to the
requisite d izzying extrapolation.

The most familiar ground is explored
in the first half-dozen papers, looking
over the measurements of the basic con
stants. The national standards laborato
ries are coming to found their central
units on "well-understood quantum sys
tems." The second of time is of co urse
fixed by the cesium atomic clock; the
speed of light and the atomic clock to-

gether have j ust replaced the platinum
bar to fix the meter, and both the volt
and the ohm will soon be determined by
certain precise quantum steps electri
cally measurable in condensed matter
at low temperature. The kilogram will
soon enough be defined by a count of
atoms based on the spacing of crystal
lattices measured by X ray. Meanwhile
d imensionless constants such as - the
fine-structure constant-the notorious
1/137 that serves as a measure of elec
tric charge-are known better and bet
ter. The d iscrepancies now are at the
level of only parts per million.

The elusive measures of gravitation,
isolated from all the other constants, are
closely watched: the most d iscussed of
them is the idea, perhaps inconsistent,
that the gravitational constant is chang
ing as the expanding universe becomes
more dilute. A good review establishes
that the change, if any, is less than one
part in 10 billion per year. This result is

. based on a detailed analysis of the mo
tions of Mars using signals from the Vi
king Lander combined with Mariner 9
data, and on laser reflections from a
retromirror on the moon. Methods now
current promise an improvement in ac
curacy by a factor of 10, but not much
more than that. The limit for orbit pre
cision in the solar system is now set by
asteroid noise; there are quite a few big
asteroids still unweighed and thousands
of little fellows. They all add up, to
daunt even the modelers who command
supercomputers.

"There is now a small, international
industry dedicated to testing relativistic
theories of gravitation," states one pa
per. The approximate truth of general
relativity is well supported by a variety
of first-order results, to 1 percent or bet
ter. The time has come to probe deep
er, to check second-order effects and to
study quite new phenomena. Much can
be done in the isolation of space, and the
exq uisite timing studies of the binary
pulsar orbit and lately of the millisec
ond pulsar challenge the space experi
menters to improve on what is now be
ing done by the ground-based radio
astronomers exploiting those serendipi
tous natural clocks.

Setting macrocosmic gravity aside, it

is possible to seek changes in the con
stants of microphysics within astronom
ical and geologic contexts. The ratio
of spectral frequencies seen in quasars
and other d istant sources is not hard to
measure to reasonable accuracy, choos
ing spectral lines whose energies depend
differently on the various constants. The
21-centimeter radio line can be com
pared with the. normal lines in the visible
spectrum of hydrogen, or one can com
pare visible lines from iron with those
from hydrogen. Both allow the compar
ison of nuclear properties with electron
ic properties, the one for magnetism,
the other for mass. All of this leads to a
direct check of the nominal 1/137; it
is invariant over most of visible space
time within one part in 10,000.

A few pages by J. M. Irvine of Man
chester clearly set out afresh the marve
lous ded uction first drawn in 1976 by the
Russian physicist A. I. Shlyakhter. In the
Oklo uranium mine in the African na
tion of Gabon there were found residues
of several natural nuclear chain reac
tors, which were boiling away merrily in
river sands for a while a couple of bil
lion years ago. N ow, there is j ust one
energy value we can be sure of to high
precision, even without measurement.
That is the kinetic energy of a particle at
rest: zero. Thermal neutrons move at the
speed of so und, but that is scant energy
indeed compared with the intrinsic ener
gies of the neutrons' capture by atomic
nuclei. Yet mineral analysis proves that
thermal neutrons in the Oklo mine long
ago were resonantly captured in exactly
the same rare isotopes that would swal
low them today. This implies the nucle
ar quantum energies have not shifted
enough over the past two billion years to
detune the narrow nuclear energy level
away from its chance resonance at near
zero kinetic energy. The electric repul
sive forces and the specifically nuclear
attractive forces must have struck then
nearly the same bargain they keep to
day; agreement implies that'the relevant
microconstants cannot have changed by
more than a few parts in 10 billion over
the entire time.

Still, the coupling constants are not
truly constant under all circumstances.
The very basis of the grand unification
of the nuclear, weak and electromagnet
ic forces is the understanding that the
external effects of electric charge and its
less familiar analogues all depend on
the energy with which particles collide.
Several reports here survey the situation
from various more or less convention
al points of view; none of them is real
ly accessible to the reader not familiar
with gauge theory, although the conclu
sions are understandable. The chief con
clusion for a decade has been that the
three forces would all show the same
effective strength at energies equivalent
to about a million billion proton mas
ses, if no other phenomenon intervene

39
© 1984 SCIENTIFIC AMERICAN, INC

before the tiny distances implied are
reached. Thus the forces between the
particles in a gas are dependent on tem
perature, and the way is opened to
examine what happened in the very
early universe, which by extrapolation
is shown to be hot indeed.

A few reports sum up the inferred
states of that plausibly conjectured in
ferno. We live now in a cold universe of
protons and neutrons; when radiation
and matter were as hot as the beams of
today's big accelerators, all was un
confined quarks and gluons. At a much
higher temperature still all microforces
became equal. All was symmetric; mat
ter was of a kind now entirely alien but
governed by high symmetry. Along this
line of thought, based of course on sim
plified models proposed for a world not
known in detail, many features of our
universe (or better, surmises about it)
come clear. They include the asym
metry between ordinary matter and the
rare but equivalent antimatter, and the
measured tendency to expand with near
zero acceleration. It is all quite impres
sive, except for the brutal fact that the
same arguments applied in hope to the
gravitational field yield a rough estimate
of the present energy content of cosmic
space that is too high by a cool factor of
some 120 powers of 10! We do not know
what is so wrong; most probably gravi
tation is not simply one more example
of a quantum field theory but, as a cou
ple of papers here try to show, some
thing very distinct.

A delightful exploration into known
scales is made by William H. Press and
Alan P. Lightman of Harvard. They es
timate one after another the characteris
tic properties of solids and molecules, of
rocks, asteroids and stars, of planet spins
and wind speeds, of human stature and
the speed of a human runner, in each
case expressing their results for all these
phenomena in terms of the fundamental
constants of physics. A runner can move
at a calculable fraction 0f the speed of
light; that fraction depends .only on the
fine-structure constant, on its gravita
tional analogue and on the ratio of the
mass of the electron to the mass of the
proton. The calculation predicts (per
haps to some degree by good luck) a six
second record for the 100-yard, dash,
which is not too bad for such an elevat
ed approach.

A less convincing study examines the
so-called anthropic principle, by which
we are enjoined to remember that we
could not, for instance, observe too hot
a stage of the universe; the existence of
observers implies certain limits on their
environment and hence on the physics
of the cosmos, "Although' our situation
is not necessarily central, it is necessari
ly privileged to some extent,': argues the
author, Brendon Carter. He goes on to
make quite a lot of this through mod
els of long-term evolution; the conclu-

40

sions require a certain enthusiasm for
simple formulas.

The most original paper here, not at
all an easy one, is by the Copenhagen
theorist H. B. Nielsen. He begins dis
armingly enough with the example of
the kinetic energy of a free particle at
low speed, the familiar square of the
velocity. That limit can come out of
an almost arbitrary version of the true
form of relativistic dynamics. The result
must, apart from constants, depend on
momentum alone; it cannot depend on
position, since that is what is meant by a
free particle. If energy is also to be inde
pendent of direction, the speed must ap
pear as an even power. The lowest pow
er possible gives the limit at low speeds.
The familiar result follows, just the cor
rect limit from relativity, unless the
coefficient of the square term is "by
chance" zero. Now, if the laws of dy
namics were so complex as to approxi
mate a randomly chosen set of functions
for the true energy, the result would
nonetheless usually be the one we know,
derived in the limit from a few princi
ples alone. The details at a more funda
mental level may not matter much if we
do physics only in a restricted range, "in
a corner," say at low energy.

By extension Nielsen proposes-with
examples-that the laws of physics, all
the powerful symmetries and simplici
ties we have, are simply the evolved
outcome of physics done in one corner
of the room of possibilities. Underneath
everything there may be levels of struc
ture that are extremely small and far too
complex to guess at. Our experiments,
even in the highest-energy beam, may
still be at large space-time distances
compared with those unknown scales.
The regularities we rely on-powerful
gauge invariance and the conservation
laws-may, like the velocity-squared
law for kinetic energy, depend little on
the unknown details at the lower levels.
Random dynamical systems might give
rise to the special symmetries we see
with our clumsy spatial resolution and
our slow gaze, without requiring the fine
tuning that symmetries appear to imply.
All laws stand merely as approxima-'
tions valid over a wide range of under
lying, unknown and perhaps disagree
ably complex theories. The laws and
constants of physics thus evolve, so
to speak, as the cruder simplicities that
roughly average out some complex and
chancy substructure lying far below
our v.ision.

The Copenhagen group offers illus
trative examples closer to the genuine
symmetries of today than the merely
pedagogical case of kinetic energy. The
four dimensions of space-time, the lin
ear quantum equations, relativity and
more might be shown to arise from
deeper laws of much less simple struc
ture. (There is another technical paper
here that takes a wide look at possible

high dimensionalities, recently rather
popular.) Such hidden theories might in
our ignorance be just as well described
by complicated systems of equations
chosen at random. A few simple ex
amples have been carried through with
some success.

Given the eventual working out of
Nielsen's program, the origin of the laws
of physics would be understood statisti
cally, although the laws we now know
would all be approximate. As most
theorists imagine their final success,
however, they expect one day to set
eyes on that One Golden Lagrangian,
whose wonderful groups of symmetries,
in some domain exact, would control
everything that exists. But whence that
elegant utterance? The uppercase letters
would have to bear the entire burden of
origins. Someday we shall see; mean
while this slender, varied and difficult
book records a scientific program at
the brilliant summit of its hopes, and
it holds as well a small hard seed of
dissent. These papers are already in
the libraries; they were published in
1983 in Vol. A3 10 of the Phil. Trans.
Roy. Soc. London.

ASLOT MACHINE, A BROKEN TEST

TUBE: AN AUTOBIOGRAPHY, by
S. E. Luria. Harper & Row, Publishers
($17.95). Only a chunk of paraffin, it lay
on the windowsill in Edoardo Amaldi's
laboratory in Rome, ready to hand for
tyro Luria to melt up for his casual
purpose. Fortunately Amaldi was right
there to rip the piece from his assistant's
hands just in time. It was no ordinary
chunk of wax but "a holy relic" like the
telescope of Galileo, carefully matching
the hand-carved chunk of lead Fermi
had compared with that very wax in
that very room years before when nu
clear transmutation by the absorption
of slow neutrons was first found, and
nuclear fission and the nuclear chain
reaction were foreshadowed.

The new assistant was a bright if
romantic young man from gray, re
strained, "Protestant " Turin, buffeted
between the lively familiarity of Roman
manners and the stern expectations of
Fermi's hardworking crew of physicists.
They called him Signor Garzone (freely,
Mr. Lab Boy); he was 25 and held a
fresh M.D. In 1937 Italy an M.D. was an
easy path for the studious son of school
oriented striving Jewish parents, the
handsome mother a semi-invalid depen
dent on opiates and secretive about it.
Young Salva shared no healer's voca
tion; his aim was a profession, although
his dream was of science. The compro
mise career he sought was the physicist's
one of radiologist. His year among the
physicists was justified as a remedy for
incompetent instruction in a dull spe
cialty, as it was taught and seen in Turin.

When the next year Fermi left for
Stockholm, never to return to Fascist

© 1984 SCIENTIFIC AMERICAN, INC

Since 1942, winning "the Westinghouse"
has been one of the most elite academic
achievements that American high school
students could attain.

And the recognition associated with
participating on a national level in the only
competition of its kind has helped thousands
of seniors receive financial aid and
recommendations to America's top colleges
and universities.

The rewards last a lifetime.

Science Talent Search winners earn
doctorates at a rate 25 times the nationlJl
average for college graduates, and go on to
assume vital roles in America's industries,
universities and research institutions.
And no fewer than five times between 1972
and 1981, former winners have been
awarded the Nobel prize.

Research projects must be received by
December 15, 1984.

For further information:
Request a complete contest entry kit from
Science Service, 1719 N Street, N.W.,
Washington, DC 20036.
Or caU800-245-4474. In Pennsylvania,
call 800-242-2550.

You can be sure ... if it's Westinghouse
®

© 1984 SCIENTIFIC AMERICAN, INC

Italy, Luria, dreaming both of freedom
and of science, left for Paris. He was
lucky; his interests in radiation biolo
gy and bacteriophage, the one kindled
by the Rome physicists, the other by a
chance friendship formed on a stalled
trolley in power-short Rome with a
young bacteriologist, led him to a re
search post in generous anti-Fascist Par
is. He learned both research and po
litical concern there, until the Germans
marched too close. By the summer of
1941 Luria and the German emigre the
oretical physicist Max DelbrUck, whose
piece on the gene as a molecule had
drawn the dreaming Luria along with
him on the road to a genuine biophysics,
were seasonal colleagues at Cold Spring
Harbor on Long Island and were secure
from the wars.

The organisms were called bacterio
phage because they ate bacteria. It was
not the right term; the phage group pre
ferred to talk of bacterial virus parti
cles. A virus particle is open to physical
study; not long after Pearl Harbor, Lu
ria, who to this day is uneasy with tech
nology and finds "even laboratory in
struments forbidding," worked with a
biophysicist colleague, Tom Anderson,
to produce with the new RCA elec
tron microscope the first good images of
phage particles. Radiation, imaging, sta-

tistics; that was how to find out about
bacterial virus. The time had come for
sharp reductionism: genes were mole
cules, viruses held strings of genes, and
their bacterial hosts should be not much
different, however biochemists might
demur. Molecular biology was budding
in those wartime years: one red bread
mold gene made one enzyme. It looked
as though what entered to permanent
ly transform the pneumococcus was the
substance DNA, and phage was more a
tiny inert proteinaceous structure load
ed with nucleic acids than a hungry
predator on bacterial cells.

The experiments showed that a few
bacteria always survived the fiercest at
tack of phage. Were these survivors re
sistant by some chemical action set up
by contact with phage or were they born
resistant by genetic inheritance? A slot
machine at a weekend faculty dance at
Indiana University gave Luria the con
cept of his test, and half of the title of his
book. Steady losers trickled coins into
the machine, but once in a while some
one would hit the jackpot. The fluctu
ations are uncommonly large. It was
not hard to devise a scheme to study
the fluctuations in phage resistance. By
Tuesday afternoon the first experiments
were finished. If mixing with phage in
duces rare resistants in a large colony of

bacteria, the fluctuations will be small.
If the resistants occur by spontaneous
mutation in the course of growth, how
ever, there will be some that mutate ear
ly, to leave huge numbers of their resis
tant progeny. Jackpot! Resistance was
genetic. The physicists had chosen the
right metaphor; individual spontane
ous events worthy of study can happen
to particles. Bacteria were overnight el
evated to genetic leadership; no other
forms could be studied genetically in
such large numbers so quickly.

Nobel prizewinner Luria counts one
even more important result to his credit.
It was a chance result that depended on
a broken test tube. What he was after
was to see what happened when certain
bacterial mutants appeared to be infect
ed by the virus but did not give rise to
more virus in their turn. Never a partic
ularly neat worker, Luria lost with that
tube the entire supply of phage-sensitive
bacteria he was about to test. The re
placement he could borrow quickly was
a sample of a different bacterial species.
Those bacteria should have worked as
well. In fact, they worked too well: they
yielded plenty of infectious phage. The
effect had not been the failure of phage
to engender phage progeny but rather
the copious production of a modified
phage, one restricted in its host range,

POWER-BASE™ PUTS You V

42

"Power-base'" is a menu -driven data management
program with relational capabilities. It was the top-rated
program overall, primarily because it was the easiest
to learn and use, and rated highest in error handling."
The Ratings Book/Software Digest, March 1984-

"To track the Bank of New England's IRA sales for
all 16 branches, I chose Power-base'" because it responds
so well to change while protecting the integrity of my
database." Bruce Montgomery, Bank of New England

"This program is impressive-it's easy to use,
simple, logical, and powerful and comes with flawless
written documentatlon."
Giovanni Perrone, mioWorld, March 12,1984

"Because you don't have to wade through screens
full of menus, the program IS fast. Because your choices
are always in front of you, the program IS easy Not much

more you can ask for, is there?"
Bobbi Bullard, Comp-uter Retailing, April 1984

© 1984 SCIENTIFIC AMERICAN, INC

able to grow on the borrowed strain but

not on the original. It turns out that

some bacteria can become immune be

cause they develop specific enzymes to

cut intruding DNA at particular cod

ed positions. Such restriction enzymes

are now the indispensable tools of DNA
manipulation.

These two discoveries lie at opposite
poles of style in science. The fluctua
tion test was an apt product of the free
imagination. If Luria had not hit on it,
probably no one else would have. The
proof of spontaneous bacterial muta
tion would nonetheless have come soon
by the route pioneered by Joshua Led
erberg, a clever but much more straight
forward technical device able to reach
the conclusion without explicit statis
tics. Phage modification and the restric
tion enzymes were found by following
up on an accidental revelation; if that
tube had not broken, some other phage
investigator would have come on them
within a year or so in systematic trial.

Three men won a Nobel prize for
phage in 1969: Luria, DelbrUck and Al
fred Hershey. Max was surer of him
self, organized, convivial, but he regard
ed politics as a "distasteful joke. " "He
was certainly not lavish with approval. "
When Luria's standard monograph on
viruses appeared, DelbrUck never said

anything about it to Luria except to
point out a misprint in a footnote. Her
shey was a loner, silent, his work and
his writings sharing "a spare elegance. "
Asked once for his notion of heaven,
Hershey answered: "'To find a perfect
experiment and do it every day for the
first time.' "

About a third of Luria's autobiogra
phy treats these external topics, always
briefly and clearly. There is all too little
of younger years in Turin, Rome and
Paris; even so they are convincingly
present. The book nonetheless achieves
much more; it is at once confessional
and analytic of motive. Organized by
development rather than by calendar
alone, the text outlines what Luria did
and who he is by describing the growth
of his personal set of commitments, ac
tive guides to action within this or that
sphere of a long and reflective life.

Luria's mind and heart are held by the
search for pattern, pressed through the
solution of problems in quest of a grow
ing and demonstrable order. His is an
active and participant mind; the large
but often vague questions of origins and
the cosmos do not attract him, and pas
sive surrender to entertainment is rare.
"Theater I love," but it is the actor's viv
id performance rather than the play that
attracts. (He reports that in spite of per-

vasive exposure, he has watched just one
program on television in a lifetime.) An
tipathetic to all sports, he is a dedicated
worshiper of the indoors, and he would
not so much as pick up an experimental
crab with his fingers. "There was some
thing forbidding to me in the appear
ance of the sun-etched, bearded giants
in jeans and sailing clogs who used to
populate nature-study laboratories . . . at
Woods Hole (before a crowd of tennis
playing biochemists came to take their
place). " Science is conceptual clarity
for this logical Piemontese of the labs;
biology is inward order and not bemus
ing diversity.

It is unlikely any other well-known
scientist could recount that for years
he had invited the new graduate stu
dents weekly to his home for "a Sunday
night literary seminar. " There they read
works around one high theme, say good
and evil, the Greeks to Hesse, Proust
and the Gita, as their mood and the am
bience led them. Even less expected is
Luria's love for poetry; he can still re
cite school-day set pieces, and within the
past decade he has come to know and
love the moderns, a Roethke or a Rich.
Here again it seems that pattern is his
aim; the characters of Shakespeare ap
pear rather shallow to him. It is what
they say, not what they are, that is so

lAY AHEAD OF EVERYONE.
"Much to my surprise, my search for a data-base

system took six months. But at last I've come up with a
winner: Power-base:""
Paul Bonner, Personal Comp-uting, February, 1984

SEND OR CALL

Or call 1-800-237-4778 (In NY, 212-947-3590). Use the
demo to set up actual applications �estricted to 25 records)
on your personal computer* See how simple it is to learn

and use Power-base. We'll refund the $10 when you
purchase Power-base at any computer dealer.

TODAY FOR YOUR COMPLETE � ____ �\ WE MADE IT POWERFUL.
POWER-BASE,M DEMO .� \\ __ BU_T _W _E K_E_PT_IT_SI_MP_LE_. _
Experience Power-base'M � yourself. Send $10 with � � 0 Send me my demo copy of Power-base'" 1

the completed coupon � , ��.. Mail to: PowerBase SystClns, Inc. Dept. A-I 1
below for your "-- �:;.�� ... - � .,.... 12 West 37th Street. NY. NY 10018 1
Power-base demo.

2/''''' � �� NAME T[TLE 1
ADDRESS

1 1
1

�CI�T�Y ________________________ S�T�AT�E� ____ -=Z[�P_________ 1
o My SIO CHECK [S ENCLOSED -, . --==;;=:==--=-==-� - �- -'-1 0 VISA 0 MASTERCARD # EXP DATE 1

--�:--- - *For use on the IBM PC and PC/XT or compatibles_ Power-base and DataZOOM are trademarks
Lof =er::'S>=s,�IB!!!C ='IB�/�rC�t=r=ar:: (:!M�:r:.!,!;mJ

43
© 1984 SCIENTIFIC AMERICAN, INC

Hitachi's visual-tactile robot can handle objects as fragile
as eggs, because its sensors detect size, shape and required pressure
to attain sensitivity almost equal to that of a human hand.

© 1984 SCIENTIFIC AMERICAN, INC

Nearly two decades ago, Hitachi began turning
common science fiction into startling industrial
fact. The device: The company's first servo
manipulator, a key component in the develop
ment of real robots to eliminate the monotony,
danger and dirty work of manufacturing.

Your mechanical right-hand man

Today, the results of Hitachi research are in
use all around you. Robot welders using micro
computers and built-in sensors to detect weld
lines automatically. Spray-painting robots
capable of remembering up to 2,000 instruc
tions and performing 99 different painting tasks.
Process robots that can be programmed for
new job functions through a simple teaching
box. Robots on wheels for transporting parts
and warehouse stock.

Our electronics and mechanical engi
neering experts have joined their talents to give
robots the benefits of high technology. They
have created models with expanded memory
capacities and advanced sensing systems.
And they have applied them in Hitachi's own
factories, where our production specialists
suggest further refinements.

In fact, we are constantly coming up with
innovations and new applications. One of the

latest: A visual-tactile sensing robot with multiple
arms and seven camera eyes, developed to
independently assemble home appliances such
as vacuum cleaners.

These examples demonstrate a few of the
ways in which Hitachi is improving upon basic
technology. Then using it to create practical
tools that meet your needs ... and those of
professionals in marine exploration, aerospace,
and virtually every other field you can name.

The best of worlds is yet to come

Our vision of the future includes robots with
artificial intelligence that will learn from their own
experiences. Flexible manufacturing systems
where robots handle every step of production.
Personal robots that will take the drudgery out
of household chores. And much, much more.

We'd like you to share in the benefits of
our scientific research, covering the next genera
tion of lasers, sensors and other electronic
devices. For improved business efficiency. For
a higher quality of life. Two goals we've pursued
for 74 years as part of our commitment to a
better world through electronics.

WE BELIEVE ROBOTS FREE MINDS TO CREATE BY FREEING BODIES FROM TOIL

*HITACHI
Robotics GrouP. Industrial Components Sales & Service Division, Hitachi America, Ltd .. 50 Prospect Avenue, Tarrytown, NY t0591-4698 Tel: 914-332-5800

© 1984 SCIENTIFIC AMERICAN, INC

46

all <,SI W" "" Write or c �':.L.
for a free catalog �;� .. .'i1

Allen-Edmonds Shoe Corp. Belgium, Wisconsin 53004
1-800-558-8653, Telex 260021

In Wisconsin, 1-800-242-7220

riveting, as in the modern poets word
sounds and concept may fit.

Existential as a matter of philosophi
cal stance, Luria has long been a demo
cratic socialist, his view based neither on
reasoned study nor on mere allegiance
to a political creed. He has chosen to
cast his lot with social justice and hu
man equality. He has been a firmly gen
tle, if sometimes sharp-penned, radical,
anxiously alert to effective compromise.
Some of his best political work was done
over the telephone, say in persuading
editors to publish statements of dissent.
For more than 70 years he has watched
dismayed the war and slaughter of our
century. "I dread [that] I may yield to
the temptation to tend my own garden.
Could I then preserve my self -respect? "

Would you know more of a scientist
and a man? More is here: rightful if un
common praise for his first-and best
graduate student, James D. Watson, and
the honest but artful book Jim wrote
about the double helix, all intensity, ar
rogance and joy. There is an appre
ciation of his long good marriage to
Zella Hurwitz, a psychologist and teach
er of integrity and distinction, her work
as thorough in commitment to complex
human issues as Luria's to the colony
count. There is a little about his enemies,
most of them the users of cant. He ac
cepts no claim by science either to "re
sponsibility for [or] absolution from the
problems of society. " Finally, we learn
of his severe depressions, a frequent dis
ability over the decades. For 10 years
Luria has been freed of his fear by intel
ligent chemotherapy, long delayed in
the finding.

It is easy to admire this cultivated,
ironic man and his lucid, pointed book
of an enviable life founded alike on rea
son and on commitment. For readers
who find empathy for the growth of can
dor and self-awareness as the chapters
pass, admiration will be colored with a
deeper cast. There are no modern auto
biographies and not many novels that
can more reward readers young enough
to find the grand choices in life still
before them. The reward is of course
not one path for Everyman but instead
a way of going on.

THE PLANIVERSE: COMPUTER CON

TACT WITH A TWO-DIMENSIONAL

WORLD, by A. K. Dewdney. Simon &
Schuster, Inc. ($16.95). Yendred was
shocked to learn that the humans
around the terminal his own was linked
to by some mysterious informational
resonance had a food channel running
clear through their bodies. "Why do you
not then fall into two pieces? " he sensi
bly asked. Yendred is a sentient two-di
mensional creature, living on-oJ in-a
disk planet lost somewhere in the depths
of planiversal 2-space. All we know of
him and his kind we find in this unique
account by a Canadian mathemati-

© 1984 SCIENTIFIC AMERICAN, INC

cian, whose name by some ooincidence
resembles after simple transformation
that of his alien friend. Naturally the
people of planet Arde must eat j ust as
we do, but they manage a connected ex
istence on the model of some Earthly
marine animals. They must eject the in
d igestible portion of their food after al
lowing time for absorption within their
d igestive pouch, which has no second
outlet. Their two-dimensional biology,
like their geology, hydrodynamics, do
mestic and industrial technology, man
ners, travels and much more, are pre
sented in description and diagram. All
of this was learned, we are told, in a
fragmentary and personal way d uring
long days at the graphics terminal, once
a group of college students had made
the still-mysterious contact. ended by
a strange metaphysical conversion. "To
talk again is of no benefit," the newly
mystic Yendred said near the end.

This is original science fantasy, as
much done in the popular .accents of
these years, all jargon lang uage, hackers
and cult events, as the famous Flatland
was an authentic piece of higfi Victorian
social irony. That work has its centenary
this very year. The science behind the
planiverse is much richer and more so
phisticated than Edward Abbott's was,
and the everyday observations are as
compelling. It is a delight to read how
that flat world manages construction:
nails and saws, of course, are not usable,
glue dominates fastenings, and plywood
is a. useful composite of hairlike ele
ments. Every lowland house-dug into
the Ardean ground-must have its emer
gency oxygen tank. A minor flood there
is no mere expensive inconvenience: it
cuts off the air. Sexual life in this 2-D
society is examined, as contemporary
fictional form requires. Its nature can be
grasped through a scene in which Yen
dred, a night traveler in a d istant indus
trial city, is accosted by a young female.
"You my egg to buy do want? It a beau
tiful blue is and very large and good to
sit upon." Again Earthly natural history
has provided in certain crayfish a mod
el adaptable to an intelligent species in
two d imensions.

Information technology is well ob
served. A book is reproduced here,
although at rather poor resolution. It
looks exactly like the cross section of an
Earth book; the line-pages hold about
one sentence each, written in a d ot-dash
alphabet. Linear information storage is
costly, and so books are few, terse and
rapidly recycled, to prevent inundation
by best sellers. Only true classics are en
shrined in the big libraries, each shelving
1,000 volumes (areas?) or so. A second
and more conservative nation across the
mountains from Punizla has a d ifferent
style. There it is held impious to try to
improve on the old masters, so that few
new works are approved, and then only
after a trial period in a single copy. A

THE BEST GIN GROWS ON TREES.
The driest and

most delicate gin of all,
in fact, comes from the
tree at the left: the
family tree of james
Burrough, a distiller in
19th century London.

Burrough had a basic philosophy: if
you want a thing done right , do it yourself.
Not a single distillation of his Beefeater Gin
left his distillery till it was approved by
James himself.

He wasn't much of a delegator, but
he made a beautiful gin.

His philosophy has been handed
down through succeeding generations of
the Burrough family, who still supervise
each day's r.un and approve each batch of
Beefeater before it leaves the distillery.

The apple never falls far from
the tree. For which gin drinkers to this day
are profoundly grateful.

The Crown Jewel of England:"

Joggin& Swimmin& or Cycling ...

ordlcjrack
jarless Total Body

Cardiovascular Exerciser
Duplicates X-C Skiing for the

Best way to Fitness

Cross-country skiing is often cited by physiologists
as the most perfect form of cardiovascular exercise
for both men and women. Its smooth, fluid, total
body motion uniformly exercises more muscles so
higher heart rates seem easier to attain than when
jogging or cycling. NordicTrack closely simulates the
pleasant X-C skiing motion and provides the same
cardiovascular endurance-building benefits-right
in the convenience of your home, year ·roWld.
Eliminates the usual barriers of time, weather,
chance of injury, etc. Also highly effective for weight
control.
More Complete Than Running
NordicTrack gives you a more complete work out
conditions both upper body and lower body
muscles at the same time. Fluid. jar/ess motion does
not cause joint or back problems.
More Effective Than Exercise Bikes
NordicTrack's stand-up skiing motion more un i-

PSI 124F Columbia

formly exercises the large leg muscles and also adds
important upper body exercise. Higher pulse rates,
necessary for building fitness, seem easier to attain
because the work is shared by more muscle mass.

Even BetterThan Swimming
NordicTrack more effectively exercises the largest
muscles in the body, those located in the legs and
buttocks. When swimming, the body is supported
by the water, thus preventing these muscles from
being effectively exercised. T he stand up exercising
position on the NordiCfrack much more effectively
exercises these muscles.
A Proven, High Quality Durable Product
NordiCfracks have been in production since 1976.
NordicTrack is qUiet, motorless and has separately
adjustable arm and leg resistances. We manu
facture and sell direct. Two year warrantee,
30 day trial period with return privilege. • .

Folds and stands on end

�' , !�:���i��c�Y 15" x 17" • t, ·
Call or write for... • .. ,
FREE BROCHURE "�I r
Toll Free 1-800-328-5888 . . ,
Minnesota 612-448-6987 _

MN -

47
© 1984 SCIENTIFIC AMERICAN, INC

48

Say goodbye to the Tower of Babel

to CP/M to MS-DOS to CP/M to PC-DO�

Format, Read" Write.
It's a piece of cake

with
XENO COPY PLUS 2.0lM
New! Version 2.0 formats
70 alien disks. Copy files
to and from DOS in your IBM PC.
No need for exasperating serial links or modem madness. All formatting
and file transfers are easily accomplished on your Pc. Runs on most
PC-compatibles too. XENO-COPY PLUS 2.0. $149.50
Also available:
• ADVANCEDTM Option " ... add $50.0 0

Supports 8:' 96 TPi. parameter input for other formats.

• XENO DISKTM. $379.50
Turn your PC into a disk production machine. Many features.

• 80-MATETM . $149.50
A CP/M 22 emulation utility RUN CP/M PROGRAMS UNDER DOS
without an expensive co-processor board. Includes video emulation.

See your dealer or call for information.

������sY�l�� Inc.

Dept. A, 6022 West Pi co Blvd.
Los Angeles, CA 90035
(213) 938-0857

IBM is a registered trodemarlt of Internaflonal Business Machines CorlXlrction. CP/M is a registered trademark ot Digilal Research.

MS OOS Is a trademark of Microsoft Corp.

painting is also reproduced in widened
form; it resembles the bar code on the
supermarket package. The projection
used by most painters there in the flat
forces them to render many different ob
jects with a single sequence of dots. That
lends a creative ambiguity to painting,
familiar to us in several periods.

An appendix to the book itself goes
into more detail about the nature of that
2-D world. The most unexpected result
corrects a position a couple of decades
old. It was argued that a brain complex
enough to support an intelligent being
could not be built in two dimensions: the
number of neural connections cannot be
large enough without the possibility of
crossing neurons. The geometric argu
ment is simply naive. All that is needed
is to send two pulses toward each other
as though their fibers could cross. Nat
urally they cannot cross in 2-D. It is
enough, however, to split each fiber and
let the pulse move along each member
of the new pair. A small array of relay
and rectifier cells at the fourfold junc
tion simply generates outgoing pulse
trains able to mimic any two patterns
entering, to relay them along the two
distinct outgoing paths. That crossing,
impossible passively, has simply been
simulated dynamically. Axleless gears
with concave teeth and clever trains
of swinging cams manage to perform
in two dimensions the usual tasks per
formed by clockwork.

Not every reader will find the cam
pus-born fictional form of this original
book an aid to the enjoyment of its inge
nious 2-D world, both the scientific and
the everyday. Its substance is nonethe
less a delight, along with its recruitment
of powerful theoretical aid to treat, if
only briefly, the implications of rel
ativity, electromagnetism, gravitation
and quantum theory in two dimensions.
There is wide interest in the answers,
and it is pretty plain that the last word is
still to come. Students ought to find
challenge here for years. Readers will
recognize with pleasure that the author
of The Planiverse is now to be observed
monthly in this magazine at his intel
lectual dance, both antic and powerful,
within the theater of software.

THE ECOLOGICAL IMPLICATIONS OF

BODY SIZE, by Robert Henry Peters.
Cambridge University Press ($29.95).
The First Law is ineluctable: what goes
into an animal must come out, account
ing over life and death alike, allowing
for both energy and material. The ther
modynamic books must balance; that
allows the calculation of many partial
accounts, from defecation to respira
tion, reprod uction, locomotion and a
variety of vital rates and flows. On that
unshakable foundation this McGill bi
ologist has built a brief and engaging
quantitative monograph, frank, learned,
painstaking and made explicitly helpful

© 1984 SCIENTIFIC AMERICAN, INC

to readers with little mathematical expe- '

rience. Its overall aim is the use and re

flection on one grand quantitative em

pirical generalization: the effect of body

size on animal metabolism as a predic

tive tool for ecology.
After two introductory chapters, one

philosophical, one mathematical, we are
caught up in the substantive flow of the
work. That cen·ters on critical examina
tion of the power laws, usually shown
as empirical points tightly scattered
around straight lines on log-log plots,
that broadly fit relations between the
size of organisms of all kinds and a wide
variety of their physiological and func
tional features. These plots make visual
some 60 tabular pages of well-docu
mented results from the copious litera
ture, spanning diversity such as the mass
of the pancreas in a couple of hundred
species of primates, the swimming speed
of salmon at various water tempera
tures, the liver DNA content of mam
mals, the egg mass of crustaceans and
the urine prod uction of frogs. All are
expressed as best fits to a power law in
body weight. One summary graph plots
88 physiological functions, matching
the empirical best-fit slope with the ex
ponent expected from a dimensional
analysis based on the single key rela
tion between body weight and metab
olism. The points cluster impressively.
The data themselves remain in the 500
references cited.

One dramatic example of these rela
tions is offered by "the gothic calcula
tion that, on average, a full life is me
tered by each of 250 million breaths and
1.2 billion contractions of the heart."
For mammals and birds, at least, that
invariant result holds well: the fast-beat
ing pulse of the tiny, short-lived shrew
scales neatly up to the great slow rhythm
of the elephant's heart, a beat main
tained over most of a century. Physio
logical time fixes population times, en
tailing that a long time among plankton
populations is only a moment for big
fishes. Simulations that correctly scale
individual growth and reproduction con
firm that populations of creatures of
differing size ought to vary by predict
ably differing clocks.

The relation between species popula
tion density and body size is less clear. It
may well be that the simplest relation,
according to which each species tends
toward equal total mass, the head count
going inversely with individual weight,
is no poor guide for all life forms. The
relation would imply an equal biomass
in each logarithmic size class of organ
isms. It seems to work rather well for
marine samples, where chemical or op
tical means can nowadays catch ev
erything in. their subtler logarithmic
meshes. The particle size is measured
automatically Tight along with the head
count (if we may generalize the notion
of a head to animals and plants that are

Say goodbye to the Tower of "APPLE" Babel

VI to APPLE to IBM to APPl
File Transfers

are easy as pie
with

APPLE· TURNOVERa.
READ, WRITE, and FORMAT Apple© II DOS 3.3 and Apple
CP 1M disks in your PC or most compatibles.

No need for exasperating serial links or modem madness.
Leave your Apple where it is. All formatting and file-transfers
are easily accomplished on your PC.

The APPLE-TURNOVER package consists of a half-sized card,
friendly supporting software, and complete documentation.
$279.50.
See your dealer or call for information. ���������� rtex Dept. A. 6022 WestPico Blvd.

Los Angeles, CA 90035
sys1ems. inc. (213)938-0857

INNOVATION IN MICROCOMPUTER PRODUCTS
Apple is a registered trodemon.: 01 Apple Computer Inc. IBM Is 0 registered trademark of IntemoHonaI Business Machines Corporation.

49
© 1984 SCIENTIFIC AMERICAN, INC

THE 80286 IS IN STOCK!
Get a h ead start on the competit ion! The M icroWay*

MWS- 286 Com puter uses the most sophist icated I ntel
tech nology, i nc lud ing the 80286, 80287 and 8089
processors, g iv ing you super- m icro performance for as
l itt le as $8,600. Th is processor com bination is ideal for
m u lti- user operati ng systems. It ru ns either Xen ix-286,
an I ntel adaptat ion of M icrosoft Xen i x that uses special
hardware to manage memory, or M icroWay's Real Time
M u lt i-Tasking Operat i ng System RTOS-286. M S- DOS is
avai lable for Si ngle- user work stat ions.

A typical m u lt i - user system incl udes a seven- slot
mu It ibus backplane, 230- watt power su pply, 51 2 K bytes
of h igh- speed, e rror- correct i ng ram, two Single-board
computers which manage a l l I /O, and a Master s ing le
board computer - the I ntel iSBC- 286/ 1 0, which has six
t imes the t h roug h p ut on an 8088. The m u lt ibus arch itec
t u re e m ployed makes it possible to control up to l ight
drives and 1 4 serial l ines without bogging down the main
cpu. Standard drives include a 1 9 or 40 megabyte
Winchester, 360 K byte f loppy and five megabyte Syq uest
removable Winchester that is ideal for backu p or storage

of data M ult i - user systems start at $ 1 3,900. Service on
al l hardware is avai lable nationwide t h rough I ntel and
most config u rations are avai lable for i m m ediate del ivery.

MicroWay™ 8087 SUpport
87 FORTRAN/RTOS'· - our adaptation of
the I ntel Fortran-86 Compiler generates in l ine
8087 code using al l 8087 data types including
80-bit reals and 64-bit i ntegers. The compiler
uses the I ntel large memory model, al lowing
code/data structures of a full megabyte, and ��fg�:��;�rlays.

.
I nC

.
lu�es

.
R�?S

.
an�

.
suifgg

o

87 PASCAL/RTOSm is I ntel's ISO
Standard Pascal with 8087-8088 exceptions.
These make it possible to use all the 8087 data
types d irectly, whi le generating modules in one
of the three I ntel Memory Models. I ncludes
RTOS and support for one year $1 350
RTOS DEVELOPMENT PACKAG E
includes 87 FORTRAN, 87 PASCAL, PUM-86,
Util ities, TX Screen Editor and RTOS $2500
REAL TI M E M U LTI-TASKI NG/
M U LTI- USER EXECUTIVE - RTOS
RTOS is a M icroWay configured version of
i R M X-86. I ncludes ASM-86, L l N K-86, LOC-86,
L l B-86, and the ROM H ex Loader $600
OBJ �ASM'· - a multipass object module
translator and d isassembler. Produces
assembly language l istings which include public
sym bols, external symbols, and labels
com mented with cross references. Ideal for
understanding and patching object modules
and l ibraries for which source is not
avai lable . $200

so

I nformation and Orders -
61 7-746-7341

Un iversity, Corporate and
Govern ment Buyers -

61 7-746-7364

M- P.o. Box 79 lero Kingston, Mass.

'JI'alU 02364 USA " WI r.I (6 1 7) 746-734 1

PC TECH JOU R NAL R EVI EW:
"The M icroWay package is prefer
able . . . it executes the basic opera
tions more rapidly and M icroWay
provides a free u pdate service."

87 BASICm i ncludes patches to the I B M
Basic Compiler a n d both runtime l ibraries for
USER TRANSPARENT and COMPLETE 8087
support Provides super fast performance for all
numeric operations including trigonometrics,
transcendentals, addition, subtraction,
multipl ication, and division $1 40
87 BASIC/I N LI N Em generates in l ine
8087 code! Converts the I BM Basic Compiler
output into an assem bly language sou rce listing
which al lows the user to make additional
refinements to his program. Real expression
evaluations run five times faster than in
87 BASIC $200
87 MAC RO'· - our complete 8087 software
development package. It contains a " P re
processor," source code for a set of 8087
macros, and an object l ibrary of numeric
fu nctions including transcendentals,
trigonometrics, hyperbolics, encod ing,
decoding and conversions $1 50
87 DEBUGm - a professional debugger with
8087 su pport, a sophisticated screen-oriented
macro command processor, and trace features
wh ich include the abil ity to skip tracing throug h
branches to calls and software and hardware
interrupts. Breakpoints can be set in code or on
guarded addresses in RAM $1 50
FOR � BAsm - a library of interface routines
which allow MS Fortran programs to cal l the
IBM Basic Compiler l ibrary and access features
such as the RAN DOM N U M BER G E N E RATOR,
SOU N D, PLAY, D RAW and SCREEN
commands $1 50

You Can
TalkToUs!

8087 -3 C H I P $1 75
including DIAGNOSTICS and 1 80-day warranty 64K RAM Set. $4750
MATRIXPA� manages a M EGABYTE!
Written in assembly language, our runtime
package accurately manipulates large matrices
at very fast speeds. I ncludes matrix inversion
and the solution of simultaneous linear equa
tions. Callable from MS Fortran 3.2, 87 MACRO,
87 BASIC, and RTOS each $1 50
87/88GUI DE. $30
MICROSOFT FORTRAN 3.2 $239
MICROSOFT PASCAL 3.2 $209
These I EEE compatible compilers support
double precision and the 8087

MICROSOFT C COM PI LE R includes
Lattice C and the MS Librarian $350
LATTICE C with 8087 support $350
FLOAT87 for M S C . 1 25
SuperSoft Fortran 66 . 329
Computer Innovations C86 345
STSC APL* PLUS/ PC . 500
TURBO PASCAL . 45
TURBO PASCAL with 8087 Support 85
S I D EKICK . 45
HALO G RAP H I CS . CALL .
GRAPHMATIC _ 1 25
E N E RGRAPH I CS . 295
Professional BASIC . 295
Kidger Optical Design Prog ram 3000
COSMOS R EVELATION 850
SCO X E N I X .� .• �� _ 595
U n isource VEN I X/86 .� �":':"':'.":" . . _ 800
MAYNARD WS1 HARD DiSK _ . 995
MAYNARD WS2 HARD DiSK 1 1 70
MAYNARD ELECTRONICS Boards. CALL

NO CHARGE FOR CREDIT CARDS
ALL ITEMS IN STOCK

CALL FOR COMPLETE CATALOG

* Formerly M icroWare, I nc. - not
aff i l iated or connected with
M icroWare Systems Corporation
of Des Moines, I owa.

© 1984 SCIENTIFIC AMERICAN, INC

crudely spherical), and in one dream of
this marine ecologist we may someday
be able to measure the size spectrum
of the organisms at any site at sea by
"simply driving across it in a boat. "
It is an "extraordinary and audacious
claim" that the amount of living matter
in each logarithmic size class is a con
stant "from bacteria to whales ." No
doubt the conclusion is only tentative,
but the speculation is not shown to be
grossly wrong whether by land or by
sea; big fierce animals are rare for good
thermodynamic reason. (Deep-ocean
submarines are not c urrently reported.)

Why do physiological rates r ise with
body mass as they do, by the three
fourths power? Professor Peters spends
a few pages on what that "why" could
mean for a scientist. Waiving all that, we
do not appear to have a good expla
nation yet. The old workers thought
animal heat loss was limited by surface
area, which yields a two-thirds power
law, pretty surely wrong. It must be the
evolutionary engineering that fixes the
result, since the biochemical properties
cell by cell lie under the same overall
law: the minute fuel-making mitochon
dria know what size body they dwell in.

An ingenious structural explanation
by Thomas A. McMahon of Harvard
works all too well; it derives the very
result one wants, but it rests on the buck
ling strength of skeletal components un
der load, a principle less than plausible
applied to the protozoa, say, that none
theless fit the same universal relation.
M ore abstract versions of d imensional
analysis work too, but they show the
same kind of flaw. One recent ver
sion, for example, firmly predicts that
animals living in water, where not the
weight but the d isplaced volume should
measure the demands of aquatic loco
motion, ought to follow a d ifferent scal
ing law. They do not. We have a good
deal to learn.

The modest author ends with an ap
peal for more hard work. His text is an
unequaled review of results in the field,
although he points out it does not sur
vey the "rich Soviet literature." He sees
his book as a link between the empirical
regularities and current ecological theo
ry built on the statistical study of many
individual results. The critical collec
tion of all these striking yet thin allo
metric relations presents "the greatest
body of quantitative general theories in
biology. " They differ glaringly both
from our deep qualitative understand
ing of evolution in all its richness and
from the intricate informational micro
mechanisms of molecular biology that
support it. Understanding the overall
criteria followed in the long, slow engi
neering design of the organism seems
beyond our present reach, although per
haps j ust beyond it. The relations none
theless stand, ready to serve a variety of
powerful ecological predictions.

Yo u a re o n
i t ' s a when

t h e f ro n t i e r .

Questa r syst e m
• •

Questar capabilities range from state of the art

to beyo n d . First to explore the versati l i ty o f the

great Maksutov optical system , Questa r ' s inter

ests have expanded from the astronomical tele

scope to special designs for sophist icated track

ing, surveillance, and inspection instruments.

Shown here are three recently developed op

tical systems, all unique, photo-visual , and

available for i mmediate deliver y . Below is the

QM I , a long-range m icroscope which focuses

at distances from 22 to 77 inches. Among its

myriad uses it will let you inspect m icro

circuits, observe l ive specimens in natural

habitat , study toxic materials at safe distances .

It delivers resolution below 2 . 5 microns .

At the right is one of a series of mult i focal

length instruments, the MFL 3 1/2 . I t provides

tested theoretical resolution at five focal

lengths , ranging from 320 m m . to 4000 . One

foot tal l , it weighs only 6 1/, pound s . This

design is Questar ' s answer to the shortcomings

of the zoom lenses . I t is available also in 7 "
and 1 2 " apertures .

With the QM I and the M F L we offer full

support system s , including night vision equip

ment and computerized analytic devices.

Third is our photo-visual I ndustrial 700, for

the i nspection of manufacturing processes . It

guarantees optical perfection with theoretical

resolution over the entire field, which is flat

from edge to edge. Focusing capabi l i ty : 1 0 feet

to infinity; operation by a thumb and lever

mechanism that perm its one-hand control of

focus and exposure.

All instruments are adaptable to most S L R

cameras a n d m a n y video cameras . These are

only a sample o f Questar 's abil ity to come up

with the answers to tough problem s . We invite

you to send for our l iterature.

QUESTAR
Box 59. Dept . 209. New Hope. Pa. 1 8938 (2 1 5) 862·5277

5 1
© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

SCIENTIFIC
Established 1845 AMERI C� September 1984 Volume 251 Number 3

Computer Software
Presenting a single-topic issue on the concepts and techniques needed

to make the computer do one's bidding. It is software that gives form

and purpose to a programmable machine, much as a sculptor shapes clay

C
omputers are to computing as in
struments are to music. Software
is the score, whose interpretation

amplifies our reach and lifts our spir
it. Leonardo da Vinci called music "the
shaping of the invisible," and his phrase
is even more apt as a description of soft
ware. As in the case of music, the in
visibility of software is no more mys
terious than where your lap goes when
you stand up. The true mystery to be ex
plored in this issue of Scientific American
is how so much can be accomplished
with the simplest of materials, given the
right architecture.

The materials of computing are the
tersest of markings, stored by the bil
lions in computer hardware. In a mu
sical score the tune is represented in
the hardware of paper and ink; in biol
ogy the message transmitted from gen
eration to generation by DNA is held
in the arrangement of the chemical
groups called nucleotides. Just as there
have been many materials (from clay to
papyrus to vellum to paper and ink) for
storing the marks of writing, so comput
er hardware has relied on various physi
cal systems for storing its marks: rotat
ing shafts, holes in cards, magnetic flux,
vacuum tubes, transistors and integrat-

by Alan Kay

ed circuits inscribed on silicon chips.
Marks on clay or paper, in DNA and in
computer memories are equally power
ful in their ability to represent, but the
only intrinsic meaning of a mark is that
it is there. "Information," Gregory Bate
son noted, "is any difference that makes
a difference." The first difference is the
mark; the second one alludes to the need
for interpretation.

The same notation that specifies ele
vator music specifies the organ fugues
of Bach. In a computer the same no
tation can specify actuarial tables or
bring a new world to life. The fact that
the notation for graffiti and for sonnets
can be the same is not new. That this
holds also for computers removes much
of the new technology's mystery and
puts thinking about it on firmer ground.

As with most media from which
things are built, whether the thing is a
cathedral, a bacterium, a sonnet, a fugue
or a word processor, architecture domi
nates material. To understand clay is not
to understand the pot. What a pot is all
about can be appreciated better by un
derstanding the creators and users of the
pot and their need both to inform the
material with meaning and to extract
meaning from the form.

INTANGIBLE MESSAGE embedded in a material medium is the essence of computer soft
ware. Here the message is made visible in a voltage-contrast image: a scanning-electron micro
graph of a small part of an Intel 80186 microprocessor. The features of the image are formed
not by the conductors and transistors on the chip but by the signals passing through them. The
trajectory of the secondary electrons emitted in response to the microscope beam is affected by
electromagnetic fields at the surface of the chip: regions of higher voltage attract electrons,
weakening the image-forming signal. The microscope beam is pulsed on only when the micro
processor is in a particular electronic state: when certain logic elements are "on." The colors of
the lines indicate the voltages in metal communications lines leading to logic elements. Where
a signal is traveling along a line there is a region of high voltage. The false-color image has been
processed so that such regions, and thus "messages," are seen in light blue. Low-voltage regions
are green, intermediate-voltage regions yellow. The red lines are conductors at ground poten
tial, or zero volts. The micrograph was made by Timothy C. May of the Intel Corporation.

There is a qualitative difference be
tween the computer as a medium of ex
pression and clay or paper. Like the ge
netic apparatus of a living cell, the com
puter can read, write and follow its own
markings to levels of self-interpretation
whose intellectual limits are still not un
derstood. Hence the task for someone
who wants to understand software is not
simply to see the pot instead of the clay.
It is to see in pots thrown by beginners
(for all are beginners in the fledgling
profession of computer science) the pos
sibility of the Chinese porcelain and Li
moges to come.

Here I need spend no more time on
computing's methods for storing

and reading marks than molecular biol
ogy does on the general properties of
atoms. A large enough storage capacity
for marks and the simplest set of in
structions are enough to build any fur
ther representational mechanisms that
are needed, including even the simu
lation of an entire new computer. Au
gusta Ada, Countess of Lovelace, the
first computer-software genius, who
programmed the analytical engil}e that
Charles Babbage had designed, under
stood well the powers of simulation
of the general-purpose machine. In the
1930's Alan M. Turing stated the case
more crisply by showing how a remark
ably simple mechanism can simulate all
mechanisms.

The idea that any computer can simu
late any existing or future computer is
important philosophically, but it is not
the answer to all computational prob
lems. Too often a simple computer pre
tending to be a fancy one gets stuck in
the "Turing tar pit" and is of no use if
results are needed in less than a million
years. In other words, quantitative im
provements may also be helpful. An in-

53
© 1984 SCIENTIFIC AMERICAN, INC

crease in speed may even represent a
qualitative improvement. Consider how
speeding up a film from two frames
per second to 20 (a mere order of mag
nitude) makes a remarkable difference:
it leads to the subjective perception
of continuous movement. Much of the
"life" of visual and auditory interaction
depends on its pace.

I

As children we discovered that clay
I\. can be shaped into any form simply
by shoving both hands into the stuff.
Most of us have learned no such thing
about the computer. Its material seems
as detached from human experience as a
radioactive ingot being manipulated re
motely with buttons, tongs and a televi
sion monitor. What kind of emotional
contact can one make with this new stuff
if the physical access seems so remote?

One feels the clay of computing
through the "user interface": the soft
ware that mediates between a person
and the programs shaping the computer
into a tool for a specific goal, whether
the goal is designing a bridge or writing
an article. The user interface was once
the last part of a system to be designed.
Now it is the first. It is recognized as
being primary because, to novices and
professionals alike, what is presented

HLL

FORTRAN

LLL

ASSEMBLY
LANGUAGE

ALGOL
LISP

1950 1956 1961 1966

to one's senses is one's computer. The
"user illusion," as my colleagues and
I called it at the Xerox Palo Alto Re
search Center, is the simplified myth
everyone builds to explain (and make
guesses about) the system's actions and
what should be done next.

Many of the principles and devices
developed to enhance the illusion have
now become commonplace in software
design. Perhaps the most important prin
ciple is WYSIWYG ("What you see is what
you get"): the image on the screen is
always a faithful representation of the
user's illusion. Manipulating the image
in a certain way immediately does some
thing predictable to the state of the ma
chine (as the user imagines that state).
One illusion now in vogue has "win
dows," "menus," "icons" and a pointing
device. The display frames called win
dows make it possible to present a
number of activities on the screen at
one time. Menus of possible next steps
are displayed; icons represent objects
as concrete images. A pointing device
(sometimes called a mouse) is pushed
about to move a pointer on the screen
and thereby select particular windows,
menu items or icons.

All of this has given rise to a new gen
eration of interactive software that capi-

UHLL

1972 1978 1983

SOFTWARE GENRES succeed one another at sporadic intervals, as is shown here through the
example of some programming languages. Languages are categorized rather arbitrarily by lev
el, although the levels (colored ballds) overlap. There are low-level languages (LLL), high
level languages (HLL), very-high-Ievel languages (VHLL) and ultrahigh-level languages (UHLL).
In the evolution of programming languages a genre is established (horizontal white lilies), then
after a few years

,
an improvement is made (curved white lilies). In time the improved language

is seen to be not merely a "better old thing" but an "almost new thing," and it leads to the next
stable genre. The language Lisp has changed repeatedly, each time becoming a new geQre.

54

talizes on the user illusion. The objective
is to amplify the user's ability to simu
late. A person exerts the greatest le
verage when his illusion can be manip
ulated without appeal to abstract inter
mediaries such as the hidden programs
needed to put into action even a sim
ple word processor. What I call direct
leverage is provided when the illusion
acts as a "kit," or tool, with which to
solve a problem. Indirect leverage will
be attained when the illusion acts as
an "agent": an active extension of one's
purpose and goals. In both cases the
software designer's control of what is
essentially a theatrical context is the key
to creating an illusion and enhancing its
perceived "friendliness."

The earliest computer programs were
designed by mathematicians and sci

entists who thought the task should be
straightforward and logical. Software
turned out to be harder to shape than
they had supposed. Computers were
stubborn. They insisted on doing what
was said rather than what the program
mer meant. As a result a new class of
artisans took over the task. These test
pilots of the binary biplane were often
neither mathematical nor even very sci
entific, but they were deeply engaged
in a romance with the material-a ro
mance that is often the precursor of
new arts and sciences alil;.e. Natural sci
entists are given a universe and seek
to discover its laws. Computer scien
tists make laws in the form of programs
and the computer brings a new universe
to life.

Some programmers breathed too
deeply of the heady atmosphere of cre
ating a private universe. They became
what the eminent designer Robert S.
Barton called "the high priests of a low
cult." Most discovered, however, that it
is one thing to be the god of a universe
and another to be able to control it, and
they looked outside their field for design
ideas and inspiration.

A powerful genre can serve as wings
or chains. The most treacherous meta
phors are the ones that seem to work for
a time, because they can keep more
powerful insights from bubbling up. As
a result progress is slow-but there is
progress. A new genre is established. A
few years later a significant improve
ment is made. After a few more years
the improvement is perceived as being
not just a "better old thing" but an
"almost new thing" that leads directly
to the next stable genre. Interestingly,
the old things and their improvements
do not disappear. Strong representatives
from each past era thrive today, such
as programming in the 30-year-old lan
guage known as FORTRAN and even in
the ancient script known as direct ma
chine code. Some people might look
on such relics as living fossils; others
would point out that even a very old

© 1984 SCIENTIFIC AMERICAN, INC

species might still be filling a particular
ecological niche.

The computer field has not yet had its
Galileo or Newton, Bach or Beetho

ven, Shakespeare or Moliere. What it
needs first is a William of Occam, who

IS JUST LIKE

RECTANGLE IS JUST LIKE

WINDOW IS JUST LIKE

IS JUST LIKE THIS

BROWSERS ARE JUST LIKE

00 c::::::=:::J DD

said "Entities should not be multiplied
unnecessarily." The idea that it is worth
while to put considerable effort into
eliminating complexity and establishing
the simple had a lot to do with the rise of
modern science and mathematics, par
ticularly from the standpoint of creating

EXCEPT: NEW MESSAGES

DISPLAY �
GENEALOGY

YOUR MESSAGES?

EXCEPT: NEW MESSAGES

DISPLAY :>
ORIGIN

CORNER

CENTER

BORDER

FILL

EXCEPT: NEW MESSAGES

DISPLAY ----7
TITLE

EXCEPT:

SCROLL BARS

MOVE

EXPAND

OPEN

CLOSE

MOUSE BUTTON?

NEW MESSAGES
DISPLAY ---7
PANES

RELATIONS

SOURCE

DO

� D

� D

new aesthetics, a vital ingredient of any
growing field. It is an aesthetic along
the lines of Occam's razor that is need
ed both to judge current computer soft
ware and to inspire future designs. Just
how many concepts are there really?
And how can metaphor, the magical

D
c::==:J

t

t
� D

c::::::=:::J

ID'+T¢ � t

t
�

EXCEPT: NEW MESSAGES NEEDED TO SPECIALIZE EACH ONE

c::::::::J 00 c::::::=:::J DD c::::::=:::J

t
�

t �
t

t �
t

t

t
I

�D
DATA-BASE
BROWSER

� �
PLANNING
BROWSER'

�

INHERITANCE PROGRAMMING shows the power of differen
tial description. A generic "object" (top) is displayed as a cloud. One
can make a rectangle from the undifferentiated object by saying, in
effect, "I want something just like that, except ... ," and then specifying
such properties as the location of the origin (the upper left corner),
the width, the height and so on. A further elaboration of the idea is a
"window," a rectangular area of the display screen that gives a view of
the output of a program. In creating a window one can allow it to "in-

<i- 0
THINGLAB
BROWSER

� <i- 0
BOOK-READER

BROWSER

�

herit" applicable properties of the rectangle and add new features
such as scroll bars (to move the window about over the material being
viewed), a title and facilities for changing the window's size and posi
tion. A more complex window with panes is made by adding new
display methods to shape the panes and establish communications
among them (colored arrows). Paned windows can be manipulated to
make "browsers": systems enabling one to retrieve resources without
remembering names. Four examples of browsers are shown (bottom).

55

© 1984 SCIENTIFIC AMERICAN, INC

process of finding similarity and even
identity in diverse structures, be put to
work to reduce complexity?

The French mathematician Jacques S.
Hadamard found, in a study of 100 lead
ing mathematicians, that the majority of
them claimed to make no use of symbols
in their thinking but were instead pri
marily visual in their approach. Some,
including Einstein, reached further back
into their childhood to depend on "sen
sations of a kinesthetic or muscular
type." The older parts of the brain know
what to say; the newer parts know how
to say it. The world of the symbolic can
be dealt with effectively only when the
repetitious aggregation of concrete in
stances becomes boring enough to moti
vate exchanging them for a single ab
stract insight.

In algebra the concept of the varia
ble, which allows an infinity of instan
ces to be represented and dealt with as
one idea, was a staggering advance. Met
aphor in language usually accentuates
the similarities of quite different things
as though they were alike. It was a tri
umph of mathematical thinking to real
ize that various kinds of self-compari-

son could be even more powerful. The
differential calculus of Newton and
Leibniz represents complex ideas by
finding ways to say "This part of the idea
is like that part, except for. . . . " The
designers of computing systems have
learned to do the same thing with dif
ferential models, for example with pro
gramming methods that have the prop
erty called inheritance. In recent years
models based on the idea of recursion
have been formulated in which some of
the parts actually are the whole: a de
scription of the entire model is needed to
generate the representation of a part. An
example is the fractal geometry of Be
noit B. Mandelbrot, where each subpart
of a structure is similar to every other
part. Chaos is captured in law.

Designing the parts to have the same
power as the whole is a fundamental
technique in contemporary software.
One of the most effective applications of
the technique is object-oriented design.
The computer is divided (conceptually,
by capitalizing on its powers of simula
tion) into a number of smaller comput
ers, or objects, each of which can be giv
en a role like that of an actor in a play.

The move to object-oriented design rep
resents a real change in point of view-a
change of paradigm-that brings with
it an enormous increase in expressive
power. There was a similar change when
molecular chains floating randomly in
a prebiological ocean had their efficien
cy, robustness and energetic possibilities
boosted a billionfold when they were
first enclosed within a cell membrane.

The early applications of software
objects were attempted in the context
of the old metaphor of sequential pro
gramming languages, and the objects
functioned like colonies of cooperat
ing unicellular organisms. If cells are a
good idea, however, they really start to
make things happen when the coopera
tion is close enough for the cells to ag
gregate into supercells: tissues and or
gans. Can the endlessly malleable fab
ric of computer stuff be designed to
form a "superobject" ?

The dynamic spreadsheet is a good ex
ample of such a tissuelike superob

ject. It is a simulation kit, and it provides
a remarkable degree of direct leverage.
Spreadsheets at their best combine the

------�----------- SHEET

----------------------CELL

I-�-------------VALUE RULE

I�------------------------- VALUE

·----�--------------------FO RMAT RULE

----------------------------------- IMAGE

L---------------------------��---------WINDO W

�--�------------------------------------�-------DISPLAY

DYNAMIC SPREADSHEET is a simulation "it: an aggregate of
software objects called cells that can get values from one another.
The window selects a rectangular part of the sheet for display. Each
cell can be imagined as having several layers behind the sheet that
compute the cell's value and determine the format of the presenta-

tion. The cell's name can be typed into an adjoining cell. Each cell bas
a value rule, which can be the value itself or a way to compute it; the
value can also be conditional on the state of cells in other parts of the
sheet. The format rule converts the value into a form suitable for
display. The image is the formatted value as displayed in the sheet.

56
© 1984 SCIENTIFIC AMERICAN, INC

genres established in the 1970's (objects,
windows, what-you-see-is-what-you-get
editing and goal-seeking retrieval) into a
"better old thing" that is likely to be one
of the "almost new things" for the main
stream designs of the next few years.

A spreadsheet is an aggregate of con
currently active objects, usually orga
nized into a rectangular array of cells
similar to the paper spreadsheet used
by an accountant. Each cell has a "val
ue rule" specifying how its value is to
be determined. Every time a value is
changed anywhere in the spreadsheet,
all values dependent on it are recom
puted instantly and the new values are
displayed. A spreadsheet is a simulated
pocket universe that continuously main
tains its fabric; it is a kit for a surprising
range of applications. Here the user il
lusion is simple, direct and powerful.
There are few mystifying surprises be
cause the only way a cell can get a val
ue is by having the cell's own value rule
put it there.

Dynamic spreadsheets were invented
by Daniel Bricklin and Robert Frank
ston as a reaction to the frustration
Bricklin felt when he had to work with
the old ruled-paper versions in busi
ness school. They were surprised by
the success of the idea and by the fact
that most people who bought the first
spreadsheet program (VisiCalc) exploit
ed it to forecast the future rather than
to account for the past. Seeking to de
velop a "smart editor," they had creat
ed a simulation tool.

Getting a spreadsheet to do one's bid
ding is simplicity itself. The visual meta
phor amplifies one's recognition of situ
ations and strategies. The easy transition
from the visual metaphor to the sym
bolic value rule brings the full power
of abstract models to bear almost with
out notice. One powerful property is
the ability to make a solution generic by
"painting" a rule in many dozens of cells
at once without req uiring users to gener
alize from their original concrete level
of thinking.

The simplest kind of value rule makes
a cell a static object such as a number
or a piece of text. A more complex rule
might be an arithmetic combination of
other cells' values, derived from their
relative or absolute positions or (much
better) from names assigned to them. A
value rule can test a condition and set its
own value according to the result. Ad
vanced versions allow a cell's value to
be retrieved by heuristic goal seeking,
so that problems for which there is no
straightforward method of solution can
still be solved by a search process.

The strongest test of any system is not
how well its features conform to an

ticipated needs but how well it performs
when one wants to do something the de
signer did not foresee. It is a question
less of possibility than of perspicuity:

Can the user see what is to be done and
simply go do it?

Suppose one wants to display data as
a set of vertical bars whose height is nor
malized to that of the largest value, and
suppose such a bar-chart feature was
not programmed into the system. It calls
for a messy program even in a high-lev
el programming language; in a spread
sheet it is easy. Cells serve as the "pix
els" (picture elements) of the display;
a stack of cells constitutes a bar. In a
bar displaying one-third of the maxi
mum value, cells in the lowest third of
the stack are black and cells in the up
per two-thirds are white. Each cell has
to decide whether it should be black or
white according to its position in the
bar: "I'll show black if where I am in
the bar is less than the data I am trying
to display; otherwise I'll show white"
[see illustration on next page].

Another spreadsheet example is a so
phisticated interactive "browser," a sys
tem originally designed by Lawrence G.
Tesler, then at the Xerox Palo Alto Re
search Center. Browsing is a pleasant
way to access a hierarchically organized
data base by pointing to successive lists.
The name of the data base is typed into
the first pane of the display, causing the
subject areas constituting its immediate
branches to be retrieved and displayed
in the cells below the name. One of the

. subject areas can be chosen by pointing
to it with a mouse; the chosen area is
thereby entered at the head of the next
column, causing its branches in turn
to be retrieved. So it goes until the de
sired information is reached [see illus
tration on page 59]. Remarkably, the en
tire browser can be programmed in the
spreadsheet with just three rules.

The intent of these examples is not to
get everyone to drop all programming in
favor of spreadsheets. Current spread
sheets are not up to it; nor, perhaps, is
the spreadsheet metaphor itself. If pro
gramming means writing step-by-step
recipes as has been done for the past 40
years, however, then for most people it
never was relevant and is surely obso
lete. Spreadsheets, and particularly ex
tensions to them of the kind I have sug
gested, give strong hints that much more
powerful styles are in the offing for nov
ices and experts alike. Does this mean
that what might be called a driver-edu
cation approach to computer literacy is
all most people will ever need-that one
need only learn how to "drive" applica
tions programs and need never learn to
program? Certainly not. Users must be
able to tailor a system to their wants.
Anything less would be as absurd as re
quiring essays to be formed out of para
graphs that have already been written.

In discussing this most protean of me
dia I have tried to show how effective
ly design confers leverage, particularly
when the medium is to be shaped as
a tool for direct leverage. It is clear

that in shaping software kits the limita
tions on design are those of the creator
and the user, not those of the medium.
The question of software's limitations
is brought front and center, however,
by my contention that in the future a
stronger kind of indirect leverage will
be provided by personal agents: exten
sions of the user's will and purposes,
shaped from and embedded in the stuff
of the computer. Can material give rise
to mentality? Certainly there seems to
be nothing mindlike in a mark. How
can any combination of marks, even dy
namic and reflexive marks, possibly
show any properties of mentality?

Atoms also seem quite innocent. Yet
Il.. biology demonstrates that simple
materials can be formed into exceeding
ly complex organizations that can inter
pret themselves and change themselves
dynamically. Some of them even appear
to think! It is therefore hard to deny cer
tain mental possibilities to computer
material, since software's strong suit is
similarly the kinetic structuring of sim
ple components. Computers "can only
do what they are programmed to do·,"
but the same is true of a fertilized egg
trying to become a baby. Still, the diffi
culty of discovering an architecture that
generates mentality cannot be overstat
ed. The study of biology had been under
way some hundreds of years before the
properties of DNA and the mechanisms
of its expression were elucidated, reveal
ing the living cell to be an architecture in
process. Moreover, molecular biology
has the advantage of studying a system
already put together and working; for
the composer of software the computer
is like a bottle of atoms waiting to be
shaped by an architecture he must in
vent and then impress from the outside.

To pursue the biological analogy,
evolution can tell the genes very little
about the world and the genes can tell
the developing brain still less. All levels
of mental competence are found in the
more than one and a half million surviv
ing species. The range is from behavior
so totally hard-wired that learning is nei
ther needed nor possible, to templates
that are elaborated by experience, to a
spectrum of capabilities so fluid that
they require a stable social organiza
tion-a culture-if full adult potential
is to be realized. (In other words, the
gene's way to get a cat to catch mice is
to program the cat to play-and let the
mice teach the rest.) Workers in artifi
cial intelligence have generally content
ed themselves with attempting to mimic
only the first, hard-wired kind of behav
ior. The results are often called expert
systems, but in a sense they are the de
signer jeans of computer science. It is
not that their inventors are being dis
honest; few of them claim for a system
more than it can do. Yet the label "ex
pert" calls up a vision that leads to dis-

57
© 1984 SCIENTIFIC AMERICAN, INC

illusionment when it turns out the sys
tems miss much of what expert (or even
competent) behavior is and how it gets
that way.

Three developments have very low
probabilities for the near future. The

first is that a human adult mentality can
be constructed. The second is that the
mentality of a human infant can be
constructed and then "brought up" in
an environment capable of turning it
into an adult mentality. The third is

a ,---,---..------r--..-----r-----,
1 2 3 4 5

b

d

1 1
1 2 250: 67: 45: 193: 92
1 3 ········· '····2S·r······· :········· : ········· :

6
7
8
9

10
1 1
12
13

2
3
4
5
6
7
8
9

1 0
1 1
12
13

. ... · . . · . . · : :_: :
.. ::::::::::::::::::Jillf········:
Blil: :1I11f1J: IIIllf·········:·········:_:
.,!JJJl ·········:········· :irlllilJillU_:
' •• Ulli/iF"· :tlIIU'lar
.,./&e: .. UAP Wh : .. :
···················j .. r··················: 250: 67 193: 92:

25 :

......... j .. j' : :
250 205 : 193: 92:

: 25: : : : .

c

e

1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3

I
2
3
4
5
6
7
8
9

10
11
12
13

BA Value rule for each cell is
"Show black if (11 - vertical 10-
cation) x pixel height is less
than data [horizontal locationj
else show white."

DATA: Value rule for each cell is
either the number itself or a number
fetched from some other part of
the sheet.

· Maximum datum � 10.

250: 67: 205 : 193: 92
: 25: : :

:lIlIll
:ifIIlII: : : :
:WiI!III: : : RlJjjJf : : :

�-: .
t,. :ftIIiIlIi::·

····
·····

11IlIJI_:�:r,.: IfIiIIJ tgliJ'Jl :lHlfIJId:'
�:wa:' :rteB�:
.JIIMf/lla:�:r_:�:

· . ·
250 : 367 : 205 : 193 : 92

:36.7 :

BAR CHART can be constructed out of the standard materials of a spreadsheet. A bar is a col
umn of cells, where each cell serves as a pixel, or picture element. One cell associated with each
column holds the datum, or value, to be represented by the height of the corresponding bar.
Within a bar all the cells are governed by the same rule. The quantity represented by the height
of a single pixel is the maximum datum divided by the number of pixels in the longest bar; in
chart a there are 10 pixels per bar and each pixel represents 2S units. Each cell shows black if
its vertical position in the bar multiplied by the number of units per pixel is less than the datum
for that bar; otherwise it shows white. When a new datum is entered in a column (b), a new bar
appears in that column (c). If a new datum is larger than the previous maximum (d), the set of
bars is replotted (e) on the basis of the new number of units per pixel, which in this case is 36.7.

58

that current artificial-intelligence tech
niques contain the seeds of an architec
ture from which one might construct
some kind of mentality that is genuine
ly able to learn competence. The fact
that the probabilities are low emphati
cally does not mean the task is impossi
ble. The third development is likely to
be achieved first. Even before it is there
will be systems that look and act some
what intelligent, and some of them will
actually be useful.

What will agents be like in the next
few years? The idea of an agent

originated with John McCarthy in the
mid-1950's, and the term was coined
by Oliver G. Selfridge a few years later,
when they were both at the Massachu
setts Institute of Technology. They had
in view a system that, when given a goal,
could carry out the details of the appro
priate computer operations and could
ask for and receive advice, offered in
human terms, when it was stuck. An
agent would be a "soft robot" living
and doing its business within the com
puter's world.

What might such an agent do? Hun
dreds of data-retrieval systems are now
made available through computer net
works. Knowing every system's arcane
access procedures is almost impossible .
Once access has been gained, browsing
can handle no more than perhaps 5,000
entries. An agent acting as a librarian is
needed to deal with the sheer magnitude
of choices. It might serve as a kind of
pilot, threading its way from data base
to data base. Even better would be an
agent that could present all systems to
the user as a single large system, but that
is a remarkably hard problem. A persis
tent "go-fer" that for 24 hours a day
looks for things it knows a user is inter
ested in and presents them as a person
al magazine would be most welcome.

Agents are almost inescapably an
thropomorphic, but they will not be hu
man, nor will they be very competent
for some time. They violate many of the
principles defining a good user interface,
most notably the idea of maintaining the
user illusion. Surely users will be dis
appointed if the projected illusion is
that of intelligence but the reality falls
far short. This is the main reason for
the failure so far of dialogues conduct
ed in ordinary English, except when
the context of the dialogue is severe
ly constrained to lessen the possibility
of ambiguity.

Context is the key, of course. The user
illusion is theater, the ultimate mirror.
It is the audience (the user) that is in
telligent and can be directed into a par
ticular context. Giving the audience
the appropriate cues is the essence of
user-interface design. Windows, menus,
spreadsheets and so on provide a con
text that allows the user's intelligence to
keep choosing the appropriate next step.

© 1984 SCIENTIFIC AMERICAN, INC

An agent-based system will have to do
the same thing, but the creation of an
interface with some semblance of hu
man mentality will call for a considera
bly subtler approach.

Any medium powerful enough to ex
.£\. tend man's reach is powerful
enough to topple his world. To get the
medium's magic to work for one's aims
rather than against them is to attain lit
eracy. At its simplest, literacy means flu
ency. Familiarity (knowing the "gram
mar") is not enough. People who can
recognize a book and its words, a type
writer and its keyboard or a computer
and its input-output devices are not lit
erate unless they can spend mostof their
time dealing with content rather than
with the mechanics of form.

Is the computer a car to be driven or
an essay to be written? Most of the con
fusion comes from trying to resolve the
question at this level. The protean na
ture of the computer is such th'at it can
act like a machine or like a languag'e to
be shaped and exploited. It is a medi
um that can dynamically simulate the
details of any other medium, including
media that cannot exist physically, It is
not a tool, although it can act like many
tools. It is the first metamedium, and as
such it has degrees of freedom for repre
sentation and expression never before
encountered and as yet barely investi
gated. Even more important, it is fun,
and therefore intrinsically worth doing.

If computers can be cars, then cer
tainly computer literacy at the level of
driver-education courses is desirable.
Indeed, the attempt is now being made
to design user interfaces giving access
to the computer's power by way of inter
actions even easier to learn than driv
ipg a car. Integrated programs for word
processing, graphics, simulation, infor
mation retrieval and person-to-person
communication will be the paper and
pencil of the near future, The driver-ed
ucation level of paper-and-pencil litera
cy is taught, however, in kindergarten
and first grade, implying that what can
be called mark-making literacy in com
puters should be attained as early as
possible; children should not be made to
wait until they can get in a half year of
it just before they graduate from high
school, as recent reports by educational
commissions suggest. Children need in
formational shoes, bicycles, cars and
airplanes from the moment they start
to 'explore the universe of knowledge.

Paper-and-pencil literacy does not
stop, moreover, when children know
how to manipulate a pencil to make cer
tain kinds of marks on paper. One rea
son to teach reading and writing is cer
tainly that people need these skills to get
through daily life in the 20th century,
but there are grander and more critical
goals. By reading we hope not only to
absorb the facts of our civilization and

a
8

I i7
i8
..9
50

. . . . · · · · · · · · · · · · · · 1 · · . .
I

:e:
51 ««

b c d
50 e:Animals e' :e:Mammals e' • • • • • .. 1 . . : · · · · ·

Ie:
.

51 ««««««««««««««« <<<<<<< <<<<<<<<<<<<<<<<<<<<<<<<<<<<< ««««««««««««««««««
52 :Birds : :Cats : ":R�'d' 'F��' : . .

:
.

53 :Fishes .
5 .. :)�:���:�:I:�::::::: ... : :Dog.s

..... : .. : Bi ��. 'F'�� " " ' : " : " ' "

:: :::: :::�ii �o.::F?�::::::::::. : :Sears
55 .:�ept.n.e.s ::::::::: F.�:�:��tCi::::::::: j::::: : :Artic Fox I:

. ' ' ' " 1 " ' '

56 : /I1.ar.3.u'pi� I �:.
57:�'.m.p'h.i.b.i.a�s. :

e

. :Rabb its
: :Humans

: :Kit Fox I :

:::::: :::��:�X: F.�:�:::::;::::: ...

8
17 . . I : .
18 .. : : . . : : . . : : . . : : .
19 «««
50 �:�:�j��:��:::::: le:Mammals I �:F.�:�:��:::::::::!�:�ij��:0:f.��:::::::::::::::::::::::::::::: :::
51 «««««««««« ««««««««««{««««««««««««««««««««««««««««««««««««« • . . • . . • • • • • • . . • .. 1 .. • • . . • • • · • • • . . • • • • • • . . • • • • .. • . . • • . . • . . • .. • • • . • • •

�� ::f�l;:�:��:::::::: ::���:�;::::::::::. :: f �i::;;� ::::: i :: f ;·f:��;:�,:;f:�:;'.��{��i;:;���:���:: : :
51 .f:Mammals 'Bears .f:Silver Fox I :Vulpes fulva. :
55

. ':
R
" " i 'i " ! ! F········· ':;'" t':" F' '1" : ·I ·i · · · · t'" ··t·· 'd: "t:" "i: · ·i · ··· · : .

.. : .. �.I? .1 .. �.� �.�.�� :. :.� . . 1.e ... �.::: : .. : 9.e . .
s .1 . . � . . . �s .. �n.!? .1y.� . �� . . �.r:'.� : .

56 :Marsupials Rabbits :Kit Fox I :ation by havlng black fur tip- :
57 ::X�p'�i:�Y:���:" 'H��'�;��" : : :��:�:;: F.�<::;:: :p'�d: :�:�t�:���i:��:;::::::: :::::: ::: :: :: :: : : : : .
58 «««

PAIII of Browser has
a HEAD CELL,
LATCH CELLS
and LIST CELLS.

LATCH CELLS notice
mouse pOinter in ad
jacent list cell and
latch by showing a
check mark.

name in head cell
and retrieve corre
sponding
subcategories.

EAO eEL (except
the first one) looks
for latched cell in
preceding list and
copies it.

DATA-BASE BROWSER allows one to gain access to a hierarchically organized data base by
simply pointing to items in successive lists. To learn about the silver fox one types "animals"
into the first pane (a). SUbject areas of the "animals" data base appear in the pane (b). Selection
of "mammals" causes that subcategory to appear in the next pane (c); selection of "foxes"
brings up a list of foxes (d), and· eventually the description of the silver fox is retrieved (e).

of those before us but also to encounter
the very structure and style of thought
and imagination. Writing gets us out of
the bleachers and onto the playing field;
old and new knowledge becomes truly
ours as we shape it directly.

In short, we act as though learning
to read and write will help people to
think better and differently. We assume
that starting with centuries' worth of
other people's knowledge is more effi
cient than starting from scratch and
will provide a launch pad for new ideas.
We assume that expressing and shap
ing ideas through metaphor and other
forms of rhetoric makes the ideas more
fully our own and amplifies our abili
ty to learn from others in turn. (Oliver
Wendell Holmes said, "The mind, once
expanded to the dimensions of larger
ideas, never returns to its original size.")
We hold all of this to be important even
though reading and writin� seem to be

quite hard and take years to master. Our
society declares that this kind of literacy
is not a privilege but a right, not an op
tion but a duty.

What then is computer literacy? It
is not learning to manipulate a word
processor, a spreadsheet or a modern
user interface; those are paper-and-pen
cil skills. Computer literacy is not even
learning to program. That can always be
learned, in ways no more uplifting than
learning grammar instead of writing.

Computer literacy is a contact with
the activity of computing deep enough
to make the computational equivalent
of reading and writing fluent and enjoy
able. As in all the arts, a romance with
the material must be well under way. If
we value the lifelong learning of arts
and letters as a springboard for personal
and societal growth, should any less ef
fort be spent to make computing a part
of our lives?

59
© 1984 SCIENTIFIC AMERICAN, INC

Data Structures and Algorithms
They are the basic elements of every computer program. The choice
of data structures and the design of procedures to manipulate them
hold the key to verifying that a program does what it is meant to do

Data structures and algorithms are
the materials out of which pro
grams are constructed. Further

more, the computer itself consists of
nothing other than data structures and
algorithms. The built-in data structures
are the registers and memory words
where binary values are stored; the
hard-wired algorithms are the fixed
rules, embodied in electronic logic cir
cuits, by which stored data are interpret
ed as instructions to be executed. Thus
at the most fundamental level a comput
er can work with only one kind of data,
namely individual bits, or binary digits,
and it can act on the data according to
only one set of algorithms, those defined
by the instruction set of the central
processing unit.

The problems people undertake to
solve with the aid of a computer are sel
dom expressed in terms of bits. Instead
the data take the form of numbers, char
acters, texts, events, symbols and more
elaborate structures such as sequences,
lists and trees. The algorithms employed
to solve the problems are even more var
ied; indeed, there are at least as many
algorithms as there are computational
problems. How can a vast spectrum
of problems be solved by a single ma
chine that always acts according to fixed
rules? The explanation is that the com
puter is a truly general-purpose device,
whose nature can be transformed alto
gether by the program given it. The un
derlying principle was first set forth
by John von Neumann. A stream of in
formation is at one moment data being
processed by a program, and at the next
moment the same information is inter
preted as a program in its own right.
Hence a program is formulated in terms
of familiar notions convenient to the
problem at hand; then another program,
called an assembler or a compiler, maps
those notions onto the facilities avail
able in the computer.

In this way it is possible to construct
systems of extraordinary complexity.
The programmer sets up a hierarchy of
abstractions, viewing the program first
in broad outline and then attending to

60

by N iklaus Wirth

one part at a time while ignoring the in
ternal details of other parts. The proc
ess of abstraction is not merely a con
venience; it is a necessity, because pro
grams of more than trivial size simply
could not be created if one had to work
with an undifferentiated, homogeneous
mass of bits. Without higher-level ab
stractions a program could not be un
derstood fully even by its creator.

Specifying the abstract data struc
.

tures and algorithms of a program
req uires a formal notation, one in which
the meaning of any legal statement is
defined precisely and unambiguously.
Such formal notations for programming
have come to be known as languages,
but the term is misleading because pro
gramming is only superficially like writ
ing. I prefer to think of programming as
the activity of designing a new machine
(to be implemented with the aid of an
existing, general-purpose machine). The
design is specified in terms of the facili
ties provided by the notation, just as an
electronic device is designed by drawing
the symbols for basic circuit elements
and their connections. If one views pro
gramming as the design of a machine,

PATH LENGTH (ROOT) 1 0
2

the need for precision becomes all the
more obvious.

Among the facilities provided by al
most all programming languages is the
ability to refer to an item of data by
assigning it a name, or identifier. Some
of the named quantities are constants,
which have the same value throughout
the segment of the program in which
they are defined; for example, pi might
be assigned the value 3.14159. Other
named quantities are variables, which
can be assigned a new value by state
ments within the program, so that their
value cannot be known until the pro
gram is run. The variables diameter
and circumference might take on new
values each time a calculation is done.

The name of a constant or a variable
is a mnemonic aid to the programmer,
but it has no meaning to the comput
er. The compiler that translates a pro
gram text into binary code merely as
sociates each identifier: with an address
in memory. If an instruction calls for
multiplying diameter by pi. the comput
er fetches. wha tever n umbers are stored
at the specified addresses and calculates
the product; if the result is to become
the new value of circumference. it is

50

FOREST OF BINARY TREES illustrates the close interaction of data structnres and algo
rithms. An ordered binary tree, which by convention grows from the root downward, is a data
structure that is often chosen wheu items are to be retrieved at random from a large body of in
formation. The tree is made up of nodes identified by a key value; in the diagrams on the oppo
site page the key is an integer between 1 and 15. Each node has at most two "children," which
are arranged so that the child to the left invariably has a key that is smaller than the parent's
key and the child to the right has one that is larger. The optimum tree is the one at the upper
left: it is fully balanced, so that the average number of nodes that must be traversed to reach a
given node is minimized. (The path length to each node is indicated by color according to the
key above.) The other trees were generated by a random-insertion algorithm, which adds a
node at the first position a key is allowed to occnpy without moving any other nodes to maintain
the balance of the tree. A more elaborate algorithm conld reduce the average path length some
what, bnt the algorithm itself would then be more complicated. The random-insertion algo
rithm and the benefits of tree-balancing are explored in the illustrations on pages 68 and 69.

© 1984 SCIENTIFIC AMERICAN, INC

3

13 14 1 7 11 9 12 6 2 10 8 5 3 15 4

P=4.87

14 3 7 11 10 9 13 6 8 2 12 4 15 5 1 4 1 5 3 6 15 10 2 9 13 11 8 7 14 12

10

12 13 8 11 3 7 9 1 4 15 10 6 2 14 5 65 12 14894 2 13 11 73 10 1 15

P=4.67

8

1 4 7 14 2 15 6 11 12 10 5 8 3 9 13 1 9 2 3 14 4 15 8 10 12 6 13 5 11 7

15

15 13 3 2 11 7 9 6 5 4 10 12 8 14 1

12

2

12 14 6 5 15 11 4 8 7 3 1 13 10 2 9

13 8 15 7 5 14 11 1 9 2 6 12 3 4 10

7

1 14 10 8 2 6 12 7 9 5 11 4 3 15 13

61
© 1984 SCIENTIFIC AMERICAN, INC© 1984 SCIENTIFIC AMERICAN, INC

stored in memory at the address corre
sponding to that label.

The naming of constants and vari
ables in programming is similar to the
use of symbolic expressions in algebra,
but for a computer to handle the proc
ess some additional information must
be supplied. The information gives the
"type" of each named quantity. A per
son working a problem by hand has an
intuitive grasp bf data types and the op
erations that are valid for each type; it is
known, for example, that one cannot
take the square root of a word or capi
talize a number. One reason such dis
tinctions are easily made is that words,
numbers and various other symbols are
represented quite differently. For the
computer, however, all types of data
ultimately resolve into a sequence of
bits, and the type distinctions must be
made explicit.

Suppose in the course of some opera
tion the seven-bit binary value 10 100 1 1
has been read into a register in the cen
tral processing unit of a computer. How
is the value to be interpreted? One possi-

TYPE
DISPLAYED
FORM

CARDINAL 83

INTEGER -83

REAL 83.0

SET 0,1,4,6

CHARACTER S

STRING SET83

bility is that it represents a cardinal,
or counting, number, in which case the
equivalent in decimal notation would be
83. In many programming languages the
value could also represent a signed inte
ger equal to decimal -45. The same bi
nary data could encode not a number
but a character; in the American Stan
dard Code for Information Interchange
(ASCII) binary 10 100 1 1 specifies the let
ter S. Several other possibilities exist.
(Indeed, the binary code might not be
data at all but an instruction to the
computer; its interpretation would then
depend on the particular processor.)

The data types recognized by com
mon programming languages include
cardinal numbers, integers, real num
bers (approximated as decimal frac
tions), sets, characters and strings of
characters. Information on each vari
able's type is needed not only to in
terpret the binary representation but
also to set aside the correct amount of
space in storage. In many modern com
puter systems a single character is allo
cated eight bits, or one byte, of mem-

ory, whereas a cardinal or an integer
might be given two or four bytes and a
real number might take up as many as
eight bytes.

In some programming languages the
compiler infers the type of a con�

stant or a variable from certain clues in
the way the assigned value is written; the
presence of a decimal point, for exam
ple, might indicate a real number. Other
languages require the programmer to
state each variable's type explicitly. Ex
plicit declaration of data types may seem
bothersome if it can be avoided, but it
has an important advantage. Although
the value of a variable may change re
peatedly as a program executes, its type
should never change; hence the com
piler can check to make certain that all
operations carried out on the variable
are consistent with the type declaration.
Such consistency checking can be done
by examining the program text, and so.
it holds for all possible computations
specified by the program. A "trial run"
of the compiled program, on the other

INTERNAL REPRESENTATION

00000000 00000000 00000000 01010011
"
MAGNITUDE

1 1111111 1111111 1111111 10101101

� "
MAGNITUDE

SIGN

o 1000111 10100110 00000000 00000000 00000000 00000000 00000000 00000000

V \ORMALIZED MANTISSA
WEIGHTED EXPONENT

SIGN OF MANTISSA

00000000 00000000 00000000 01010011
"
MEMBERS OF SET

01010011
\

ASCII CODE

S E T <SPACE> 8 3
00000110 01010011 01000101 01010100 00100000 00111000 00110011

""
,

ASCII CODES OF CHARACTERS
NUMBER OF CHARACTERS

ELEMENTARY DATA TYPES are given a predetermined internal
representation by the compiler program that translates statements in
a programming language. The type of a variable must be specified so

that the compiler can allocate space in storage and put the data in the
correct format. In the data representations shown here a cardinal
number or an integer is stored in 32 bits, or four bytes. A real num
ber is accorded 64 bits and is represented in scientific notation, with

an exponent, a mantissa and a sign bit. A set can be represented as
a string of bits, where a 1 indicates that an element is a member of
the set and a 0 indicates that it is not. Characters are generally giv
en seven- or eight-bit values specified by the ASCII standard code. A

string of characters consists of the individual character codes with an
additional byte to give the length. The division of the binary values
into groups is for readability; the gaps would not appear in memory.

62
© 1984 SCIENTIFIC AMERICAN, INC

hand, can verify correct operation only
for the specific input values tried.

The notion of a data type has been
extended, primarily through the pro
gramming language Pascal, to encom
pass the description of data structures.
A structured variable is one with multi
ple elements, or components, that can
nonetheless be referred to as a single
entity. In a calendar, for example, one
must be able to specify a particular date,
but there should also be a way to refer to
entire months and years. The type decla
ration for a structured variable estab
lishes the number of elements making
up the variable, it enables the compil
er to allocate the necessary storage for
them and it provides information about
the intended method of access to them.

If all the elements are of the same type
(and so have the same storage require
ment), the structured variable is said to
be homogeneous, and it can be declared
as an array. A structured variable to be
given the name Sept and consisting of 30
cardinal numbers might have the fol
lowing type declaration:

Sept: array[1 .. 30] of cardinal

In an array individual elements are
readily identified by means of a comput
ed index, which represents a position in
the sequence of elements. The address
of the fifth element, for example, is sim
ply the address of the first element plus
five times the size of an element.

If the elements of the structured vari
able are not all of the same type, this
simplicity of access is lost. On the other
hand, elements that differ in type are
likely to differ in other ways as well,
and there is less need to refer to them
by means of a computed index. Instead
each element is given its own identifier.
The entire structured variable is called a
record and the elements are called fields.
A record designed to hold information
on cities is shown in the bottom illustra
tion at the right. The record is referred
to by the variable name city: individual
fields are designated city. name, city.
population and so on.

Another fundamental structured data
.fl. type is the set. It is of use where the
value of an element is not of immediate
interest and only its presence or absence
matters. If a variable named primes is
declared to be a set of cardinal num
bers, a set-membership operation can be
defined that will yield the logical value
True if a number is a member of the set
and the value False otherwise. Sets can
be efficiently implemented and manipu
lated; each element of the set is repre
sented by a single bit, where the pres
ence of the element is indicated by a· I
and its absence by a O.

Arrays, records and sets are called ba
sic structures. In many contexts more
complicated structures are needed, but

primes: array[O . . 71 of cardinal

19-
PRIMES[O] 2 PRIMES + (7 -4)

f----17-
PRIMES[1] 3 PRIMES + (6 - 4)

t---13-
PRIMES[2] 5 PRIMES + (5- 4)

1---11-
PRIMES[3] 7 PRIMES + (4 - 4)

7
PRIMES[4] 11 PRIMES + (3 - 4)

5
PRIMES[5] 13 PRIMES + (2 - 4)

3-
PRIMES[6] 17 PRIMES + (1 - 4)

-2
PRIMES[7] 19 PRIMES

ARRA Y OF DATA consists of a specified number of elements that are all of the same elemen
tary data type. The compiler can allot the same amount of space to each element, and so a par
ticular element can be found by a simple calculation of its address from its index value. Here
an array of eight elements has been given the name primes, which also represents the address
in memory at which the array begins. The elements are cardinal numbers with a storage re
quirement of four bytes, so that the address of any element in the array is calculated by multi
plying the element's index by 4 and adding that number of bytes to the address of primes.

CITY.LONGITUDE I

CITY LATITUDE I

CITYALTITUDE

CITY POPULATION

city: record
name: array[O .. 9l of character;
longitude, latitude: real;
altitude, population: cardinal

end

8.33

47.23

400

450,000

CITY + 34

r- POPULATION -
CITY + 30

r--ALTITUDE-
CITY + 26

- LATITUDE-

CITY + 18

f--LONGITUDE-

CITY + 10

t---NAME-

CITY

RECORD STRUCTURE holds heterogeneous information. Here a record named city has been
defined to include five fields, inclnding a string of characters, two real numbers and two cardi
nal nnmbers. A particular field can be accessed by giving the record name and the field name
separated by a period. Because different types of information have different storage require
ments, the fields are not all the same length. For each field the compiler mnst record an offset
valne: the distance in memory from the start of the record as a whole to the start of the field.

63
© 1984 SCIENTIFIC AMERICAN, INC

type word =
record

end

spelling: array[O . . 201 of character;
next: pointer to word

LIST

IA ;JJIAARDVARttsi ABACUS;JJI
r-

____ �

RING
type day =

record
weekday: (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY)

next: pointer to day
end

type prime =
record

number: cardinal
left, right: pointer to prime

end

THURSDAY

TREE

�
�

DYNAMIC DATA STRUCTURES can expand or contract or even be reorganized under the
direction of the algorithmic part of the program. The structures are made up of nodes, which
are generally records, that include pointers to other nodes (color); a pointer that points to noth
ing is given the special value lIiI. The simplest dynamic structure is the linked list, where each
node has a pointer to the next one. The example shown here might form part of a dictionary. A
list can be transformed into a ring by making the last element point to the first one. In a bina
ry tree each node has two pointers, which give the addresses of the left and right subnodes.

64

rather than trying to invent notations for
all of them it is preferable to introduce
a general facility for building arbitrary
structures. Whereas the structure of an
array, of a record or of a set remains
constant during the execution of a pro
gram, the more elaborate structures can
be allowed to grow, shrink or alter their
topology. The basic structures are static,
the derived ones dynamic.

Because the size of a dynamic struc
ture is subject to change, it cannot be
specified by an invariant declaration; it
must be defined by the algorithmic part
of the program. For the same reason the
program, rather than the compiler, must
allocate storage space for the structure.
This would appear to be a treacher
ous situation, since the correctness of
the structure cannot be checked during
compilation. One property of the struc
ture does remain fixed, however, and
therefore can be declared in advance,
namely the types of the elements of
which the structure is ultimately com
posed. Only the number of elements and
the connections between them can vary
during execution.

The mechanism for creating dynamic
structures consists of a way to generate
basic components called nodes and a
way to establish connections between
nodes. The nodes are generally records;
the connections are defined by variables
called pointers. As the name suggests, a
pointer points to an element of the dy
namic structure; it can also be assigned
the special value nil, in which case it
points to nothing.

One dynamic structure that can readi
ly be created out of nodes and pointers is
a lin.ked list. Each entry in the list is a
record, one of whose fields is a pointer to
the next record. The pointer in the last
entry has a value of nil. To add a rec
ord the program allocates the neces
sary space in storage and changes the last
pointer to point to the new data element.
Making the last element point back to
the first one converts the list into a ring.
A tree is created by having each node
include pointers to all its subnodes. Ex
amples of several dynamic structures
are shown in the illustration at the left.

The implementation of pointers is
straightforward: the value of a point
er (unless it is nil) is the address of the
node it points to. Why not simply call a
pointer an address? The distinction is
worth preserving because a pointer is
declared to point to a variable of a
known type, whereas an address could
specify any location in memory. The
compiler can thereby ascertain that
each pointer is associated with an ob
ject of the right type.

Adata structure is an essentially spa
tial concept; it can be reduced to a

map of how information is organized in
the computer's memory. An algorithm
is the corresponding procedural element

© 1984 SCIENTIFIC AMERICAN, INC

in the structure of a program; it is a reci
pe for computation,

The first algorithms were invented to
solve numerical problems such as mul
tiplying numbers, finding the greatest
common divisor, calculating trigono
metric functions and so on, Today non
numerical algorithms are of equal im
portance; they have been devised for
tasks such as finding the smallest ele
ment in a sequence, searching for a giv
en word in a text, scheduling events and
sorting data into some specified order.

Nonnumerical algorithms operate on
data that are not necessarily numbers;
moreover, no deep mathematical con
cepts are needed to design or under
stand them, It does not follow, how
ever, that mathematics has no place in
the study of such algorithms; on the
contrary, rigorous, mathematical meth
ods are essential in finding the best so
lutions to nonnumerical problems, in
proving the correctness of the solutions
and in determining their effectiveness,
Programming remains a highly mathe
matical discipline, The roles have been
exchanged, however: whereas comput
ing methods were once employed to
solve mathematical problems, mathe
matical methods are now applied to the
solution of computing problems,

Here I shall not attempt to give a gen
eral survey of the various categories
of algorithms or even to discuss meth
ods for constructing new algorithms, In
stead I shall illustrate the modern ap
proach to reasoning about algorithms,
Given an algorithm that purports to
solve some problem, how can one un
derstand the algorithm, and in particu
lar how can one gain confidence in its
correctness without resorting to a com
puter to "test a few cases"?

If an algorithm is viewed as a tempo
ral series of operations, a fundamental
issue is how the flow of operations is
controlled, When the execution of a
program has reached a particular state
ment, how does the computer determine
which statement to execute next?

It has been shown that just three con
trolling principles are sufficient to de
scribe any algorithm, The first principle
is so obvious that it is often overlooked:
it is the notion of sequence, Unless the
computer is instructed otherwise, it exe
cutes the statements of a program se
quentially, The second principle is con
ditional execution, which is generally
designated in the program text by an
"if , , ,then" construction, In the state
ment "if B then S," B is a Boolean ex
pression, one with a value of either
True or False, and S is any statement or
group of statements, B is evaluated,
and if it is True, S is executed; other
wise S is skipped,

The third principle is repetition,
which can be indicated by a "while , , ,
do" construction, "While B do S" tests
the value of B and, if it is True, ex-

a : = x; b : = y; c : = 0 ;

whileb of Odo

end

{assertion: a.b + c = x.y}

{assertion: b of O}

b : = b -1; c : = c + a

{assertion: a.b + c = x.y and b = 0 yields c = 'X.y}

OPER ATION
x:= 7; y:= 13

a '= 7' b '= 13' c:= 0
b:=b'-i;c:':'c+a
b'=b-l'c'=c+a

�::�::1:�:�:;
b:=b-l;c:=c+a
b'=b-l' c:=c+a
b:=b-l;c:=c+a
b:=b-l;c:=c+a
b:=b-1; c:=c+a
b '=b-l' c:=c+a
b:=b-l;c:=c+a
b:=b-l;c:=c+a
b:=b-l;c:=c+a

a : = x; b: = y; c: = 0 ;

whileb of Odo

{assertion: a.b + c = x'y}

{assertion: b of O}
c : = C + a . (b MOD 10);

a: = 10 . a;
b:= b DlV10

end

EVALUATION

a = 7, b = 13, c = 0
a = 7 b = 12 c = 7
a = 7: b = 11: 'C = 14
a = 7 b = 10 c = 21
a = 7: b = 9: c = 28
a = 7, b = 8, c = 35
a = 7, b = 7, c = 42
a = 7 b = 6 c = 49
a = 7: b = 5: c = 56
a = 7, b = 4, c = 63
a = 7 b = 3 c = 70
a = 7: b = 2: c = 77
a=7 b= 1 c=84
a = 7: b = 0: c = 91

{assertion: a.b + c = x.y and b = 0 yields c = x'y}

OPER ATION
x:= 7; y:= 13

a:= 7; b:= 13; c:= 0

c : = c + a- (b MOD 10)
a:= 10-a
b:=b DIV10

c : = c + a- (b MOD 10)
a:= 10-a
b:=b DIV10

a : = x; b: = y; c: = 0 ;

whileb of Odo

{assertion: a.b + c = x.y}

{assertion: b of O}

EVALUATION

a = 7, b = 13, c = 0

c = 0 + 7 -3 = 21
a = 10 -7 = 70
b = 13 DIV10 = 1

c = 21 + 70 -1 = 91
a = 10 -70 = 700
b = 1 DIV 10 = 0

if Odd (b) then c : = C + a end;

a:= 2-a;
b:= b DIV2

end

{assertion: a.b + c = x.y and b = 0 yields c = x'y}

OPER ATION
x: = 7; y: = 13

a:= 7; b:= 13; c:= 0

if Odd (b) then c : = C + a end
a:= 2' a
b:= b DIV 2

if Odd (b) then c: = C + a end
a:= 2-a
b:= b DIV 2

EVALUATION

a = 7, b = 13, c = 0

c=0+7=7
a=2'7=14
b = 13 DIV2 = 6

c = 7
a = 2 -14 = 28
b = 6 DIV2 = 3

ifOdd(b)thenc:= c + a end c = 7 + 28 = 35
a : = 2 -a a = 2· 28 = 56
b : = b DIV 2 b = 3 DIV 2 = 1

if Odd(b)thenc:=c + a end c=35+56=91
a:=2-a a=2-56=112
b : = b DIV 2 b = 1 DIV 2 = 0

LOOP INVAR IANT

7-13+ 0=7-13
7-12+ 7=7-13
7-11+14=7-13
7-10+21 =7-13
7 - 9 + 28 = 7 -13
7 - 8 + 35 = 7 -13
7 - 7 + 42 = 7 -13
7 - 6 + 49 = 7 -13
7 - 5 + 56 = 7 -13
7 - 4 + 63 = 7 -13
7 - 3 + 70 = 7 -13
7- 2+77=7-13
7- 1 +84=7-13
7 - 0 + 91 = 7 -13

LOOP INVAR IANT

7-13+ 0=7-13

70-1+21=7-13

700-0+91 =7'13

LOOP INVAR IANT

7 -13 + 0 = 7-13

14-6+ 7=7-13

28 -3 + 7 = 7-13

56-1 +35=7-13

112-0 + 91 = 7-13

GUARD

b", 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b '" 0
b = 0

GUARD

b", 0

b '" 0

b = 0

GUARD

b,* 0

b", 0

b '" 0

b '" 0

b = 0

DEVELOPMENT OF AN ALGORITHM for multiplying two cardinal numbers proceeds
through three stages_ The first algorithm (top) employs the method of repeated addition; its
correctness can be verified through an assertion called a loop invariant, which must remain true
at all stages of the calculation. A more efficient method (middle) is the one people generally use
in doing multiplication by hand; it calls for dividing the multiplier by 10 instead of decrement
ing it by 1. In the example of 7 X 13 the faster algorithm reduces the number of passes through
the loop from 13 to three. Because a digital computer uses binary and not decimal arithmetic, an
algorithm based on division by 2 (bottolll) is still faster in spite of requiring more repetitions.

65
© 1984 SCIENTIFIC AMERICAN, INC

ecutes S; the two steps are repeated
until a test of B yields False. In most
cases a statement within S eventually
changes the value of B, so that the loop
does not continue indefinitely. In both
the conditional and the looping con
structs B has the function of a "guard,"
an expression that allows S to be exe
cuted only if the condition defined by
B is satisfied.

Consider an algorithm for multiply
ing two cardinal numbers, x and y,

by means of repeated addition. A for
mal statement of the algorithm is given
in the illustration on the preceding page.
The first step is to set up three variables:
the multiplicand a, the multiplier band

text: array[O .. M -11 of character

a partial sum c, which ultimately be
comes the product. The variables are
given their initial values in the three
statements a:= x, b:= y and c:= 0.
Here the symbol ": = " is an assignment
operator; whereas an equal sign consti
tutes an assertion of equality, the assign
ment operator actually creates a condi
tion of equality, that is, it assigns to the
symbol on the left the value of the ex
pression on the right. It can be read as
"Let a become eq ual to x."

The heart of the algorithm is a while
loop in which the guard is the statement
b =F 0. As long as b remains greater
than ° two operations are carried out
repeatedly. In the first operation b is
decremented by 1; in the second opera-

j = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
textO] = P E T E R P I P E R P C K E D A P E C K

word: array[O .. N -11 of character

i = 0 1 2 3
word[i] = P I C K

i:= O;j:= 0;

while (i < N)and (j < M-N)do

i:= 0

while (i < N) and word[il = text[j + il do i : = i + 1 end;

if i < Nthenj:= j+l end

end

P
®
P

E T E
I C K

CD C K

R

® I C K

P P E R

® I C K
® I C K

® I C K
® I C K

® I C K
P CD C K
P I © K

® I C K
® I C K
P CD C K

P

® I C K

C K E D

® I C K
® I C K

® I C K
P CD C K
P I © K
P I C ®

P: Vi: (0 ,,; i < N): word[il = text[j + il

Q: Vk: (0 ,,; k < j): 3i: {(O ,,; i < N): word[il} "" text[k + il

R: P andQ and(J;;;. m-n or i=n)

A P E C K

SEARCH FOR A WORD IN A TEXT is done by a series of letter-by-letter comparisons. Both
the text and the word are declared to be arrays of characters; in this case the text has 2S letters
and the word has four. The first letter of the word is com pared with the first letter of the text;
they happen to match (indicated here by a colored circle), and so the second letters are com
pared. This time the letters differ (indicated by a gray circle); the word is thus moved one char
acter position to the right and the testing of letter pairs begins anew at the start of the word. Only
when all the letters match has the word been found. The conditions to be satisfied by the algo
rithm are specified by the three propositions in predicate calculus given at the bottom of the il
lustration. The first assertion (P) states that when the word is aligned at positionj in the text ar
ray, for all values of the word-array index i, the letter word[i] is the same as the letter text[j + i] .
The second proposition (Q) states that there is no matching sequence for any smaller value of

j; thus the first occurrence of the word in the text must be found. The third proposition, which
must hold at the end of the search, states that P and Q will both be satisfied and either i will
have the value n (indicating that a match was found at positionj) or j will have a value larger
than that of any possible matching sequence (indicating that the word is not present in the text).

66

tion a is added to the current value of c.
The operations are expressed formally
in two assignment statements:

b:=b-l;c:=c+a .

The intent of the algorithm is obvious,
and the proced ure is straightforward.
With c initially equal to 0, a is added to
it b times, which directly implements
the definition of multiplication.

How can one be sure, however, that
a program written to express this intui
tively clear idea actually embodies the
correct algorithm? One approach is to
enter the program into a computer,
compile it and test a few cases. That
method can never lead to absolute confi
dence in the program's correctness, sim
ply because the number of potential test
cases is infinite. A better answer is to
include in the program "assertions," or
statements of conditions that must be
true (if the algorithm is correct), no mat
ter what path the computation has taken
up to that point. In this case the assertion
is a "loop invariant," a statement that
holds no matter how many times the
loop has been executed.

What assertion about the quantities in
the multiplication problem remains true
throughout the execution of the pro
gram? Since a and b are initially set
equal to x and y, it is clear that at the
outset a * b must be equal to x' y. (The
asterisk signifies multiplication, a con
vention in many programming lan
guages.) Similarly, when the calculation
is finished, c is taken as the prod uct and
so c must then also be eq ual to x * y. In
the various stages between the start and
the end of the proced ure, b is decreased
by 1 each time c is increased by a. From
this analysis it follows that the equation
a * b + c = x * y holds throughout the
calculation. That assertion is therefore
the essential invariant of the while loop;
together with the condition for termina
tion (b = 0) it establishes the desired re
sult (c = x* y).

In this instance the truth of the as
sertion employed to confirm the cor
rectness of the program is scarcely
more obvious than the correctness of
the program statements themselves. The
algorithm, however, is a simple one. The
power of assertions as a means of verify
ing program correctness becomes ap
parent when the algorithm is refined in
order to make it more efficient. The as
sertion formulated in the simplest case
remains valid even as the program be
comes more complicated.

The loop in the algorithm for multi
plication by repeated addition must be
executed y times. There are much faster
methods. The algorithm for multiplica
tion taught in primary school is an ex
ample; it is based on the same principle,
but b is reduced in larger steps. Instead
of being decremented by 1, it is divided
by 10, a particularly easy operation in

© 1984 SCIENTIFIC AMERICAN, INC

the decimal system. Indeed, in this con
text one generally does not even think of
the process as division but rather as sim
ply separating the multiplier into its
component digits. The isolation of digits
can be done in algorithmic terms by ap
plying two mathematical operators, DIV

and MOD, that yield respectively the
integer part of the quotient and the re
mainder after division.

The modification of the algorithm to
exploit this more efficient procedure can
be guided directly by the need to pre
serve the invariance of the assertion
a * b + c = x':, y. The assignment state
ment b: = b - 1 in the original algo
rithm is to be replaced by b : = b DIV 10;
preserving the invariance requires that a

be multiplied by 10, and so the state
ment a: = a * l O is added to the pro
gram. If b is not a multiple of 10, the
remainder (b MOD 10) is subtracted from
b and, in order to preserve the invariant,
a * (b MOD 10) is added to c.

The factor of 10 in the multiplication
proced ure is chosen because of its con
venience in the decimal number system.
Since the computer uses binary numbers
internally, it is advantageous to employ
a factor of 2 instead. A simple substi
tution of 2 for 10 could be made, but
further refinements are possible. The
resulting algorithm is used in all com
puters. The gain in efficiency is substan
tial: the number of iterations of the
loop is reduced from y to the logarithm
of y to the base 2. Without this improve
ment computers would spend most of
their time multiplying.

Asecond example is drawn from the
realm of nonnumerical algorithms.

Given a text stored as a sequence of
characters the task is to find within it the
first occurrence of a word, which can be
defined as any sequence of characters no
longer than the text. Algorithms built on
this model are important in many areas
of computer science, perhaps most obvi
ously in word-processing programs.

The first step in constructing the algo
rithm is to specify the precise result
wanted. In the illustration on the oppo
site page that is done in a formal no
tation (the predicate calculus); here I
shall give a verbal description. The two
variables, the text and the word, can be
declared as arrays of characters, so that
any chosen character can be retrieved by
giving a computed index value. Assume
the text is an array of m characters and
the word is an array of 11 characters,
where 11 is less than or equal to m. (In
most cases 11 is much smaller than m.)

What condition is guaranteed to be
satisfied when a matching sequence of
characters has been found? The answer
can be stated in terms of the index vari
ables i and j that specify positions in the
word array and the text array respec
tively. A match exists if for every value
of i from 0 to fl - 1 (that is, for the en-

P E T E R v
P E C ®

p E G ®

LETTER DISTANCE
A 4
B 4
C 1
D 4
E 2
F 4
G 4
H 4
I 4

J 4
K I\'
L 4
M 4
N 4
0 4
R 3
Q 4

P P E R

p E C®
P E C ®

P C K E D A

P E C ®
P E © K
P ® C K

P E C K

I I
I<E---l

(2
(3

P E C ®

P E C K

P E C ®
P E C ®
P E © ' K
P ® C K

® E C K

FASTER SEARCH ALGORITHM was devised in 1976 by Robert S. Boyer and J. Strother
Moore, now at the University of Texas at Austin. The search begins at the start of the text, but
in each stage the letters are compared starting at the end of the word. The program must main
tain a table giving the distance from the end of the word to the last occurrence of each letter in
the word; if the letter is not included in the word, the table entry is the full length of the word.
When a letter in the word fails to match a letter in the text, the table entry for the text letter is
retrieved; the word is then moved to the right that many character positions. In the first com
parison a k in the word does not match an e in the text, and so the word is moved two spaces.

tire allowed range of the index) the desig
nated character in the word array is the
same as the character in the text array
specified by an index value of j + i. The
val ue of j for which this condition holds
points to the first character in the match
ing seq uence, and it can serve as the re
sult returned by the search algorithm.

Finding a matching sequence of char
acters is not all that was asked, however;
the statement of the problem calls for
the first matching sequence. Another
condition must therefore be put on the
algorithm: for all values of the text-ar
ray index j less than the value at which
the matching sequence begins, the word
array and the text array must differ in at
least one character. The result is valid
only if both conditions are met.

One more possibility must be taken
into account: the word may not be pres
ent in the text at all. Such an oversight
is a common cause of program failure.
It can be corrected by specifying that if
the word is not found, the returned val
ue of j should be larger than the largest
possible value for the start of a match
ing sequence, namely m - 11.

The three conditions defined here
that the characters in the word and in the
text correspond for all values of i and
j + i. that there are no regions of corre
spondence for smaller values of j and
that j is less than m - l1-represent as
sertions helpful in verifying the correct
ness of an algorithm. It turns out they
are also useful as a framework for con
structing the algorithm itself. The obvi
ous approach to searching the text is by

repetition. A while loop is set up with the
first and third conditions as guards and
with the second condition as a loop in
variant. The initial value of j is set equal
to 0, so that the search begins with the
start of the text. On each pass through
the loop the guard conditions are tested,
and if the word matches the text or if j
is greater than m - 11. the program exits
from the loop; otherwise j is increment
ed by 1 and the loop is repeated.

What remains to be specified is how
the match itself is detected, that is, how
the characters in the text are compared
with those of the word over the range of
index values from i = 0 to i = 11 - 1. The
answer is a loop within the main loop;
for each value assigned to j the inner
loop passes through tbe entire range of
values of i. comparing the fl characters
one at a time. At the first discrepancy the
inner loop is aborted. The value of i on
exit from the loop indicates whether or
not a match was found: if i is less than II.

the comparison ended prematurely be
cause of a mismatch.

The text-search algorithm above is
straightforward but relatively ineffi

cient. In essence the word and the text
are superposed, starting at the beginning
of both, and compared character by
character. If a mismatch is detected, the
word is shifted one position to the right
and the comparison is repeated. This
process continues until a match is found
or the word has been shifted all the way
to the end of the text. When there is no
matching word in the text, a minimum

67
© 1984 SCIENTIFIC AMERICAN, INC

of m - n comparisons are needed, and
the number is generally higher.

For a task as fundamental as search
ing a text it may seem unlikely that any
significantly better methods would be
discovered after some 30 years of work
in computer science. Nevertheless, in
1976 Robert S. Boyer and J. Strother
Moore II, now at the University of Tex
as at Austin, found a faster way. Their
idea allows j to be incremented by more
than 1 in the program's main loop. The
comparison of the word with a segment
of the text starts at the end of the word
and proceeds toward the beginning. If a
letter in the word fails to match the cor
responding letter in the text, the word is
shifted forward to bring into alignment
the next letter that does match at this
position, which I shall call the pivot po
sition. If no letter in the word matches at
the pivot position, the word is shifted
forward so that its last letter is one space
beyond the pivot.

An immediate question raised by this
procedure is how the next matching let
ter pair is found; if it must be done by
comparing characters one at a time,
nothing has been gained. There is anoth
er way: the program can maintain a ta
ble listing the distance from the end of
the word to the last occurrence of each
letter in the word. Of course time must

procedure search (var t: TreeNode);

jsearch for key x in t; if it is not found, insert it}

begin

if t = nil then {insert new node with key x}

else if x < I. key then search (I. left)

else if x> I. key then search (I. right)

else {found: x.key = x}

end {if}

end {search}

be invested in compiling the table, but it
needs to be done only once; if the text is
long enough, it is worth the effort.

The Boyer and Moore algorithm may
be faster, but can one have confidence in
its correctness? In particular, how can
one be certain in shifting the word sev
eral places to the right without mak
ing any comparisons that no matching
alignments were passed over? An infor
mal argument is that a match requires
identity of all the letter pairs, and the
alignments passed over necessarily dif
fer in at least one position, namely the
pivot position.

Correctness and efficiency are the
main concerns of programmers. I

have shown that analytical methods can
and must be used to establish correct
ness because an exhaustive empirical
test would take too long even for simple
problems. For precisely the same reason
efficiency and performance cannot be
measured empirically. The tool for their
analysis is the calcul us of probabilities.

Suppose one is given an array of n
numbers and asked to find the maxi
mum value among them. The obvious
method is to scan the array seq uentially,
comparing each element with the largest
one found up to that point. One might
declare a variable named max and make

x < I.key

12 14 6 5 15 1 1 4 8 7 3 .. . 10

RANDOM-INSERTION ALGORITHM is a single routine for maintaining a binary trec; it
can both add information and retrieve it. The algorithm is a recursive procedure applied in ex
actly the same way at each node. Given a key value x, the algorithm compares it with the key
of the node being examined; if x is less than the node's key, the left branch is searched, and if x
is greater, the right branch is searched. If the value of x is equal to that of the key, the node being
sought bas been found. If the key is lIif, the node does not exist and a new node is created at
that position in the tree. In the example shown here a tree is searched for the key value x = 10.

68

its initial value that of the first element.
In a while loop each subsequent element
is compared with max, and if the ele
ment is larger, max is assigned the value
of the element.

It is evident that the loop must be re
peated 11 times, which sets a lower bound
on the execution time of the procedure.
How often is the assignment statement
executed? If the first element happens to
be the largest one, the assignment is
done only once; on the other hand, if the
sequence is an increasing one, max is
assigned a new value 11 times. Hence 1
and n are the extreme values, but what is
the average? The question cannot be an
swered by experiment. There are n! pos
sible arrangements of the numbers,
which is too many to examine even for
small values of n. (With an array of just
16 elements and a computer capable
of checking a million arrangements per
second, an exhaustive analysis would
take more than half a year.)

The analytical method of determining
the average is quite simple. The initial
assignment of a value is always executed
once, and so the count of executions be
gins at 1. Assuming all permutations are
equally likely, the probability that the
second element is larger than the first is
112; the probability that the third ele
ment is larger than either of the first two
elements is 1/3. The analysis can be
continued in this way, so that the av
erage number of assignments is equal
to the sum 1 + 112 + 1/ 3 + ... + 1/ n,
which is known as the harmonic series.
The 18th-century Swiss mathematician
Leonhard Euler showed that the sum of
the series is approximately equal to the
natural logarithm of n plus a constant,
now called Euler's constant, with a val
ue of about .577. The logarithm of 11

grows much slower than 1/ itself, and so
the time spent assigning values to max is
negligible compared with the time spent
making comparisons and incrementing
the array index. It is therefore reason
able to say that the effort needed to find
the maximum among n numbers is pro
portional to n.

Most practical problems do not yield
so readily, and the analysis of algo
rithms is an active field of research. In
many cases it is enough to know how the
execution time varies as a function of
some measure of the size of the prob
lem. For example, the time might in
crease in proportion to the size, or in
proportion to the square of the size, or
it might rise exponentially; exponential
growth makes the algorithm all but use
less. The study of such issues is called
complexity analysis.

The methods of complexity analysis
can be illustrated by an example: the
construction of a binary tree, a data
structure often adopted when the quick
retrieval of information is important.
The tree has two notable properties:
each node can have at most two sub-

© 1984 SCIENTIFIC AMERICAN, INC

nodes, and the keys that identify the
nodes are arranged so that at any node
the smaller key is in the left subtree.
Searching for a particular key can be
very efficient; a comparison at each
node indicates whether to take the left
branch or the right, and so the number
of remaining possibilities is halved at
each node.

The efficiency is at a maximum when
the tree is perfectly balanced, that is,
when every node has exactly two sub
nodes. The average path length-the ex
pected number of key comparisons-is
then equal to the logarithm to the base
2 of the number of nodes. In the worst
case, where the tree has degenerated to a
simple list with just one subnode linked
to each node, the average path length is
one-half the number of nodes. From this
result it appears one ought to take some
care to keep the tree balanced as it
grows. The balancing in itself requires a
considerable effort, however, and so the
question arises of whether the addition
al effort will pay off in faster searches.
Surprisingly, in most cases it does not.

Suppose n key values are read in ran
dom sequence and inserted into a

tree, which is initially empty. The left
to-right ordering of the keys is estab
lished as they are placed, but no effort is
made to balance the tree. A single proce
dure can be designed both to add a new
key and to search for one that is already
present; the procedure merely finds the
place in the tree where the key belongs
and inserts it if it is not there. An algo
rithm for this purpose is shown in the
illustration on the opposite page. It is a
recursive procedure, one that invokes it
self. At each node the algorithm takes
one of four possible actions. If the value
of the key at the node is nil, the new key
is inserted there. If the value of the
node's key is equal to that of the new
key, a successful search is reported. If
the new key is less than the one found,
the procedure calls a new copy of itself
to search the subnode to the left. If the
new key is greater, the recursive search
is directed to the right.

What is the average path length in a
tree constructed by such random inser
tion? Again empirical measurements are
out of the question because there are n !
possible insertion sequences, but a pro
babilistic estimate can be made. Assume
that the keys are the integers I through 11

and that all permutations of them are
equally likely. Some key, i, must be the
first to arrive and so it becomes the root
of the tree. When the rest of the keys
have been inserted, there will be i - I
nodes to the left of the root and n - i
nodes to the right. If i happens to be the
midpoint of the range, the tree is per
fectly balanced at this highest level; if i
is equal to 1 or to n, the first branches of
the tree are completely unbalanced.

The crucial idea in the analysis is that

� � �
[(i - 1) (P.-. + 1) + 1 + (n - i) (Po_; + 1)] I n

Po = 2(n + 1) [1 + Y2 + Y3 + Y4 . . .] / (n - 3)

Po = 2 l n n - 1 .845

BALANCING A BINARY TREE turns out to offer only a moderate improvement in effi
ciency in the average case. A fully balanced tree with 1/ nodes (top left) has an average path
length proportional to the logarithm of 1/. In the worst case, that of a tree degenerated to a list
(top right), the average path length is 1/ 12. For a tree constructed by random insertion, the aver
age length must be determined by a probabilistic analysis. If the root of the tree is element i, the
subtree to the left must include i - I nodes and the subtree to the right 1/ - i nodes. The total av
erage path length is equal to the sum of the lengths for the two subtrees plus 1 for the root. The
analysis can be repeated for each subtree, until ultimately the leaves of the tree are reached,
where each subtree has a path length of either 0 or 1. Average path length in the random tree is
a logarithmic function of 1/ some 38 percent larger than the function in the balanced tree.

exactly the same reasoning can be ap
plied recursively to each subtree. If the
second key to arrive is j and it is less than
i, then when the tree is filled, there will
be j - 1 nodes in the branch to the left
of j and i - j nodes in the branch to the
right. What is more, from this recursive
description of the tree the average path
length can be calculated by another re
cursive procedure. At the root the path
length is equal to I (for the root node
itself) plus the length of a subtree with
i - I nodes plus the length of a subtree
with 11 - i nodes. These lengths are
not known, but they can be calculated
by applying the same procedure at the
next level in the tree. Ultimately the end
of each branch is reached, where every
node has a path length of either 0 or 1.

The recursive definition of the path
length must be averaged for all possible
values of i from I through n. The result,
shown in the illustration above, is an
expression that again includes the har
monic series. The average path length
of a tree constructed without concern
for balancing is a logarithmic function
of the number of nodes, and it differs
from the optimum by a constant factor.
The average case is much closer to the
optimum than it is to the worst case:
the path is longer by 38 percent.

The programs I have discussed here
are not trivial, but they are very

short. In practical applications pro
grams tend to be long and intricate, and

they seem to grow as fast as the mem
ory capacity of the computers availa
ble to run them. Can the methods of
analysis I have outlined be applied to
such programs? It is my conviction that
they must, because complex systems re
quire exact reasoning even more urgent
ly than simple ones.

Most large software systems rely on
few "deep" algorithms; rather they are
built up out of basic algorithms such as
multiplication and searching, which ap
pear in many variations and combina
tions. The data structures, on the other
hand, tend to be exceedingly complex.
As a result the choice of the right data
representation is often the key to suc
cessful programming, and it may have a
greater influence on the program's per
formance than the details of the algo
rithm employed.

It is unlikely there will ever be a gen
eral theory for choosing data structures.
The best that can be done is' to under
stand the basic building blocks and the
structures built up from them. The abili
ty to apply this knowledge in construct
ing large systems is above all a matter
of engineering skill and experience. In
gaining such skill the programmer must
constantly fight complexity, refuse to
rely on a method not fully understood
and never give up the search for simpler,
more elegant solutions. In this effort no
modern tool of software engineering
can replace the programmer's faculty of
precise, constructive reasoning.

69
© 1984 SCIENTIFIC AMERICAN, INC

Programming Languages

They offer a great diversity of ways to specify a computation.

A language transforms the computer into a "virtual machine"

whose features and capabllities are determined by the software

�prOgramming language is more
than a notation for giving in
structions to a computer. A lan

guage and the software that "under
stands" it can totally remake the com
puter, transforming it into a machine
with an entirely different character. The
hardware components of a typical com
puter are registers, memory cells, add
ers and so on, and when a programmer
writes in the computer's native language
those are the facilities he must keep
in mind. A new language brings with it
a new model of the machine. Although
the hardware is unchanged, the pro
grammer can think in terms of variables
rather than memory cells, of files of data
rather than input and output channels
and of algebraic formulas rather than
registers and adders. A few languages
even give the computer a split personali
ty: it becomes a collection of indepen
dent agencies that do their own calcula
tions and send messages to one another.

Programming languages and their di
alects number at least several hundred,
and possibly a few thousand. The natu
ral languages of human communication
may be more numerous still, but in some
respects programming languages are
more diverse. Each language has its own
distinctive grammar and syntax, its own
manner of expressing ideas. In principle
most computational tasks could be ac
complished with any of the languages,
but the programs would look very dif
ferent; moreover, writing a program for
a given task would be easier with some
languages than with others. Here I shall
describe some of the programming lan
guages in common use and attempt to
give an impression both of the elements
they have in common and of the fea
tures that distinguish them.

The illustration on page 72 shows
several stages in the development of a
short program in Logo, a language de
vised in the late 1960's by Seymour
Papert and his colleagues at the Massa
chusetts Institute of Technology. One
interesting feature of Logo is the ability
to control a "turtle," a small robotic de
vice that can move forward and back-

70

by Lawrence G. Tesler

ward, turn in place and raise or lower
a pen that leaves a trace of the turtle's
path. In many cases the turtle is not a
real device but instead is simulated on
a video display.

The initial version of the program
consists entirely of commands to the
turtle. First the pen is lowered, then the
two commands forward 50 and right 144
are repeated five times and then the pen
is raised. When the turtle follows the
instructions, it draws a five-pointed star.
The command forward 50 causes it to
draw a straight line 50 units long; right
144 specifies a clockwise turn through
144 degrees, the change of heading at
each vertex in a five-pointed star.

If writing a list of commands to be
executed serially were the only meth
od of conveying one's intentions to a
computer, creating a complex program
would be all but impossible. Actually
Logo and other programming languages
provide a number of facilities for sim
plifying and generalizing instructions. In
this case the part of the program most
conspicuously in need of improvement
is the fivefold repetition of the forward
and right statements. Whenever possible
a programmer avoids writing anything
more than once, and not just because the
typing is onerous. If the program could
be condensed, it would take up less
space in memory. Furthermore, repeti
tion increases the likelihood of a typo
graphical error, particularly when the
program is being revised. The repetition
can be eliminated by replacing the five
turtle-movement commands with the
statement repeat 5 [forward 50 right 144].

Suppose now the programmer wants
to draw a nine-pointed star with edges
80 units long. That could be accom
plished by means of a statement such as
repeat 9 [forward 80 right 160] but it is
apparent the same basic program struc
ture is being duplicated, with differen
ces only in detail. A better solution is
to define a more general proced ure in
which the number of points and the
length of a side are given as variable
quantities. In Logo the word to intro
duces a procedure definition. Thus the

phrase to star indicates the instructions
that follow should be stored as the
method for drawing a star. Thereafter
star becomes a new command in the
language, one that can be entered into a
program just as the built-in commands
forward and right would be.

The variables in the star proced ure are
of the kind called parameters, which are
"passed" to the procedure at the time it
is invoked. In Logo the name of a pa
rameter is preceded by a colon. Hence
the procedure would be defined with a
phrase such as to star :size :points; typ
ing star 80 9 would assign a value of
80 to the parameter size and a value of
9 to points, thereby generating a nine
pointed star 80 units on a side.

One further refinement might be add
ed to the star proced ure. In Logo a de
fined procedure can be called not only
by the programmer but also by another
procedure. This is an important source
of power, but it increases the hazard of a
procedure's being given inappropriate
parameters. For example, in the intrica
cy of a program one might not realize
that the turtle would be asked to draw
a star with only one or two points. The
problem can be addressed by adding the
clause if points> 2 to the program. The
ifclause serves as a "guard" that allows
the turtle to draw only if the number of
points specified is greater than two.

From the example above it can be seen
that Logo has at least a superficial

resemblance to a natural language such
as English. It has a vocabulary of words,
numbers and other symbols (collective
ly called tokens) that can be strung to
gether to form larger constructs analo
gous to sentences. Some of the tokens
are "key words" with a fixed mean
ing; others are defined by the program
mer. Some of the tokens act as verbs;
others function as nouns, modifiers or
marks of punctuation. The rules gov
erning how tokens can be combined
constitute a grammar.

The sentences of a programming lan
guage are generally classified as declara
tions and statements. A declaration de-

© 1984 SCIENTIFIC AMERICAN, INC

fines what something is, what it means
or how it is structured. In the Logo pro
gram, to star :size :points is a declaration
that defines star as the name of a proce
dure and defines size and points as vari
ables that serve as parameters to star. A
statement, on the other hand, generally
describes part of an algorithm; it spec
ifies some action to be taken. In most
cases a statement has the form of an
imperative: it begins with a verb, which
is followed by an object or a modifier.
In the repeat statement repeat itself is a
verb, the number following it serves as
an adverb and the material in brackets is
the object of the verb.

The vocabulary and the syntax of the
star procedure are peculiar to Logo, but
the mechanisms that control the flow of
execution through the procedure can be
found in the great majority of program
ming languages. In the absence of any
explicit control statement, execution is

• :rr,r�II�"�! tUr 1j�1 ... �drjIJntltr,..
>>> Begh e .. cuti.. . ..
»> User halted exeutl ..
»> Step c .. pletl
»> Step ulplett
»> Stop COl pi eto

sequential. If one imagines the comput
er as reading the program, it reads the
lines from top to bottom, so that unless
the flow is altered each statement is exe
cuted exactly once.

One program element that alters the
flow of execution is the repeat statement,
which is an example of a looping, or
iterative, construct. When the comput
er encounters repeat n followed by a
group of statements in brackets, it reads
and executes the material in brackets n
times. Another way of controlling the
computer's progress through a program
is conditional execution, which in Logo
(as in many other languages) is embod
ied in the if statement. The statements
governed by an if are executed only if
some specified condition is met.

There are many variations on the ba
sic ideas of iterative and conditional ex
ecution. The repeat statement is useful
only if it is known before the loop is

rrp[
Termlndex = 1 .. 100;

entered how many times it is to be exe
cuted. Other constructs allow the termi
nation of the loop to be controlled by
events within the loop itself; in essence a
conditional expression is incorporated
into the loop. In a number of languages
a statement beginning with the key word
while is repeated as long as a stated
condition remains true. Another way
of diverting program flow is an "un
conditional jump," or goto statement,
which simply shifts execution to a new
point in the program. In recent years the
goto statement has been in some disre
pute among computer scientists on the
grounds that programs with many such
jumps are difficult to follow (for the hu
man reader, not for the computer).

The notion of procedure definition it
self is a vital element of programming. It
is the chief mechanism of abstraction,
the process of converting specific in
stances (a five-pointed star 50 units on a

TermArray = *RtAr [Termlndex J OF integer;

,n
�yTerms : Ter�Array;

II-�-""-'-_'-=""," __ +--"-..,.-_-:=,.......=-____ U
FU'CTIO' SumOdds (n : Termlndex; terms TermArrayl: Integer;

,al [J�[:]������m!i��II��� I : Termlndex;
su_ : integer;

IUII (Funo! ion Su"Odd.)
SUI!! := 0;
FOt I : = 1 TI n DD

,.. 1'10 U e

IF oddctermsli J) un
t3um := sumHermsll �;

SumOdds : = sum
�����������]E'D

SUl'loddnUMbers : [prograM)

t er�Y��ex
n�M [Type] TY�� <"TYPE)

ter",arra!:l : [t!:lPf!J TYPECTYPE>
"'yterl'''s : [Yariabl.) TYPE<t.,.",array>
sUl'lodds : [F'une t Ion] TYPE (PROC)

SNAPSHOT OF A PROGRAM in execution is given by a program
development system called PECAN. Most of the source text, or original
program, is displayed in the large window at the upper right; it is a
program in the Pascal language for summing the odd terms in an ar
ray of integers. Commands controlling the execution of the program
are given in the window at the upper left. Execution has been stopped
at the statement where the actual calculation of the sum is done; the

statement is enclosed in a box in the source-text-display window. Be
low the source text, part of a flow chart for the program is visible, and
to the left of that is a binary tree showing the logical structure of the
assignment statement. The nested boxes at the lower left indicate the
scope of symbols in the program. The stack-display window gives a
view of the program's data structures. PECAN was developed by Ste
ven P. Reiss of Brown University, who also created this illustration.

71

© 1984 SCIENTIFIC AMERICAN, INC

side) into general concepts (a star with
any number of points and any size). A
procedure is defined only once and is
stored in memory only once, but it can
be invoked from many places in a pro
gram, thereby allowing a product of
mental labor to be used many times.
Each time a proced ure is called, exe
cution transfers to the area in memory
where it is stored; when the proced ure
has been completed, execution resumes
with the instruction immediately fol
lowing the call. A specialized kind of
procedure, a function, returns a value of
some kind to the calling program. The
tangent function, for example, is given
an angle as a parameter when it is called,
and it returns a value equal to the tan
gent of the angle.

Among the hundreds or thousands
I\. of programming languages only a
dozen or so are in widespread use. The
illustrations on pages 74 through 76
show the same problem programmed

pendown
forward 50 right 144
forward 50 right 144
forward 50 right 144
forward 50 right 144
forward 50 right 144
penup

pendown
repeat 5 [forward 50 right 144)
penup

pendown
repeat 9 [forward 80 right 160)
penup

to star :size :points
pendown

in six languages: BASIC, Pascal, COBOL,

Forth, APL and Lisp. These six were cho
sen in part because they are well-estab
lished languages with a sizable popu
lation of programmers fluent in their
use. They also illustrate well the great
diversity of ways a single idea can be
expressed. In each case an attempt has
been made to write in a style that would
be natural or comfortable to a program
mer accustomed to the language.

The problem is not one of great intrin
sic interest. It was chosen because a so
lution can readily be programmed in
all the languages and because it demon
strates the essential mechanisms for de
fining variables and procedures and for
controlling iterative and conditional ex
ecution. The problem is to sum the odd
numbers in a set of integers.

The BASIC programming language
was developed in 1965 by John G. Kem
eny and Thomas E. Kurtz of Dartmouth
College, primarily as a language for in
trod uctory courses in computer science.

star 50 5

repeat :points [forward :size right 720/points)
penup

to star :size :points
if :points > 2

[pendown
repeat :points [forward :size right 720/:points)
penup)

star 80 9

DEVELOPMENT OF A PROGRAM IN LOGO is traced through five stages. The program
gives instructions to a "turtle," a mechanical drawing device. In the first version of the pro
gram all the instructions for drawing a five-pointed star are given explicitly. The repeal state
ment in the second version condenses the program and reduces the likelihood of error. The
third version has the same basic program structure but draws a larger star with nine points. In
the fourth version a procedure is defined in which the length of a side and the number of points
are variable quantities. In the final version of the program an if clause allows the procedure
to execute only if the number of points specified is greater than two. The repeal and if state
ments are examples of control structures important in virtually all programming languages.

72

It has since fallen from favor somewhat
in the academic world, but it has be
come popular in other contexts, nota
bly the programming of microcomput
ers. In BASIC every line is identified by a
number, and the control of flow through
the program is based largely on refer
ences to the line numbers. The heart of
the sample program is a loop in which
all the statements between a FOR state
ment and a NEXT statement are execut
ed repeatedly. The actual calculation is
done in an assignment statement, which
begins with the key word LET and gives
a new value to a variable.

Pascal was designed in about 1970 by
N iklaus Wirth of the Swiss Federal In
stitute of Technology in Zurich. It is an
other language meant for teaching that
has been adapted to many other purpos
es. Pascal, unlike BASIC, req uires the pro
grammer to declare each variable and to
specify its type; in this case the variables
are integers and arrays of integers. Pro
cedures and functions are referred to by
name rather than by line number, which
improves the readability of programs.

Pascal has been particularly impor
tant as a progenitor of later languages.
For example, Wirth has recently de
signed a language called Modula-2 that
builds on many of the concepts intro
duced in Pascal but emphasizes the
construction of a program as a set of
independent modules. Ada, a language
developed under the sponsorship of the
Department of Defense, is also based
largely on Pascal, although it is consid
erably more complex.

COBOL was created in 1960 by a joint
committee of computer manufacturers
and users. The name is an acronym for
Common Business-oriented Language,
and COBOL has long been the principal
language for large-scale data processing
in government, banking, insurance and
similar areas. A COBOL program is made
up of four divisions, or parts: identifica
tion, environment, data and procedure.
Only the data division, where variables
are declared, and the procedure divi
sion, where algorithms are set forth, are
shown in the bottom illustration on page
74. Whereas many programming lan
guages are modeled on the notation of
mathematics or formal logic, COBOL is
modeled on the syntax of the English
sentence; programs are highly readable
but often verbose.

Forth was invented in about 1970 by
Charles H. Moore, who was then at

the National Radio Astronomy Observa
tory. The aim was a language for proc
ess control, in particular the control of
telescopes, but again the language has
been extended to other domains. It has
been adopted for many minicomputer
and microcomputer applications, in part
because Forth programs tend to take
up little space in memory. In contrast
to COBOL, Forth programs are difficult

© 1984 SCIENTIFIC AMERICAN, INC

n:= 4
terms[2] : = 34 terms[3] : = 7 terms[4] : = 9

terms[1] : = 23

1
sum: = 0

i : = 1

1
YES

STOP
1> 4? 2 >4? 3> 4? 4> 4? 5> 4?

NO NO NO NO YES

1 1 1 1
STOP

NO Is 23 odd? Is 34 odd? Is 7 odd? Is 9 odd?
YES NO YES YES

1 1 1
sum:= 0 + 23 sum:= 23 + 7 sum := 30 + 9

= 23 = 30 = 39

1 1 1
i:= 1 + 1 i:= 2 + 1 i:= 3 + 1 i:= 4 + 1

= 2 = 3 =4 = 5

SAMPLE CALCULATION employed to illustrate the characteris
tics of several programming languages finds the sum of the odd ele
ments in an array of II integers. The algorithm outlined in the flow
chart at the left is embodied directly in the Pascal, BASIC and COBOL
programs shown on the next page. The heart of the algorithm is a

. loop executed II times. On each passage through the loop a term of

the array is examined; if it is an odd number, it is added to the run
ning total. At the right the successive values assumed by the variables
in the procedure are traced as the calculation is done for an array of
four numbers. The symbol ":=" gives to the variable on the left the
value computed on the right. A number in brackets, as in terms[lj , is
equivalent to a subscript: it identifies an element of the array terms.

to read and extremely terse; several key
words are mere marks of punctuation ..

In Forth the central facility of the
computer is the "stack," an area of
memory organized like a stack of cafete
ria trays, so that the first item put on
the stack is the last one removed. In the
Forth version of the sample program it
is assumed that the array of numbers
and its size are at the top of the stack
when the function is called; all calcula
tions are done on the stack, and the val
ue of the function is returned at the top
of the stack. No variables are defined.

APL has a syntax even more concise
than that of Forth. The initials stand for
A Programming Language, but in 196 1,
when a book on APL was first published
(by Kenneth E. Iverson of the Interna
tional Business Machines Corporation),
the language was merely a notation for
expressing problems in applied mathe
matics; implementation on a computer
came later. A distinguishing feature of
APL is that it can deal as easily with an
entire array of numbers as with a single
value; a command that adds two num
bers can be applied without change to
arrays with thousands of elements. The
sample APL program sums the odd ele
ments of an array in a single statement.
Taking the remainder of each number
modulo 2 identifies the odd elements,
which are then extracted from the array
and added.

Lisp is in some respects the simplest
of the languages considered here. It has
only one kind of statement, namely a
function call; its great source of power is
that the value returned by a function can
be another function. Lisp was developed
in the late 1950's by John McCarthy,
then at M.LT., and since then it has been
the preeminent language of those pursu
ing the goal of artificial intelligence. The
name is derived from "list processing";
both programs and data are structured
as lists.

The sample program could be written
in Lisp as an iterative loop, but a Lisp
programmer would be more likely to
choose a recursive technique, in which
a procedure calls on itself; the called
procedure then issues another call to it
self, and so on. Some means of escape
must be provided or the recursion will
become an infinite regress. The usual
means is a conditional statement within
the procedure: when the condition is sat
isfied, execution returns to the next
higher leveL

In the sample program the set of num
bers takes the form of a linked list. If
the list is empty, the function returns
a result of zero. Otherwise if the first
element of the list is odd, it is added
to the sum, and the function calls on it
self with an argument consisting of the
list that remains after the first element
is removed. Eventually all the elements

are stripped off in this way, at which
point the entire chain of pending calcu
lations is completed.

In general computers are not built to
"understand" Logo or BASIC or oth

er languages that operate at a similar lev
el of abstraction. The circuitry of the
computer recognizes only the electronic
embodiment of binary numbers. A pro
gram stored in a form that can be exe
cuted-the form called machine code
is a sequence of such numbers. Some of
them represent instructions to the cen
tral processor, some of them are data
and some are addresses in memory.

It is possible to write a program di
rectly in machine code, but it is tedious,
and the probability of completing even
a small project without error is slight.
(The computer has no trouble distin
guishing 0 1 10 100 1 from 0 10 1 100 1 and
remembering what each code means,
but the human eye and mind are not
used to best advantage in such tasks.)
In the late 1940's and early 1950's, in
an attempt to reduce the toil of writ
ing machine code, programmers invent
ed a notation called assembly code. In
stead of writing down the binary digits
for each machine instruction, the pro
grammer wrote a short word or abbre
viation, such as ADD, SUB or MOVE. Simi
larly, the address in memory where a
variable is stored was replaced by a

73
© 1984 SCIENTIFIC AMERICAN, INC

program SumOddNumbers;

type Termlndex = 1. .100;
TermArray = array [Term Index] of integer;

var myTerms: TermArray;

function SumOdds(n: Termlndex; terms: TermArray): integer;

var i: Termlndex;
sum: integer;

begin
sum:= 0;
for i : = 1 to n do

if Odd(terms[i]) then
sum: = sum + terms[i];

SumOdds : = sum;
end;

begin
myTerms[l] : = 23; myTerms[2] : = 34 ; myTerms[3] . = 7; myTerms[4] . = 9;
WriteLn(SumOdds(4. myTerms))

end.

PASCAL PROGRAM for summing the odd numbers in an array employs a function named
Sum Odds with two parameters: an integer II and an array terms. The function consists of the
statements in the panel of color; the remainder of the program sets up a particular array on
which Sum Odds operates. In Pascal every variable must be introduced in a declaration that
gives the variable's type. Some types, such as illteger, are built into the programming language;
others, such as TermIlldex, are defined by the programmer. The loop is designated by the
for ... to ... do ... statement and the conditional is designated by the if ... thell ... statement.

100 DIM T(100)
200 READ N
300 FOR I = 1 TO N
400 READT(I)
500 NEXT I
600 GOSUB 1100
700 PRINT S
800 GOTO 2000
900 DATA 4

1000 DATA 23. 34. 7. 9

1100 REM MAKE S THE SUM OF THE ODD ELEMENTS IN ARRAY T(1 .N)
1200 LETS = 0
1300 FOR I = 1 TO N
1400 IF NOT ODD(T(I)) THEN GOTO 1600
1500 LET S = S + T(I)
1600 NEXT I
1700 RETURN

2000 END

BASIC PROGRAM employs a subroutine to add up the odd terms in an array. The subroutine,
indicated by the panel of color, has no name but must be referred to by line number; it is called
by the GOSUB 1100 statement. A BASIC subroutine also has no parameters; values are assigned
to "global" variables, which the subroutine can then access. A variable does not have to be de
clared in BASIC unless it has subscripts, as in an array; in this example the DIM (for "dimen
sion") declaration states that the array T can have as many as 100 elements. The FOR ...
NEXT ... statement defines a loop and the IF ... THEN ... statement defines a conditional.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NUMERIC-VARIABLES USAGE IS COMPUTATIONAL.

02 TERMS PICTURE 9999 OCCURS 100 TIMES INDEXED BY I.
02 N PICTURE 999.
02 SUM PICTURE 999999.
02 HALF-TERM PICTURE 9999.
02 RMDR PICTURE 9.

PROCEDURE DIVISION.
EXAMPLE.

MOVE 23 TO TERMS(1).
MOVE 34 TO TERMS(2).
MOVE 7 TO TERMS(3).
MOVE 9 TO TERMS(4).
MOVE 4TON.
PERFORM SUM-ODDS.

SUM-ODDS.
MOVE 0 TO S UM.
PERFORM CONSIDER-ONE-TERM VARYING I FROM 1 BY 1 UNTIL I > N.

CONSIDER-ONE-TERM.
DIVIDE 2 INTO TERMS(I) GIVING HALF-TERM REM AINDER RMDR.

IF RMDR IS EQUAL TO 1; ADD TERMS(I) TO SUM.

COBOL PROGRAM for the sum-of-the-odd-numbers calculation uses a procedure named
SUM-ODDS that calls another procedure named CONSIDER-ONE-TERM. A COBOL proce
dure cannot have parameters, and so before SUM-ODDS is called by a PERFORM statement,
values are assigned to N and to the first N elements of TERMS. The key words PER
FORM ... VARYING ... define the loop and IF ... introduces the conditional clause. In the data
division the numbers 01 and 02 designate two levels in a hierarchy of data structures. PICTURE
specifies how values are to be displayed. Only an excerpt from the complete program is shown.

74

name assigned to the variable. N umeri
cal values were expressed in decimal no
tation. The words representing instruc
tions were chosen to be more easily re
membered than binary values, and so
they came to be known as mnemonics.

At first the translation from assem
bly code to machine code was done by
hand. It is a straightforward process: a
table records the unchanging correspon
dence between instruction mnemonics
and their binary codes, and a similar
table can be constructed for the variable
names appearing in a program. The proc
ess is clearly suitable for mechaniza
tion, and programs called assemblers
were soon written to do the translation.

Some programming is still done in as
sembly code, because it offers direct ac
cess to all the facilities of the computer.
Carefully written assembly code is fast
and efficient, and if a compromise must
be made between speed of execution
and program size, the programmer is in
direct control of such decisions. Mod
ern assemblers are sophisticated trans
lation programs. N evertheless, there is
still a rough one-to-one correspondence
between lines of assembly code and
machine instructions, so that programs
tend to be quite long, and the possibil
ities for error are legion. The control
structures available in most assembly
codes are primitive. What is most im
portant, assembly code remains closer
to the computer's language than to the
programmer's. Algorithms must be ex
pressed in terms of what the machine
is to do rather than in whatever terms
might be natural to the problem at hand.
(An assembly-code version of the odd
element-sum calculation is shown in the
top illustration on page 77.)

In planning the solution to a problem
one is unlikely to think in terms of regis
ters and memory addresses; rather, the
problem itself suggests the appropriate
notation. If the problem is one in phys
ics, the design of a program might be
gin with an eq uation such as F = rna; in
business the formula chosen might be
profit = revenue - expenses. The opera
tions specified by the formula are then
translated into explicit instructions to
the machine. Early programmers recog
nized that this translation too might be
mechanized. In that idea is the genesis of
languages such as FORTRAN, BASIC and
Pascal. For some years languages of this
kind were called high-level languages; it
now seems appropriate to refer to them
simply as programming languages, be
cause machine code and assembly code
do not really qualify as languages.

Since 1960 most software has been
written with the aid of programming
languages. They have many advantages
over lower-level representations. Be
cause one statement can give rise to
many machine instructions, programs
tend to be shorter, which both reduces
the labor invested in writing them and

© 1984 SCIENTIFIC AMERICAN, INC

improves their clarity. Working with
concepts pertinent to the problem rath
er than with those defined by the ma
chine also reduces the chance of error.
Furthermore, it introduces the possibil
ity of "machine independence," of writ
ing a single program that can be run on
many computers.

I t is important to distinguish between a
programming language and an im

plementation of the language. The lan
guage itself is the notation, the set of
rules that define the syntax of a valid
program. An implementation of a lan
guage is a program that converts the
high-level notation into sequences of
machine instructions.

There are two main kinds of language
implementation: compilers and inter
preters. A compiler translates the en
tire text of a high-level program in one
continuous process, creating a complete
machine-code program that can then be
executed independently of the compiler.
Working in a compiled language gener
ally has three stages: the program text is
created with a text editor or word-proc
essing program, then the text is com
piled and finally the compiled program
is executed. The term compiler was
coined in 1951 by Grace Murray Hop
per, then at Remington-Rand Univac, to
describe her first translator program.
As part of the translation process the
program retrieved standard seq uences
of machine instructions from tables
stored on magnetic tape and compiled
them into a complete program.

An interpreter executes a program
one statement at a time, transforming
each high-level construct into machine
instructions on the fly. The difference
between a compiler and an interpreter
is analogous to the difference between
a translator of literary works and a con
versational interpreter. The translator
takes a completed manuscript and deliv
ers a new text in another language. The
conversational interpreter renders each
phrase or sentence as it is spoken. Actu
ally most interpreter programs do some
initial processing of the text before exe
cution begins; key words are converted
into shorter tokens and variable names
are replaced by addresses. Still, the two
kinds of implementation remain dis
tinct: for an interpreted program to be
executed, the interpreter must be pres
ent in main memory, whereas once a
program has been compiled the compil
er is no longer needed.

In principle any programming lan
guage could be either interpreted or
compiled, but in most cases custom has
made one or the other kind of imple
mentation more common. FORTRAN, CO
BOL and Pascal are generally compiled;
Logo, Forth and APL are almost always
interpreted; BASIC and Lisp are widely
available in both forms. The chief ad
vantage of compilation is speed; be-

cause an interpreter must determine a ment. Sections of a program can be writ-
suitable sequence of instructions each ten, tested and executed without leav-
time a statement is executed, an inter- ing the interpreter, and when an error is
preted language IS almost inevitably found, it can be fixed immediately, with-
slower. On the other hand, an interpret- out the need to return to a text-edit-
ed language is often more convenient ing program and then compile the pro-
for the programmer; it is well suited to gram again.
an interactive style of program develop- The inner mechanism of a compiler or

: SUMODDS
o S WAP 0

DO
S WAP DUP 2 MOD

IF +
ELSE DROP
THEN

LOOP

2334 794 SUMODDS .

WORD STACK COMMENT

23 23
34 23 34
7 23 34 7
9 23 34 7 9
4 23 34 7 9 4
SUMODDS 23 34 7 9 4 Call SUMO D DS.
0 23 34 7 9 4 0
SWAP 23 34 7 9 0 4
0 23 34 7 9 0 4 0
DO 23 34 7 9 0 Remove loop-control values.
SWAP 23 34 7 0 9
DUP 23 34 7 0 9 9
2 23 34 7 0 9 9 2
MOD 23 34 7 0 9 1
IF 23 34 7 0 9 TOS = 1; do IF to ELSE.
+ 23 34 7 9
ELSE 23 34 7 9 Skip past THEN.
DBOP 23 34 7 9 Skipped.
THEN 23 34 7 9 Skipped.
LOOP 23 34 7 9 Return to DO.
DO 23 34 7 9
SWAP 23 34 9 7
DUP 23 34 9 7 7
2 23 34 9 7 7 2
MOD 23 34 9 7 1
IF 23 34 9 7 TOS = 1; do IF to ELSE.
+ 23 34 16
ELSE 23 34 16 Skip past THEN.
DROP 23 34 16 Skipped.
THEN 23 34 16 Skipped.
LOOP 23 34 16 Return to DO.
DO 23 34 16
SWAP 23 16 34
DUP 23 16 34 34
2 23 16 34 34 2
MOD 23 16 34 0
IF 23 16 34 TOS = 0; do ELSE to THEN.
+ 23 16 34 Skipped.
ELSE 23 16 34
DROP 23 16
THEN 23 16
LOOP 23 16 Return to DO.
DO 23 16
SWAP 16 23
DUP 16 23 23
2 16 23 23 2
MOD 16 23 1
IF 16 23 TOS = 1; do IF to ELSE.
+ 39
ELSE 39 Skip past THEN.
DROP 39 Skipped.
THEN 39 Skipped.
LOOP 39 No more iterations.

39 Return from SUMO D DS.
<empty stack> Print the result.

FORTH PROGRAM for summiug the odd numbers in an array declares no variables or other
data structures but works exclusively with values on a "pushdown stack." When SUMODDS is
called, the elements of the array are expected to be on the stack, with the number of elements
at the top. The line below the procedure definition would be typed to execute the program with
an array of four elements. A complete trace of the program's execution is then given, showing
the content of the stack after each word is executed. A numeric "word" such as 0 or 2 pushes
the number onto the stack; SWAP exchanges the top two elements; DUP pushes a copy of the
top element onto the stack; DROP discards the top element. Operators such as "+" and MOD
replace the top two elements on the stack with the result of the operation. The loop construct
DO removes two elements (say i and j) from the stack and executes the words up to LOOP
a total of i - j times. The conditional IF executes the words between IF and ELSE when the
top of the stack (TOS) is nonzero and otherwise executes the words between ELSE and THEN.

75
© 1984 SCIENTIFIC AMERICAN, INC

an interpreter is a subject too large to be
covered here, but the structure of a typi
cal compiler can be described in outline.
There are at least three phases in the
compilation process. The first phase is a
lexical analysis, in which the compiler
identifies the various symbols in the text
of the program and classifies them as
key words, numerical values, variable
names and so on. The next phase is pars
ing, in which the compiler determines
the syntactic relations of the key words
and builds a skeleton representation of
the program's structure. Each if, for ex
ample, is associated with a subsequent
then. In the third phase machine code
corresponding to the parsed structure is
generated. Some compilers add a fourth
phase of optimization, in which the code
is revised to improve its efficiency.

Over the past 30 years much careful
thought has been given to the design
of compilers, and there is now a well
developed methodology for their con
struction. The first step is to define the
language itself in a completely explicit
form. It is now common practice to

V'SUM <- SUMODDS TERMS
[1]

V'
SUM - + 1(2 I TERMS) ITERMS

SUMO DDS 23 34 7 9

TERMS <- 23
(2 I TERMS) <- 1

(2 I TERMS) ITERMS - 23
+ 1(2 I TERMS) ITERMS - 23

SUM <- 39

34
o

+

7 9
1 1
7 9
7 + 9

specify the grammar in terms of "pro
duction rules" that can be applied recur
sively to generate all the possible state
ments of the language. The creation
of the compiler is then a comparative
ly straightforward job of programming;
there are even compiler compilers that
can automate part of the task.

The idea of a programming language
has been around almost as long as

there have been large-scale digital com
puters. In 1945 the German mathema
tician Konrad Zuse invented a nota
tion he called PlankalkOI. Statements in
the language had a two-dimensional
format: variables and their subscripts
were aligned vertically and operations on
them were laid out along the horizontal
axis. Zuse wrote Plankalk 01 programs
on paper-including one that made sim
ulated chess moves-but he did not im
plement the language. Many of the ideas
he developed, however, have been intro
duced into modern languages.

Surely the most influential of all pro
gramming languages was FORTRAN,

Initial value assignment.
Array of remainders.
Compression of two arrays.
Reduction by addition.
Assignment of result.

APL PROGRAM calculates the sum of the odd elements in an array with a function whose
operation is specified in a single line. The function has one parameter, TERMS, an array that
"knows" how many elements it has, so that N need not appear in the program. An APL state
ment is executed from right to left except where parentheses alter the order of evaluation. In
this example the expression (21 TERMS) is evaluated first; it calculates the remainder left af
ter dividing each element of TERMS by 2 and creates an array of the same size as TERMS

to hold the remainders. The symbol " /" can indicate two different operations, both of which
appear in the example. In the expression (21 TERMS)/ TERMS, "/" is a "compression" op
erator that creates a new array in which each element of TERMS appears only if the corre
sponding element of (21 TERMS) is nonzero. In the symbol "+ / ," " /" is a "reduction" operator
that reduces the array to a single nnmber by inserting a "+" between each pair of elements.

(OEFUN SUMODDS
(LAMBDA (TERMS)

(CONO
«NULL TERMS) 0)
«ODD (CAR TERMS)) (PLUS (CAR TERMS) (SUMODDS (CDR TERMS))))
(T (SUMODDS (CDR TERMS))))))

(SUMODDS '(23 34 79))

(SUMODDS '(23 34 79))
= (PLUS 23 (SUMODDS '(34 79»))

= (PLUS 23 (SUMODDS '(79»))
= (PLUS 23 (PLUS 7 (SUMODDS '(9))))

= (PLUS 23 (PLUS 7 (PLUS 9 (SUMODDS '(»))))
= (PLUS 23 (PLUS 7 (PLUS 9 0»))

= (PLUS 23 (PLUS 7 9))
= (PLUS 23 16)

= 39

LISP PROGRAM calculates the odd-element sum by means of a function that calls on itself
recursively. A Lisp function is a list, where the first element (called the CAR) is the name of the
function and the remainder of the list (the CDR) gives the parameters. DEFU/I: is a function
defining function and LAMBDA precedes the names of the parameters; here the only parameter
is the list of numbers TERMS. COND is a conditional function that evaluates the CAR of the
lists that form its parameters. If the result is 1; or true, the CDR of the list is evaluated; other
wise COND goes on to the next list. Here there are three possibilities. If TERMS is an empty
list, NULL is true and SUMODDS returns a value of zero. If the CAR of TERMS is odd, the
CAR is added to the running total and SUMODDS is called to evaluate the CDR of TERMS.

If neither of these conditions is true, the T clause (which must be true) is reached; it simply calls
SUMODDS with (CDR (IERMS» as its parameter. Calculations are left pending during each call.

76

developed by John Backus and his col
leagues at IB M between 1954 and 1957.
The name stands for "formula transla
tion," and the language was intended for
scientific and numerical calculations,
for which it is still in use. At the time the
project was greeted with considerable
skepticism. Computing machinery was
then a scarce and valuable resource,
with the result that much emphasis
was put on program efficiency. It was
assumed that a higher-level language
would inevitably compromise efficien
cy, but Backus and his group performed
an extraordinary feat: they created a
compiler whose output was equal in
quality to a hand-coded program.

At about the same time, Hopper
and her co-workers at Remington-Rand
Univac developed a programming lan
guage called Flow-Matic for business
data processing. It was less sophisticated
than FORTRAN, but experience gained
with it over a period of several years was
the main inspiration for COBOL. Another
major language introduced in the late
1950's was Algol (which stands for "al
gorithmic language"). Algol-58, the first
version, was designed by an internation
al committee that drew on both the
pragmatic syntax of FORTRAN and the
more elegant notation of Plankalk 01.
The result was a language that is both
readable and practical and that has had
an important place in the genealogy of
later languages, including Pascal.

Quite a number of other languages
trace their roots to the same era. COMIT

was created for text analysis and APT for
the control of machine tools. JOVIAL, a
derivative of Algol, was the first widely
used multipurpose language; it was suit
able for both scientific and business ap
plications. In the early 1960's Lisp ap
peared and so did the notation (but not
an implementation) of APL.

The rapid proliferation of languages
troubled many observers. After all,
most mathematics is done with a single,
universally accepted notation. Imple
menting a new language is a major un
dertaking, and becoming comfortable as
a programmer in it also takes time. Soon
several projects were launched to design
a new language so complete and versa
tile that it could serve as the universal
argot of programming. All such endeav
ors have failed. The partial success of
PL/I, developed under the sponsorship
of IB M in 1965, made it clear that a
language for all purposes is likely to be
both hard to learn and hard to imple
ment. Moreover, as the techniques of
computing became more diverse, peo
ple realized that new languages would
continue to be needed to address special
application areas.

In a sense, all programming-language
research since 1957 has been moti

vated by attempts to correct flaws in FOR

TRAN. Indeed, FORTRAN itself has been re-

© 1984 SCIENTIFIC AMERICAN, INC

ASSEMBLY CODE

MACHINE CODE LABELS INSTRUCTIONS COMMENTS

00100100 01011111
00100010 010 1 1 111
00110010 0001111 1
01000010 0 1000010

SUMODD S MOVE.L (A 7) + ,A2 Pop return address from the stack into A2.
Pop address of first term into A 1.

01001110 111 1 10 10 00000000 0000 1 1 10
00001000 0010 100 1 00000000 00000000 00000000 0000000 1
01100111 00000010
11010100 0101000 1
01010100 0100100 1
01010001 11001001 11111111 11110010
00111110 100000 10
01001110 11010010

LOOP

NEXT
COUNT

MACHINE CODE AND ASSEMBLY CODE specify the steps of
the odd-element calculation in terms of the hardware resources of
the computer. The code is necessarily specific to a particular ma
chine, in this case the Motorola 68000 microprocessor. The algorithm
employed is much like that of the Pascal procedure SUl110dds, al
though it is more compact than the code that would be generated by

MOVE.L (A7) +,A1
MOVE.W (A7) + ,D2
CLR.W D2
JMP COUNT
BTST Q,1(A1)
BEQ.S NEXT
ADO.w (A1),D2
ADOQ.W #2,A1
OBF D1,LOOP
MOVE.W D2,�(A7)
JMP (A2)

Pop n into 01.
Assign a value of 0 to the sum in D2.
Jump to the end of the loop to test if n = O.
If the term addressed by A 1 is even ..
... then go to NEXT
... otherwise add the term to the sum in D2.
Set A 1 to the address of the next term.
Decrement 0 1; unless it is � 1, go to LOOP.
Push the sum from 02 onto the stack.
Go to the return address.

a Pascal compiler. Parameters are passed to the procedure on a stack
and the result is returned on the stack; the address at which execu
tion is to resume when the procedure is finished is also on the stack.
The assembly-code version of the program, in which instructions
take the form of "mnemonic" abbreviations, can be translated direct
ly into the binary machine code executed by the microprocessor.

vised several times. The original version
put certain arbitrary constraints on the
programmer-for example, a variable
name could be no longer than six char
acters-and offered only limited capa
bilities for defining data structures. Per
haps the most serious deficiencies were
in the facilities for controlling program

flow. All branch points had to be defined
by line numbers, and unless care was
taken the function of a program could
be made quite obscure by a tangle of
GOTO statements. Later versions intro
duced control structures that encourage
a more readable programming style.

far can be classified as procedural, or
prescriptive. A program written in such
a language tells how to get a result; it
says first do this, then do that, and so
on. There are also nonprocedural, or
descriptive, languages, and they are be
coming increasingly important. A de
scriptive program states what result is All the languages I have discussed so

ORIG I N AL
EXPRESSION

LEXICAL
A N ALYSIS

PARSING

CODE
GENERATION

MOVE
VARIABLE

TOO,

a • x + (b - e) • y + z! 2

a • x + (b - e). y + z! 2

(((a. x) + ((b - e)' v)) + z! 2)

(((ax.)((be -)y.) +) (z 2 1) +)
ax.be - y. + z 2 ! +

VARIABLE

OPERATE
ON DO-!

A ND 0'_2

CONSTANT

OPERATION OF A COMPILER, or translator, for a programming
language has at least three stages. They are shown here for the partic
ularly simple case of an arithmetic expression in Pascal. In lexical
analysis the tokens, or symbols, that make up the program are identi
fied and categorized. Parsing defines the semantic relations among
the tokens. In an arithmetic expression the major task of the parser is
to determine which operands are associated with each operator. It is
done here by comparing the precedence of adjacent operators (as-

INSTRU C TIONS COMMEN TS

0 MOVE.W A, DO DO := a 1

MOVE.W X , D1 D1 := x 2

2 MUL.W D1, DO DO := DO • 01 1

MOVE.W B, D1 01 := b 2

2 MOVE.W C.D2 02 := C 3

3 SUB .W D2, D1 01 := 01 - 02 2

2 MOVE.W Y,D2 02 := y 3

3 MUL.W 02, D1 01 := 01- 02 2

MOVE 2 ADD.W 01,00 DO := DO + 01
VALUE

1 MOVE.W Z, D1 01 2 TOO; := Z

2 MOVEQ.W #2,02 02 := 2 3

3 DIV.W 02, D1 0 1 := D11D2 2

2 ADD.W 01, DO 00:= DO + 01

suming that multiplication precedes division, which precedes addi
tion, and so on); parentheses are added around the operation of high
er precedence. The expression is converted into "postfix" notation
by exchanging the operator and the second operand in each sub
expression. The parentheses are then removed, yielding an expres
sion that can be evaluated from left to right. Code generation trans
forms the parsed expression into machine instrnctions, employing a
simple algorithm for assigning each variable to a hardware register.

77
© 1984 SCIENTIFIC AMERICAN, INC

wanted without specifying how to get it.
The program sets forth relations rather
than the flow of control, and so the pro
grammer is relieved of responsibility for
working out the steps of an algorithm
and specifying their order.

The most conspicuous nonprocedur
al languages are the spreadsheet pro
grams, such as VisiCalc and MultiPlan,
that have become popular with the rise
of personal computers. In MultiPlan a
calculation is specified by writing for
mulas, much as in BASIC or FORTRAN.

The order in which the formulas are to
be evaluated, however, is determined by
the implementation rather than by the
programmer. To some extent temporal
relations are replaced by spatial ones. In
a conventional language the output of
one procedure might serve as input to
the next procedure; the analogous con
cept in a spreadsheet makes the value of
one cell depend on the val ue of another.

There is even less sense of defining
procedures in the language Prolog, a de
rivative of Lisp that has lately attracted
the attention of many workers in artifi
cial intelligence. In Prolog no formulas
are written; instead relations between
objects and quantities are defined. The
language consists of declarations only
and has no statements. Thus the relation
(product height width area) describes the
eq uality area = height X width, but it
does not specify that the height and the
width are the given quantities or that
the area is to be computed. The same
relation can serve to find the height
when the width and the area are known.

Another trend in the evolution of pro
I1. gramming languages is the growth
of interest in notational systems called
object-oriented languages. As men
tioned above, the statements of most
programming languages are impera
tives: the

'
entity being addressed is not

named, simply because there is only one
possibility, an abstract embodiment of
the computer as a whole. In an object
oriented language the computer is con
ceptually divided into objects that can

be addressed individually. Furthermore,
the objects can communicate with one
another by sending messages.

The notion of software objects was
introduced by Ole-Johan Dahl and Kris
ten Nygaard of the Norwegian Comput
ing Center in Oslo in Simula 67, a lan
guage derived from Algol 60. The idea
did not attract widespread attention,
however, until the development of the
language Smalltalk in the 1970's by
Alan Kay and a group of colleagues (of
whom I was one) at the Xerox Palo Alto
Research Center. Smalltalk consists ex
clusively of object-oriented constructs,
which makes the language specification
small and very general; on the other
hand, because everything in the lan
guage is an object, some important data
structuring mechanisms cannot be im
plemented efficiently.

A software object consists of both
data structures and algorithms. Each
object "knows" how to carry out opera
tions on its own data, but to the rest of
the program the object can be treated
as a black box whose internal workings
are immaterial . Indeed, various objects
may employ quite different algorithms
to accomplish tasks the programmer
identifies by the same key word. Just as
penguins, horses and centipedes clearly
have different methods for the activity
identified generically as walking, so ob
jects whose data consist of integers, ar
rays and complex numbers would em
ploy different methods for the operation
of addition.

My colleagues and I at Apple Com
puter, Inc., have developed a language
called Clascal that adds the concept
of classes of objects to the underlying
structure of Pascal . Clascal, Small talk,
Simula and some other object-oriented
languages allow the objects in a class
to inherit properties from a superclass
to which they belong, so that each class
does not have to be built up from
scratch. Only those traits that distin
guish the individual class need to be
specified. Thus penguins, horses and
centipedes share the concept of legs;

add (Adam is-parent-of Cain)
add (Adam is-parent-of Abe l)
add (Eve is-parent-of Cain)
add (Eve is-parent-of Abel)
add (Cain is-parent-of Enoch)

add (x is-ancestor-of y if x is-parent-of y)

which (x : x is-parent-of Abel)
Adam
Eve
No (more) answers

which (x . Eve is-parent-of x)
Cain
Abel
No (more) answers

add (x is-ancestor-of y if z is-parent-of y and x is-ancestor-of z)

which (x : x is-ancestor-of Enoch)
Cain
Adam
Eve
No (more) answers

which (x : Adam is-ancestor-of x)
Cain
Abel
Enoch
No (more) answers

NONPROCEDURAL LANGUAGE called Prolog has no statements but consists entirely of
declarations. In other words, a Prolog program gives no explicit instructions to carry out an
operation; it merely states relations and makes inferences based on them. The illustration
shows a program in a dialect called Micro-Prolog. The first five declarations set forth certain
parent-child relations. The system can then answer questions abont the established facts, for
example identifying the parents of Abel and the children of Eve. Two rnles of logical inference
are then introduced to define the relation "ancestor of " in terms of the relation "parent of."
The system can apply the rules to find all the ancestors or all the descendants of an individual.

78

they differ in the number of legs and the
details of the method of locomotion. In
heritance is another abstraction mecha
nism, allowing the properties of a class
to be reused by many subclasses.

Inheritance turns out to be particular
ly useful in the design of interactive
graphics software, another realm where
there is much current activity. Entire
programming languages can be built out
of graphic images. Indeed, even certain
computer games that rely heavily on
graphics have some of the character
istics of a programming language. A
notable example is a game called Ro
bot Odyssey I, recently introduced by
the Learning Company; "robots" pro
grammed by connecting electronic logic
gates and other components on a video
screen can incorporate the concepts of
conditional execution and procedure
definition. A complete visual program
ming language tentatively named Man
dala is now under development by Jaron
Z. Lanier and his colleagues at VPL Re
search in Palo Alto. An example of what
a Mandala program might look like is
shown on the cover of this issue.

Another direction in which program
ming languages are expanding is the
exploitation of parallel computation in
computer systems made up of multiple
processors. It would seem that 100 proc
essing units ought to be able to solve a
problem 100 times faster than a single
processor of the same intrinsic speed,
but the gain can be realized only if the
software is able to break the problem
into many pieces that can be worked on
simultaneously.

Some languages provide an explicit
mechanism for designating tasks that
can be done in parallel; an example is
the language called Occam, developed
by the British semiconductor manufac
turer Inmos. Other languages leave it
to the compiler to analyze the program
and discover opportunities for parallel
execution. One such language is COMPEL

(for "compute parallel"), on which I col
laborated with Horace J. Enea in 1969.
A COMPEL program consists entirely of
assignment statements, which are not
necessarily executed in the sequence in
which they are written; the compiler is
expected to deduce which calculations
must be completed first. No compiler
for COMPEL programs was ever written,
but languages with a similar mechanism
(called data-flow languages) have since
been implemented.

The great diversity of programming
languages makes it impossible to rank
them on any single scale. There is no
best programming language any more
than there is a best natural language. "I
speak Spanish to God, Italian to wom
en, French to men and German to my
horse," said Charles V (presumably in
French). A programming language too
must be chosen according to the pur
pose intended.

© 1984 SCIENTIFIC AMERICAN, INC

StroDg medicine for
feverish health-care costs.

A new blood analysis system which embodies
Kodak's expertise in chemistry, optics, physics, and
electronics is helping clinical labs control costs.
Its flexible software design is bringing new
ease and reliability to the process of blood
analysis. It can improve laboratory effi
ciency, increase productivity, and help
to put health-care costs on the road to
recovery.

The new system incorporates numer
ous technological inventions with such
intricate design and engineering that
it can perform a full range of routine tests
- including kinetic enzyme, as well as po
tentiometric and colorimetric analysis- in
operator-preferred sequence. If this sounds like
quite an accomplishment, it is.

The Kodak Ektachem 700 analyzer incorpo
rates 20 megabytes of hard-disk memory, relies
upon Kodak's dry layer-coated Ektachem clini
cal chemistry slides like the one shown,* and

© Eastman Kodak Company, 1984

it produces hard-copy results for physicians' eval
uation. In just 5 minutes!

But its big advantage is selective testing. At
the touch of a CRT screen, this analyzer per-

forms any combination of one to 26 assays
and has the potential to report up to 7

additional calculated results on a single
patient sample. That's a big plus, because
it helps to eliminate wasted tests and

wasted time, and contributes to operat
ing economy.

Surprised that we're so committed to
health care? You shouldn't be. We've been

serving diagnostic medicine with radiog
raphy products for more than 80 years.

If you'd like technical papers dealing with the
technology involved in Kodak Ektachem prod
ucts, write: Eastman Kodak Company, Dept.
GBSA-1 0, 343 State Street, Rochester, NY 14650.

Kodak. Where technology anticipates need.

1

'With Ektachem slides, complex sequential reactions can be
carried out in ways not possible in solution chemistry Multilayer
coatings offer domains for multiple reactions within the single· use
slide. In some layers, interfering substances can be trapped or
altered; in other layers, reactions can be run which produce
measurable signals.

© 1984 SCIENTIFIC AMERICAN, INC

A BEASSUBI

Every car maker has to meet the Federal
requirements for safety and damageability. But Ford
goes beyond those requirements in many important
areas.

For example, all our cars have bumpers that
are four times as strong as the government
demands. (A fact GM, Chrysler, even Mercedes

and Volvo can't claim.)
We were the first major U.S. manufacturer to

put halogen headlamps and steel-belted radials as
standard equipment on all our cars. And we were
also the first to offer an optional package of
occupant protection features, including seatbelts
and padded instrument panels.

You're going

*Based on a survey of owner reported problems during the first three months of ownership of 1 983 vehicles.
**Offered by participating dealers.

© 1984 SCIENTIFIC AMERICAN, INC

NG QUALIT�

All of this, however, is just a small part of our
commitment to build safe, reliable cars and trucks.

We also he up to that commitment by
building those cars and trucks very, very carefully.

The fact is, a survey of thousands of new car
and truck owners has shown that Ford is building
the highest quality vehicles of any major U.S.

manufacturer�
To learn more about all our 1 984 models, and

to get the details on the Lifetime Service Guarantee; *

talk to your Ford or Lincoln-Mercury dealer.
W� think that what you find out will be very

reassunng.

Quality is Job 1.

F O R D · L I N C O L N · M E RC U RY ·
F O R D T R U C K S · F O R D T R A C T O R S

© 1984 SCIENTIFIC AMERICAN, INC

SCIENCE AND THE CITIZEN
And the Poor Get Sicker

Although a severe recession, such as
.fl. the one that took place in the U.S.

in 1981 and 1982, is generally
thought of in economic terms, some of
its direst consequences are not econom
ic but medical. After each economic set
back the health of individuals and of
society deteriorates.

According to a study by M. Harvey
Brenner of the Johns Hopkins Universi
ty School of Hygiene and Public Health,
in recent decades each increase of one
tenth in the fraction of the population
that is unemployed (for example, a rise
in unemployment from 10 to 11 per
cent) has been followed by an increase
of 1.2 percent in overall mortality.

Brenner's work, which was done for
the Joint Economic Committee of the
U.S. Congress, draws on economic and
health data from 1950 through 1980.
Brenner and his colleagues examined
the changes in the unemployment rate
and other economic indicators, includ
ing the business-failure rate and per
capita income, that occurred during
the three decades. The economic fluctua
tions were compared with such changes
in measures of health as overall mortal
ity, mortality from cardiovascular and
renal disease, the rate of first admis
sions to mental hospitals, the suicide
rate, the rate of reported crime and the
homicide rate.

The investigators found that the un
employment rate correlated strongly
with each indicator of medical or social
pathology. In addition to being associat
ed with an increase in overall mortality,
a rise of 10 percent in the unemploy
ment rate corresponds to a 1.7 percent
increase in the number of deaths from
cardiovascular and renal disease (about
17,000 deaths based on the population
of the U.S. in 1980), a . 7 percent increase
in the number of suicides (about 200
additional suicides), a 4.2 percent in
crease in the population of mental hos
pitals (about 6,000 new mental patients)
and a 4 percent increase in the number
of arrests (about 400,000 arrests).

The medical and social consequences
of a recession ripple out for a consider
able period after the initial economic
shock. Most of the pathologies show
three periods of peak incidence: one
peak during the initial stage of econom
ic contraction, just before the deepest
point of the recession, the second from
two to three years after the deepest point
of the recession and the third from sev
en to 15 years after the deepest point.

In the case of the medical conditions
the first peak could be due to the deaths
of people with chronic syndromes made

82

acute by an economic setback. The lat
er peaks could be the result of the devel
opment of chronic syndromes related
to economic loss.

If the results of Brenner's study are
applied to the sharp rise in unemploy
ment that occurred in the 1981-82 re
cession, it appears that this event could
be associated with as many as 75,000
additional deaths. Furthermore, the ad
verse health consequences are concen
trated among those least able to cope
with them: the members of low-income
and minority groups.

Even during periods of prosperity
members of low-income groups suffer a
combination of stress, poor diet and in
adequate medical care, which Brenner
notes is associated with a heightened
incidence of disease. Economic distur
bances often intensify the disparity be
tween the living conditions of the rich
and those of the poor. Hence it is not
surprising that increasing rates of some
of the most severe pathologies corre
spond to an increase in social inequality.

For example, the economic measure
that has the strongest association with
the imprisonment rate is the ratio of
unemployment among black males to
unemployment among white males;
the greater the disparity, the higher the
overall imprisonment rate. The measure
that has the strongest association with
the homicide rate is the ratio of unem
ployment among males 15 through 24
years old to the overall rate.

The reduction of social services car
ried out by the Reagan Administration,
the study suggests, may have exacerbat
ed the impact of the recent recession on
the health of the poor. It was found that
decreases in AFDC payments were asso
ciated with an immediate increase in the
infant mortality rate.

Rest Easy, Luddites

What will happen to the demand
for human labor as computer

based automation pervades the service
and manufacturing sectors of the U.S.
economy?

A study, recently completed by the
Institute for Economic Analysis (lEA) at
New York University, suggests that lat
ter-day Luddites can rest easy. Automa
tion will not erode the total number of
jobs. It will, however, swell the ranks
of professional and technical workers
while thinning the ranks of clerical
workers. Manufacturing employment,
the study predicts, will retain its propor
tionate share of the total labor force.

In order to make this forecast the lEA

investigators, led by Wassily Leontief
and Faye Duchin, employed an input-

output model of the U.S. economy:
a detailed description of the flows of
goods and services among ind ustries.
Within each of the 89 industrial sectors
comprised by the model those quantities
of labor, goods and services needed to
sustain current production were distin
guished from resources needed for capi
tal expansion.

As data for the model, the investi
gators used input-output tables of the
economy prepared for 1963, 1967, 1972
and 1977 by the Bureau of Economic
Analysis in the Department of Com
merce. They supplemented this infor
mation with data on prices, capital
stocks and flows, as well as figures on
employment from the Bureau of Labor
Statistics.

The team subjected the model to three
scenarios of technological change, as
sessing the impacts of each one on the
demand for labor-divided for purposes
of the study into 53 occupations-in
each industry. The reference scenario,
S 1, assumed no further introduction
of new technology after 1980; S2 speci
fied a moderate pace of modernization,
and S3 was an optimistic projection in
which, for instance, electronic typewrit
ers and work stations completely re
place conventional typewriters by 1985.
In each case modernization was as
sumed to take place within a context of
steadily rising household and govern
ment demand for goods and services.

The results, say Leontief, "prove that
you can use detailed information and
get a detailed result." A rapid introduc
tion of automation (S3) would enable
the economy at the end of the century
to produce the same quantity of goods
using 10 percent less labor than is need
ed with today's technologies. The to
tal number of jobs would remain high,
however, because the rise in consump
tion assumed in the study would offset
the laborsaving effects of automation.

The distribution of jobs, Leontief and
Duchin report, will change dramatical
ly. The share of professionals in total
employment will rise from the 1978 fig
ure of 15.6 percent to nearly 20 percent
in the year 2000. Engineers and comput
er scientists will account for most of the
increase. Clerical work, in contrast, will
fall from the 1978 level of 17.8 percent
of the labor force to 11.5 percent at the
end of the century. Computerized office
systems and telephone switchboards,
automated teller machines and similar
devices will account for the change.

Middle managers also will be dis
placed as office computers take over
their function of organizing and proc
essing information. In factories, robots
and computerized machine tools will

© 1984 SCIENTIFIC AMERICAN, INC

UPDATE THE SCIENTIFIC METHOD!
ENERGRAPHICS ON THE ,I8M·PC*

3-DIMENSIONAL
OBJECT DRAWING
ZOOM, ROTATE, HIDDEN LINE

2-DIMENSIONAL DRAWING
CAPABILI TY

• HARDWARE CONFIGURATION:
IBM-PC; 728K; Dual Disk Drive; Graphics Adapter;
Dot Matrix Printer; and/or XY Plotter.

3-DIMENSIONAL
S.URFACE DRAWINGS

FLOWCHARTS
ORGANIZATION CHARTS

LOG-LOG
SCALE GRAPHS

DRAWING AND TEXT
CAPABILI TY

1t1.1. Tb..'1-.....-L A._lnthooflgunoboll " "_II <;:h

11 _ ,..,JII--,...� � •. n. boooic dIH __ t. u.o, for"

_WL tt-,... ____ ot � I •" t_. u,..,. _u.,.� ",-""""pzln

.. ,.,. fI,..... boot otlil. f...- thoo ...-tur"i. ..-d t,o --. _ ._ ft ...

of .11.t.-,,-_ or liquick. _ �) I • • 1_ tn. _ ... p
,.,. " �1OnI. 1. _ �h>n V 141 ""II'" tho .". .u.. a dHf!--
I. tho "f .. "0.1:.1:1 ,..., .--011 f..- the jet ...gh 1 :1

• IUI 1 ____ 1..., �- To --. ... tho> f '"" li ... It I. onl�--....

_-,.t,o 1_t.t.ha_ I"� �o __ ...-uj....-. ... _-"-'

SQction
FI9 16.12 Vc;ntv.--L

VisiCalc is a registered trademark of Visicorp .

Lotus 723 is a trademark of Lotus Development Corp.

Multiplan is a trademark of Microsoft Corporation.

THE FIRST COMPLETE GRAPHICS PROGRAM DESIGNED FOR SCIENTISTS USING THE IBM-PC*

GRAPHlcsm
Dynamic and so eaSV"to·use, ENERGRAPHICS is already helping scientists and engineers in
scientific research laboratories and universities around the country. ENERGRAPHICS can plot,
analvze, research, graph, project and report with the best looking professional graphics
available on the 18M·PC and other compatibles. ENERGRAPHICS interfaces with
VisiCalcfJ Muitipian™ and Lotus 123™ for maximum integration with spreadsheet programs.

Call 800-325-0174
(except in Missouri)

for our detailed
ENERGRAPHICS brochure

ENERTRONICS
Enertronics Research, Inc.
150 N. Meramec • Suite 207 • St. Louis, MO 63105 • (314) 725-5566

© 1984 SCIENTIFIC AMERICAN, INC

UNIX™ System V from AT&T is
setting new standards-and solv
ing old problems for thiMIS
manager. It's the softw: re system
that allows your comp to take
advantage of new techno gy.
Without sacrificing your invest
ment in computer s and applica
tions software.

It's another reason why good
business decisions are based on
UNIX System V.

How does today's MIS manager
develop and implement a long-term
information management plan-with
minimal disruption and expense? By
choosing software and hardware

products based on UNIX V
from AT&T.

Its unique capabilities help your data
processing system evolve smoothly.

The profits of portability
UNIX System V software is portable

from micros to mainframes. That's of
critical financial and technological
importance to you. Your software
investment will soon be greater than
your hardware investment.

Your software library can grow, too.
Because software that is based on
UNIX System V is hardware indepen
dent, you won't have to start your soft
ware library from scratch when you
invest in new machines.

Portability also means you won't
have to retrain your office s,very

time you buy a new computer. Your
people can continue to use the same
familiar software.

Gaining hardware independence
UNIX System V executes on a wide

variety of hardware. That means
greater leverage with your vendors.
And greater potential for system
growth. Even if the machines you're
buying are of different generations.

You'll be able to add hardware more
technologically advanced than your
installed base-without disrupting
that base.

UNIX System V is fully supported
by AT&T and backed by a multimillion
dollar research and development pro
gram at AT&T Bell Laboratories. You
can be assured that UNIX Sy m V is

© 1984 SCIENTIFIC AMERICAN, INC

a stable, fully documented, fully ser
viced platform that will continue to pro
vide software portability.

"Is it based on UNIX System V?"
A generation of computer science

graduates is ready, willing,and able to
work with UNIX Systems and the C
language. Their familiarity will make
turnover in your technical staff far less
disrurtive and less expensive.

It s another indication of the bottom
line si£llificance of UNIX System V
something that's becoming more
and more obvious even to non-technical
management. That's why so many are
taking the time to ask, "Is it based
on UNIX System V?" when it's time to
invest in new software or hardware
products for tht company.

why you abl� to
answer "yes" when they do. For more
information, send for our free booklet,
''Why Good Business Decisions are
Based on UNIX System v."

UNIX System V. From AT&T.
FrOm now on,consider it standard.

ATilT

. ---- -
I Please $end me ''Why Good Business �"�'VU�

I 'are Based on UNIX System V."
Mail to: AT&T, P.O. Box 967,
Madison Square Station, N.Y., N.Y. 10159 I Name,_---::-_________ :--:.-_

I Title
Department, _______________ _

I Company

Adruress,_� __________ �

I
City State ___ Zip, __ -.:..---.:,

Phone':;-_-:-:-__________ _

I UNI�em Licen�Y:':'N�o�ow_

© 1984 SCIENTIFIC AMERICAN, INC

eliminate some production-line jobs,
and the machines' superior accuracy
will reduce the need for checkers and
inspectors.

Increased automation will, the model
predicts, retard a major trend that has
characterized the postwar decades: the
shift of jobs from the manufacturing
to the service sector of the economy.
The rising demand for computers and
computerized tools will create new
manufacturing jobs even as automated
equipment eliminates other jobs else
where in industry.

The report's optimism on the ques
tion of technological unemployment
is guarded. The investigators measured
the effects of incremental improvements
in present technology; they did not
take into account the introduction of
such devices as voice-input typewriters.
Moreover, the study was confined to the
impact of computer-based automation;
advances in other technologies such as
agriculture or materials could affect the
availability of jobs. Even if the number
of jobs remains high, their changing
distribution may_ mean that consider
able training efforts will be necessary if
the U.S. economy is to avoid a surfeit
of labor in traditional jobs and a dearth
of labor in newer ones.

Master Builder

How is it that a porpoise, a frog, a
human being or a fruit fly achieves

its characteristic appearance? What ge
netic mechanisms guide the develop
ment of a fertilized ovum so that it dif-

ferentiates into the internal organs and
physical structures that give an indi
vidual member of a species form and
function?

Some significant answers have begun
to emerge from studies of the DNA of
the fruit fly Drosophila melanogaster.
Two clusters of genes figure importantly
in the work. One is the bithorax com
plex, first identified by Edward B. Lewis
of the California Institute of Technolo
gy. This complex controls the devel
opment of the thoracic and abdominal
segments. Another cluster, the Anten
napedia complex, identified by Thomas
Kaufman and his colleagues at Indiana
University, shares in the control of tho
rax development and promotes the de
velopment of the head.

Lewis, Kaufman and their colleagues
discovered the role of each complex by
inducing mutations with X rays and by
observing natural mutations. Mutations
in the two gene clusters produce a con
dition termed homeosis, in which one
body part is substituted for another. For
example, a mutation in the Antenna
pedia complex can give rise to an in
dividual that sports legs in the place
of antennae.

How is such an effect produced? Lew
is hypothesized that the genes of the bi
thorax complex, working as a group
to construct each segment of the devel
oping insect, are expressed sequential
ly. The combination of genes expressed
in the development of each segment
specifies its form. A homeotic muta
tion alters the seq uence that is expressed,
causing the segment to assume the form

/11 a /IIutatioll of development-regulatillg gelles, leglike
structures replace alltellllae 011 the head of a fruit fly.

820

corresponding to the changed sequence;
for example, legs appear instead of an
tennae.

By sequencing portions of the bitho
rax and Antennapedia complexes, Wil
liam McGinnis, Walter J. Gehring and
their colleagues at the University of Ba
sel and Matthew P. Scott and Amy J.
Weiner at Indiana found a common fea
ture that may be a key to the way home
otic genes work. It is a section of DNA,
180 base pairs in length, that is present
in at least six of the homeotic genes.
Gehring has named the seq uence, which
differs by no more than 25 percent from
gene to gene, the homeo box.

The homeo box is also found at an
other locus, the site of the /tz gene (so
called because of the mutation that oc
curs there: /ushi tarazu, Japanese for
"not enough segments"). The /tz gene,
part of the Antennapedia complex,
seems to specify the number of seg
ments in the developing embryo.

What role does the homeo box play?
The Basel group and Allen Laughon
of the University of Colorado at Boul
der, working with Scott (who recently
moved there from Indiana), have deter
mined the amino acid sequence encoded
by the homeo box. It closely resembles
DNA-binding proteins, synthesized by
species of yeast and bacteria, which can
regulate the expression of genes. The
finding raises the possibility that home
otic genes act as developmental master
switches, using the homeo box to pro
duce DNA-binding proteins that control
other genes, which in turn specify the
diversity of tissues within each segment.

This mode of developmental regu
lation may operate in other species.
The Basel group has found that the ho- .
meo box is also present in the genomes
of earthworms, beetles, frogs, chickens,
mice and men.

Topping Out

The top, or t, quark, long sought by
physicists in order to complete a list

of particles generally thought to be the
elementary constituents of matter, has
probably been found.

At CERN, the European laboratory for
particle physics, a computational search
has culled nine unusual events from
among some two million high-energy in
teractions recorded by the UA 1 detector
at the Super Proton-Antiproton Syn
chrotron between November, 1982, and
July, 1983. Each event appears to signal
the decay of a bound system formed by
a top quark and the antiquark of another
quark called the bottom, or b, quark. If
the evidence is confirmed, the top quark
is the sixth to be detected. The six
quarks, together with the electron, the
muon, the tau particle, three kinds of
neutrino and the antiparticles of each
particle, bring the number of known ele
mentary particles to 24. Moreover, the

© 1984 SCIENTIFIC AMERICAN, INC

THANKS To COMPUSERVE'S
CB SIMULATOR,

"DIGITAL Fox" ACCESSED "DATA DARI" AND
PROCEEDED To AN '�LTARED" STATE.

The CB Simulator, where
CompuServe Subscribers can
Access Friends and Influence
People on 72 Different
Channels.

Just pick your handle and get
on line. From math to matrimony,
there's always someone out there
who speaks your language. Friends
from all over the U.S. and Canada are
at it 24 hours a day. Talking tech or
just having fun. And if you've got a
secret, just use the CB Scrambler.

That'll fool the "lurkers;' those CB
"see it ails" who get their kicks
by watching. Or you can always use
the private talk mode for guaranteed
one-t(}{)ne conversation.

T he CB Simulator is just one
of CompuServe's many electronic
communications options that
include a National Bulletin Board,
Professional Forums and Electronic
Mail. Plus, there's a world of on-line
information and entertainment all
for the price of a local phone call
plus connect time.

You can access CompuServe
with almost any computer and
modem, terminal or communicating
word processor.

To receive your illustrated
guide to the CompuServe Information
Service and learn how to subscribe,
call or contact:

ColDpuServe
Consumer Information Service, P.O. Box 20212
5000 Arlington Centre Blvd., Columbus, OH 43220

800·848·8199
In Ohio call 614-4S7-0B02
An H&R Block Company

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

11ft .
rascal-2 is the language of our

computerized imaging system. We
hope to increase scientific objectivity,
reduce labor costs during
neuroanatomical analysis, and
increase the quality of scientific
research. Pascal-2 is the language
of choice."

Dr. Warren G. Young
Biosystems Analyst
Scripps Clinic and
Research Foundation
La Jolla, California

© 1984 SCIENTIFIC AMERICAN, INC

newly discovered top quark is one of the
most massive particles known: the e,ner
gy eq uivalent to its mass is between 30
and 50 GeV (billion electron volts).

Quarks were proposed in 1964 by
Murray Gell-Mann and, independently,
by George Zweig, both of the California
Institute of Technology. The proposal
was put forward in part to account for
the proliferation of hadrons seen among
the by-prod ucts of collisions in high-en
ergy accelerators. The proton, the neu
tron and more than 100 other particles
are classified as hadrons. In the original
version of the quark-model only three
quarks-the up, or JI, the down, or d, and
the strange, or s, quarks�and their anti
quarks were needed' to explain the had
rons that were then catalogued, A major
consequence of the quark model was
therefore to restore parsimony to the
,fundamental understanding of matter.
Since that time two new quarks, the
charmed, or c. quark and the bottom
quark, have been introduced in order
to account for newly discovered had
rons. The discovery of a sixth quark
suggests the quarks themselves are be
ginning to proliferate.

An Inherently Safe Reactor?

The safety of the light-water reactors
that currently generate power in the

U.S. is ensured by high-performance
materials, redundant cooling systems,
containment structures and carefully
engineered controls. Such safeguards,
numerous and costly, are needed to less
en the ever present danger of a core
meltdown and the release of radioactivi
ty into the environment. Is it possible to
design an inherently safe reactor?

In a recent article in Science, Alvin M.
Weinberg and Irving Spiewak of the In
stitute for Energy Analysis at Oak Ridge
describe two reactor designs whose safe
ty lies not in emergency backup systems
but in the "immutable and well-under
stood laws of physics and chemistry" ac
cording to which the reactors operate. In
such "inherently safe" reactors, say the
authors, a core meltdown is essentially a
physical impossibility,

The authors suggest that fundamen
tally safer reactor designs may be neces
sary if nuclear power is to emerge into a
new period of growth, Since the Three
Mile Island incident in 1979, numerous
safeguards have been incorporated into
U.S. reactors, Today, the authors report,
the probability of a core meltdown
stands at less than 10-4 per reactor-year,
Yet in a future world heavily depend
ent on nuclear power, in which 5,000
or more reactors might be operating
more than 10 times today's number-the
probable frequency of a core meltdown
somewhere in the world would be one
every two years. Although only a frac
tion of such incidents would release sub
stantial amounts of radiation, Weinberg

COLD
BORATED �

POOL 1 __

UPPER �
HOT/COLD

INTERFACE

COOLING
CIRCUIT

LOWER
HOT/COLD

INTERFACE

11/ the PIUS reactor coolant circulatioll lIormally excludes pool water from the
core; durillg cooling-system failure, cOIll'ectioll floods the core with pool water.

and Spiewak judge the rate to be unac
ceptably high,

One reactor design inherently resis
tant to such an accident is known as
the modular High-Temperature Gas
(HTG) reactor. Proposed, inslightlydiffer
ent forms, by American and German
companies, it consists of a small graph
ite core cooled by helium gas circulat
ing within the pressure vessel; a 1,000-
megawatt generating station might con
sist of 10 such modules.

The HTG reactor's safety is a conse
quence of both design and size. Because
the gas does not circulate through exter
nal piping, the chance of a coolant loss is
low. In the event of a cooling failure the
core temperature would rise and fission
would cease, as it would in a conven
tional reactor.

In a conventional reactor crippled by
a loss of coolant, the heat released by
the radioactive decay of fission products
can melt the core even after the chain
reaction comes to a halt. The very high
surface-to-volume ratio of the small
HTG core, in contrast, would allow the
afterheat to radiate to the environ
ment, stabilizing the core temperature
at a safe level. Gas-cooled reactors in
corporating some of the features the
authors recommend have been in oper
ation since 1956.

The other design to which the authors
refer is untested. A Swedish concept, it
is known as the Process Inherent Ulti
mately Safe (PIUS) reactor. Its novelty
lies in the pressurized pool of boric acid
solution that would fill the reactor ves
sel, immersing the core and its pressur
ized-water cooling system. The pool and
the cooling system would be intercon
nected at several sets of baffles. Only
the dynamic pressure developed by the
coolant pumps would prevent the borat
ed water from entering the cooling cir
cuit; if the pumps or the cooling circuit
were to fail, water from the pool would

flood the core. The boron in the solu
tion, an efficient absorber of neutrons,
would halt the chain reaction; the influx
of water would carry off residual heat.

Ambiguous Protection

Anew way to protect computer soft
ware from piracy has been suggest

ed by Adi Shamir of the Weizmann In
stitute of Science in Israel and two of
his students. Shamir's software-protec
tion method would enable a program to
determine-as part of its normal func
tion-whether it is on an illegally copied
disk. An illegally copied program then
either would cease to function or would
self-destruct.

Many software manufacturers now
protect their programs by selling them
on unconventionally formatted disk
ettes; the format of a diskette defines
the pattern in which the bits (binary
units of information) representing vari
ous files are laid out on the disk sur
face. Arranging files in unconventional
ways normally baffles a standard copy
ing program, because the program must
find an entire file before transferring
the information onto a new diskette. Pi
rates have been able to circumvent this
strategy by using programs that read
each bit on the source disk and place
the same bit at the exactly analogous
location on the copy disk,

In an unpublished note Shamir sug
gests marking each legitimately sold
diskette with ambiguous bits. An am
biguous bit can be formed by creat
ing a region on a disk where the mag
netic field strength is between the two
strengths normally read as 0 and 1, the
two binary bits, Owing to electrical
noise and mechanical vibration in the
reading device, such a region would ap
pear to the user's computer, entirely un
predictably and at random, sometimes
as a 0 and sometimes as a 1. On being

87
© 1984 SCIENTIFIC AMERICAN, INC

88

INTESOFT:
POWER'FUL,
EASY;. AND, '

GREAT_VALUE

Looking,for powerful 'integrated
software for your IBM PC-at a
reasonable price? Have you no
ticed that powerful products are
often complex and difficult? Not
InteSoft. InteSoft products are
powerful and easy to-use, with
a unique command, structure that
allows you to become productive·
immediately, plus integration
capability with other popular
software-all for a lower price
than the competition. But don't
take our word for it:

"The InteSoft programs are high
quality professional products and
provide top-quality performance."
Info World, July 16, 1984.
'1\lthough I'm a novice IBM PC
user,lnteWord is so well docu
mented I generated my first page
in less than 2 hours; from scratch."
Dane Tong, Director of Purchasing;
NationalSemiconductor IDatachecker _

DTS Division.
Software Digest* rated IntePlan
number 1 in the£ase of Learning
category and InteCalc one of the
top 3 spreadsheets in the Overall .
Evaluation category. CalltoB-free

for a copy of InteMate, InteCalc,
InteWord, IntePlan, or IntePert
on a 30-day no-risk trial basis.
See the difference for yourself!'

InteSoft
from Schuchardt Software Systems

800'421-1144 800-421-1145
outside California inside California

Available at Softwaire Centres International stores.

"Software Digest, July 1984 IBM PC Time and Project

Management Programs Ratings Newsletter and April

1984 IBM PC Spreadsheet Rrograms Ratings News

letter. IBM is a registered trademark of international

Business Machines.

told to copy such a, section of disk, the
user's hardware will scan that section
once, decide whether to call' it a 0 or
a 1 and make the corresponding copy,
thereby losing the ambiguity.

Somewhere in the program itself
there will be an instruction that tells the
computer to read the section of the disk
containing the ambiguous bits several
times. If the computer reads the same
value each time instead of the random

.values prod uced by ambiguous bits, the
program either will refuse to run or will
instruct the user's computer to erase the
entire diskette.

Shamir points out that any protection
method can be defeated. He says, how
ever, that "the. real problem is not to
create a foolproof system but to make
sure that for'most users it makes more
economic sense to rent or buy- the soft
ware than to try to steal. it. ','

The Stuff of Memories

How are memories stored in the .
brain? The mechanism' remains

elusive. Still, the storage must be accom
panied by a lasting change in the brain:
a change that affects the way the brain
processes ·information. Such processing
depends on the cell-to-cell transmission
of signals across the intercell ular con
tacts called synapses. Moreover, the
ability to commit even fleeting events to
memory suggests that the change can be
induced by brief events in the brain.

Gary Lynch and Michel Baudry of
the University of California at Irvine
have a candidate for what they de
scribe as "the biochemical processes
involved in memory storage." They ob
served the results of the processes in the
hippocampus.

It was known that the excitation of
certain circuits of nerve cells in the hip
pocampus can render the cells more sen
sitive to further signaling over periods
of months; the phenomenon is called
long-term potentiation, or L TP. Here,
then, is a lasting functional change pro
duced by a brief event. The question is

what biochemical and structural chang
es underlie the altered function.

One clue was that the hippocampal
circuits exhibiting long-term potentia
tion employ an amino acid as their neu
rotransmitter: their synaptic messenger
substance. The acid is thought to be glu
tamate. Accordingly Lynch and .Baudry
prepared slices of hippocampal tissue
from rats,. applied electrical stimulation
to bring on long"term. potentiation and
then (five minutes to an hour later) as
sayed fractions of synaptic membrane.
They found that the number of glu
tamate receptor sites had increased.
Meanwhile electron microscopy of hip
pocampal tissue in which long-term po
tentiation had been induced revealed
some structural changes. Dendritic
spines, the thorn-shaped protrusions at
which the extensions of a nerve cell re
ceive synaptic signals from other cells,
looked rounder. In addition the number
of synapses on the main shaft of the
nerve cell's dendritic extensions had in
creased by as much as 30 percent.

A further clue was that long-term po
tentiation seems to depend on the avail
ability of calcium. The increase in the
number of glutamate receptors proved
to depend on calcium too. Hence Lynch
and Baudry searched for-and found
an enzyme, bound to nerve-cell mem
brane and activated by calcium, that
irreversibly "uncovers glutamate recep
tors." They found, moreover, that the
enzyme (one of the class of enzymes
called calpains) acts on the protein
called fodrin, which lines the inner face
of nerve-cell membrane. The disrup
tion of the fodrin could conceivably ac
count for the uncovering of receptors
and also the change in the shape of den
dritic spines.

Lynch and Baudry propose the fol
lowing sequence. Bursts of neural sig
naling increase the flow of calcium ions
into the nerve cells receiving the signals.
There the calcium activates a mem
brane-bound calpain enzyme; the en
zyme disrupts the membrane, and the
disruption opens blocked glutamate re-

....-DENDRITE

SPINE

SYNAPSE AXON

Delldritic spille after IOllg-terlll potelltiatioll fwd beell_illduced

© 1984 SCIENTIFIC AMERICAN, INC

ceptors, making the synapse more re
sponsive to future signals. On a broader
scale, the disruption changes the shape
of dendritic spines. The sequence seems
to be independent of the biochemical
mechanisms serving the "everyday" ac
tivity of the brain. Moreover, drugs are
available that block calpain. Thus the
hypothesis should be testable.

AIDS: In the Blood

To indict a microorganism as the
cause of a disease it must be shown

to be present in essentially all cases of
the disease; it must be isolated and
grown in culture; it must give rise to the
disease when inoculated into a suscepti
ble animal or human volunteer, and it
must subsequently be recovered from
the inoculated individual.

For the acquired immunodeficiency
syndrome (AIDS) , identification and iso
lation of a retrovirus (in France last year
and in the U.S. four months ago) closely
associated with the disease effectively
fulfilled the first two postulates. A major
step toward satisfying the other criteria
has been reported in Science by a group
of investigators. They state that a direct
cause-and-effect relation between the vi
rus and the disease has been demonstrat
ed by medical accident.

Paul M. Feorino and his co-workers
in a group headed by Donald P. Francis
at the Centers for Disease Control in
Atlanta have documented the first clear
instance of a one-to-one transmission of
AIDS between a donor and a previously
uninfected recipient.

The recipient was a woman given a
transfusion of packed red blood cells
during an operation. Two months after
surgery one of the donors of the red cells
was found to be a homosexual male who
had been hospitalized for AIDS. A year
after surgery the woman, who had been
exposed in no other way to the disease,
was diagnosed as having AIDS. The di
agnosis was confirmed when both she
and the donor were shown to have anti
bodies to lymphadenopathy-associated
virus (LAY) , and the virus itself was iso
lated from the lymphocytes (immune
system cells) of both patients. LAY is
the suspected AIDS agent discovered last
year at the Pasteur Institute in Paris.

As HTLY-1I1 (human T-Ieukemia/lym
phoma virus) was not available to them
the investigators were unable to test spe
cifically for the presence of this organ
ism, which was isolated by Robert C.
Gallo's group at the National Cancer
Institute (see "Science and the Citizen,"
July). Still, as Feorino and his col
leagues point out, "the most likely ex
planation for the parallel evidence for
HTLY-1I1 and LAY being the cause of AIDS

is that the two viruses are the same."
Before that likely proposItIOn is

proved, the first public-health benefits of
the discovery of the AIDS agent should

----......;.------·------1
"In Just A Few Days, I'll Show You How To Do

REAL·MATH
ff df

dx n=l

On Your Calculator!"

lim·
11- XJ

oQuick. oGuaranteed.
oEasy. oFun, Too!

BY CALCULATORS?Then you can lems you suggest and it always G IVES ME A THRILL I step up your math skills fast! Use my new method in to see it start out with a wild guess and then approach
. guidebook form. Ifs caIled CALCULATOR the limit and stop." I CALCULUS. This space-travel spinoff is sure-fire, Professor John A. BaIl of Harvard CoIlege (author

so it has a simple guarantee - just return it for an of the book 'Algorithms for RPN Calculators') writes:

I immediate refund if you are not astounded at tile "I wish I had had as good a calculus course."

I
problems you're solving with it! Professor H. I. Freedman of the U. of Alberta,

But the point is - you won't want to send it back. S I d A I M hR '
For this is the easiest, fastest shortcut ever! The day writing in oc. n . pp . at eVlew, states:

I you receive your copy in the mail you'I1 want to put "There can be no question as to the usefulness of this
it to work. Ifs that exciting and helpful. book ... lots of exercises ... very clearly written and

I My name is Dr. George McCarty. I teach math at makes for easy reading:"
the University of California. I wrote this guidebook Tektronix Engineer Bill Templeton says "CALCU-

I
to cut through-the confusion. I guide you with LATOR CALCULUS is the best, most clearly written
examples you foIlow step-by-step on your calculator book I have seen for improving your math skills."
- you do simple exercises - then you solve practi- I WANT YOU TO DO THIS. G et my complete
cal problems' with real precision! kit, with a TJ-35 calculator, plus its 200 p. Student

POWER METHODS. Need to evaluate functions, areas, Math Book, .AND the guidebook, ALL for $44.95
volumes - solve equations - use curves, trig, polar coor- (for shipping to USA add $2, or $5 by AIR; Foreign
dinates - find limits for sequences and series? It's all here! $5, or $10 AIR; in Calif. add $2.70 tax).

I
If you're in the biological. social or physical sciences, If you already have a scientific calculator, you you'll be doing Bessel functions, carbon dating, Gompertz'

I
growth curves, half-life, future value, marginal costs, can invest in the guidebook, 'CALCULATOR E
motion, cooHng, probabiHty, pressure - and plenty more CALCULUS', for only U.S. $19.95 (to USA or A
(even differential equations). foreign: add $1 for shipping, or $4 by AIR; in Calif. R

I Important numerical techniques? Those algorithms are add $1.20 tax}. 0
here, too: rational and Pade approximation, bracketing, con- As pennywise Ben Franklin said, "An invest- U

I
tinued fractions, Euler's method, Heun's method, iteration ment in knowledge pays the best dividends." GET T
functions, Newton's method, predictor-corrector, successive
substitutions, Simpson's method and synthetic division. STARTED NOW -Tax deductible for professionals. A

LOOK AT WHAT USERS SAY: Samuel C. MONEY.BACK GUARANTEE! Send for it to- �
McCluney, Jr. , of Philadelphia writes: day. Be sure to give me your complete mailing ad-

I "CALCULATOR CALCULUS IS GREAT! F or ten dress with your check or money_order. If you want �
I

years! have been trying to get the theory of calculus to charge it (Visa or MC), tell me your card no. and I

through my head, using home-study courses. It was expo date. Prompt --L '-1'" / � L
not until I had your book that it became clear what shIpment � 1//;(.. " T I ·the calculus was all about. Now! can go through the guaranteed. ,. 0
other books and see what they are trying to do. With Thank you! EduCALC Publications, Dept. A·9 R I your book and a calculator the whole idea becomes 27953 Cabot Road, Laguna Niguel, CA 92677 Y
clear in a moment, and is a MO S T REFRESHING For fast service, phone MC or VISA orders I

I IE!!1H;;!£E..!.£�a::.!o:::"°e=!.f!:.�;"'!���(���'�� __ __

Techwriter™ scientific WP
'etsyour secretary

Available for: 0 'IBM PC and Xl
o 'DEC Rainbow 0 'Apple II plus
o 'Apple lie 0 Some IBM compatibles
o North Star Advantage 0 Visual 1050
� Seequa Chameleon 'RegiSlered trodemarh

eMI Software
Originators of scientific word processing for PCs

1395 Main St., Waltham,MA 02154
617·899·7244

Actual unretouched photo of Techwriter screen presentation
---;--------'----
I Please send information on Techwriter to: I
I Name I
I I
I Company I
I Street I
I� I
I State Zip I
I Phone I

89
© 1984 SCIENTIFIC AMERICAN, INC

90

THE AZTECS
The Rape of the Nile author
here constructs an irresistibly
readable story of one of the world's
most flamboy ant, least under
stood early civilizations. Exten
sively illustrated, The Aztecs is
unique in its chronological. ex
amination of the civilization as a
smoothly functioning society at
the height of its powers.

Fagan draws from a variety of
research sources, including the
codices compiled by sixteenth
century friars, to convey the full
flavor and detail of early Mexican
life and culture. W ith its com
prehensive maps, fme graphics,
and wide-ranging photos, The
Aztecs is certain to be the
defmitive book on the subject for
many y ears.

CLASH OF
CULTURES

This is a captivating journey
through a momentous chapter of
recent human history, the period
in which Western civilization flIst
came into contact with the full
range of human biological and
cultural diversity. Though the
legacies of this chapter haunt us to
this day, no book until now has
fully explored the implicit conse
quences of this interaction.

Clash of Cultures is a book
about my th and reality, about no
ble deeds and scurrilous dealings.
Above all, it is a story of ordinary
people pursuing their day -to-day
goals, making decisions that were
to have tragic and unimagined
consequences in later genera
tions.· .

Available at fme bookstores.
everywhere, or order from

the publisher:
I_ . W. H. FREEMAN AND COMPANY

. 4419 West 1980 South
• Salt Lake City, Utah 84104

If ordering by mail, please add $1.50 for postage and handling;
New York, California, and Utah residents add appropriate sales tax.

© 1984 SCIENTIFIC AMERICAN, INC

be apparent. A major group at risk are
recipients of transfusions of blood and
blood products. At least 100 individuals
have contracted AIDS in this way. The
need for a screening procedure is clear,
and five groups have been licensed to
develop test kits to detect antibodies to
HTL V-III in blood samples. The first use
of such kits will surely be to screen
blood donations in an effort to prevent
such cases as the one reported by Feori
no and his colleagues.

A Fine Madness

T�e brown hare (Lepus c�pensis) en
JOYs an extended breedmg season.

During its course a single female may
bear several litters, each comprising as
many as seven young. Nevertheless, it
has long been thought by biologists and
lay people alike that males of the species
are particularly randy in March, when
they are said to chase one another fre
netically and box in a mad competition
for estrous females.

Diligent observation by a British ama
teur naturalist appears to put this inter
pretation of hare madness in error. Since
1977 Anthony J. F. Holley, a solicitor
from Brent Knoll in Somerset, has spent
more than 1,500 hours observing brown
hares from the roof of his house, which
he deliberately built for this purpose
amidst fields well populated with the an
imals. Aided by a telescope, Holley has
often been able to distinguish males
from females and even to recognize
individual hares by their scars and fa
cial markings.

Writing in Nature, he and Paul J.
Greenwood of the University of Dur
ham report that male brown hares are
apt to chase each other at any time dur
ing the January-through-August breed
ing season. Boxing, in which one hare
typically rises on its hind legs and lunges
at another with its forepaws, also takes
place throughout that period.

Boxing among hares, Holley and
Greenwood report, is not a male sport:
in each of the 17 bouts in which Holley
was able to discern the sex of the com
batants, a male was pitted against a fe
male. Apparently boxing is not a way
for two males to decide which one will
get a female but rather the means by
which the larger and heavier female re
jects an unwanted suitor.

Why then has the March male-mad
ness myth persisted for so long? Holley
and Greenwood point out that brown
hares are nocturnal animals and in the
winter generally do not emerge from
their burrows until after sunset. On long
summer evenings they do come out
while it is still light but by then tall grass
often conceals them (unless one watches
from a rooftop). Their peculiarities are
thus most apparent in early spring, when
the days, but not the grass, have started
to grow longer.

91
© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

The extraordinary
!\fAPPER® Syste� puts things
m true perspective.
Ordinary computer systems see you and your special business problems the way
their programs tell them to. Which means they can ' t see things quite right.

That's because computer programs are either off-the-shelf - designed for some
mythical " typical " business. Or they're custom-designed - created by an outsider
who's unlikely to have a complete picture of your business.

But meet the Sperry MAPPER System.
It 's truly an extension of your mind. Instead of confining you to any fixed

program, MAPPER gives you carte blanche to create your own programs. Without
doing any programming, in the conventional sense .

As a result, you gain unheard-of power. To make the computer see the full scope
of your real world, and deal with it realistically.

You and your people don't have to be computer experts to use MAPPER
adapts MAPPER expertly. Far from it. Simple but powerful English comto the way you work. mands get you what you want. A word or two is usually enough.

As you insert and extract information, freed from rigid procedures, you create
your program along the way. So you can make mistakes. Change your mind. Even
alter your destination in mid-journey.

MAPPER does more than work the way you work. It actually follows the way
you think.

The MAPPER System can be scaled for a major corporation, MAPPE
h

R dful for a single department, or for a growing business. You can
can serve a an . t ' h th h S

.
b Or handle a thousand. even Imes are · roug a perry servIce ureau.

So no matter what size your business , the power of
MAPPER is affordable. In fact, it can , - - - - - - - - - - - - - - - - - -
cost as l i ttle as a network of ordinary Sperry Corporation, Computer Systems, Department 100, Box 500,

Blue Bell, PA 19424-0024
Personal computers . Please D phone m e t o arrange a demonstration.

D send me information on the MAPPER system.
Before you invest in any ordinary

computer system, invest a little time
with Sperry. Come see MAPPER in
action - hands-on. Phone toll-free

NAME

TITLE

COMPANY

STREET

ZIP CODE 800-535-3232 . Or send us the coupon. cm

=nL=EPH=ON�E---------------------MAPPER is a trademark of Sperry Corporation. © Sperry Corporation 1984

© 1984 SCIENTIFIC AMERICAN, INC

Operating Systems
A computer operating system spans multiple layers of complexity,

from commands entered at a keyboard to the details of electronic

switching. The system is organized as a hierarchy of abstractions

by Peter J. Denning and Robert L. Brown

j\a terminal connected to a comput
er system you type the command
date and press the key marked

Return. Almost instantly the message
September 15, 1984, appears on the dis
play screen. Asking for the current date
would seem to be among the simpler
demands one might make of a comput
er, and yet it sets in motion a complex
series of events calling into action many
of the hardware and software resources
of the system. Coordinating the events
and managing the resources are among
the responsibilities of the collection of
programs called the computer operating
system. The operating system provides
facilities and services needed by almost
all other software.

Consider what must happen in order
to answer a request for the date. As each
character of the command is typed, the
keyboard transmits a code to the com
puter, where it is received by a circuit
board charged with handling commu
nication with the terminal. The board
stores each character code in a reserved
area of memory called a buffer and is
sues a signal that "interrupts" the cen
tral processing unit of the computer,
activating a program called the termi
nal driver. The terminal driver echoes a
copy of the code back to the terminal fot
display on the screen.

When the code for the Return key is
received, signifying that the typing of
the command is complete, the terminal
driver activates another program called
the listener (because it attends to re
quests from users). The listener reads
the characters d a t e from the keyboard
buffer, searches a magnetic-disk memo
ry for a program called date, loads the
program into main memory and starts
its execution. The date program in turn
consults a clock built into the hardware,
which maintains a count of the millisec
onds that have passed since some fixed
starting date. From the count the pro
gram calculates the month, day and year
and expresses the information as the
string of characters September 15, 1984.
The string is passed to the terminal-driv
er program, which transmits the binary

94

code for each character to the terminal,
where it appears on the display screen.

Each of these events could be de
scribed in even finer detail. For exam
ple, before the listener can load the date

program, it must first search a directory
of commands to find out where on the
disk the program is stored; indeed, the
directory itself must be read from the
disk. The disk is organized in concentric
tracks, and each track is divided into
sectors; hence instructions must be is
sued to position the disk head over the
appropriate track and to read the bina
ry data when the selected sectors pass
under the head. The resulting stream
of bits is stored temporarily in a buf
fer. When the program is loaded, space
in main memory must be allocated to
it; when it has finished executing, the
space must be reclaimed. The seq uence
of events is still more complicated in a
computer dealing with several programs
at once. In that case one program may
have to be suspended momentarily
while the central processor attends to
another; then the first program must re
sume exactly as if there had been no
interruption.

It can be seen from this example that
an operating system spans the entire
range of complexity found in computer
systems. Some parts of the operating
system interact directly with the hard
ware of the computer, where events
(such as the switching of individual logic
gates) can have a time scale as brief as a
few billionths of a second. At the other
end of the spectrum, parts of the operat
ing system communicate with the user,
who issues commands at a much more
leisurely pace, perhaps one every few
seconds. A single keystroke at the termi
nal might result in 10 calls on the operat
ing-system programs, in the execution
of 1,000 machine instructions and in 10
million changes of state in logic gates.

The strategy adopted for managing
this complexity is one that has proved to
be of crucial importance in virtually all
areas of computer science. The basic
idea is to create a hierarchy of levels of
abstraction so that at any level one can

ignore the details of what is going on
at all lower levels. Thus when the listen
er program loads a program from disk
storage, the listener need not specify the
positioning of the disk head; such me
chanical operations are done by a pro
gram at a lower level in the hierarchy.
At the highest level of all is the user
of the system, who ideally is insulated
from everything except what he aims to
accomplish.

The first operating systems were cre
ated for the first electronic comput

ers in the late 1940's. They were sets
of simple routines for input and output,
such as a program for storing binary
codes read from a punched paper tape
into successive memory locations. The
entire operating system consisted of a
few hundred machine instructions.

By the mid-1950's most computers
were being run in "batch mode." An op
erating system collected programs sub
mitted by many individuals and execut
ed them in rapid succession, thereby
eliminating the delays entailed in manu
ally loading one program at a time. Op
erating systems of this kind were called
supervisors or monitors. In addition to
their primary function of program load
ing they managed secondary storage de
vices (such as magnetic disks, drums and
tapes), allocated main memory and han
dled input and output. In most cases
they also included a software "library"
of commonly needed routines. For ex
ample, many computer applications call
for the sorting of information; if a versa
tile sorting routine is part of the library,
the operating system can load it along
with each program that needs it.

By 1960 the first time-sharing systems
were being designed. In this method of
operating a computer the attention of
the central ,processor is switched rapidly
among several user programs, giving all
the users the illusion that their programs
are executing simultaneously. In con
structing such systems the problems of
sharing the processor, the memory and
the various software resources had to be
addressed. Solving those problems gave

© 1984 SCIENTIFIC AMERICAN, INC

1 dat

D
DISP L A Y

dat

KEYBOARD

2 date cr

date<-cr

iijlii;H\i'&

BUFFER

DI SK STORA GE

148.608.043.200.000
CLOCK

·148.608.043.202.000
DI SK DRIVER

3

4

5

6 September 15. 1984

EXECUTION OF A COMMAND sets in motion events at several
levels in the hierarchy of programs that make up the operating sys
tem. The command is simply a request for the date. As each character
is typed at a keyboard (I) it is received by a terminal-driver program,
which echoes it to the display screen. When a carriage return is en
tered, the terminal driver passes the string of characters d a I e to the
listener program (2), which interprets it as the name of a command.
The listener asks the directory manager to search the directory of
commands for dale. The directory manager in turn asks the disk driv
er to copy the directory into a buffer in the directory manager's stor-

148.608.043.202.002

148.608.043.202.027

148.608.043.202.104

age space (3). When the command has been found, the listener di
rects the file manager to load the binary code for the dale program
into memory; to do this the file manager again uses the disk driver (4).
The listener then activates the date program, which reads a "clock"
(5), a hardware device that keeps a count of the milliseconds that have
passed since some fixed starting time, in this case midnight of Jan
uary 1, 1980. From this number the program calculates the current
date and displays it through the terminal driver as September 15,
1984 (6). The listener and the various drivers and managers constitute
part of the "kernel" of the operating system; date is a utility program.

95
© 1984 SCIENTIFIC AMERICAN, INC

10,000,000

1,000,000

w 100,000

N
iii

10,000

1,000

•
ED SAC

•

Multics T (KERNEL + UTILITIES)
I
I
I

O S/360 (21) I

. "
....

.....

....
....

....

O S/360 (1)

•

•
SCOPE

I .MV S
I •

Multics VMS
(KERNEL) •

•
Unix (BSD 4.2)

V SO S 205

•
/

/
Unix (7.5)

/
/

/ /
// RC4000 //

• ". e<"
CTSS •

MS-DOS

Atlas THE Unix (1)
•

CP/M

100 � ________ �� ________ �� ______ �� ________ �� ______ ��
1940 1950 1960 1970 1980 1990

EVOLUTION OF OPERATING SYSTEMS suggests a tendency toward exponential growth,
but some smaller systems have been introduced recently for microcomputers. The size is given
in units that correspond to "words" of machine storage or to ass em bly-Ianguage instructions.
EDSAC was developed at the University of Cambridge, Atlas at the University of Manchester,
ass at the Massachusetts Institute of Technology, THE at the Eindhoven University of Tech
nology and Rc4000 at the University of Denmark. Scope is a product of the Control Data Cor
poration, and so is vsos 205; 05/360, �IVS and V�IS are products of the International Busi
ness Machines Corporation. Multics was developed jointly by M.I.T. and Bell Laboratories,
Unix by Bell Laboratories alone. cphl and �IS-DOS are microcomputer operating systems
introduced respectively by Digital Research, Inc., and the Microsoft Corporation. The systems
within the band of color are single-machine kernels, probably of the minimum possible size.

LEVEL NAME OBJECTS EXAMPLE OPERATIONS
13 SHELL USER PROGRAMMING STATEMENTS IN SHELL

ENVIRONMENT L A NGUAGE

12 USER PROCESSES USER PROCESSES QUIT, KILL, SU SPEND, RESUME

11 DIRECTORIES DIRECTORIES CREATE, DESTROY, ATTACH,
DETACH, SEARCH, LIST

10 DEVICES EXTERNA L DEVICES SUCH CREATE, DESTROY, OPEN,
A S PRINTERS, DI SPLAY S CLOSE, READ, WRITE
AND KEY BOARDS

9 FILE SY STEM FILES CREATE. DESTROY, OPEN,
CLOSE, READ. WRITE

8 COMMUNICATIONS PIPES CREATE, DESTROY, OPEN,
CLOSE. READ, WRITE

7 VIRTU A L MEMORY MEMORY SEGMENT S READ, WRITE, FETCH

6 LOCAL SECONDARY BLOCK S OF D ATA . READ. WRITE,
STORAGE DEVICE CHA NNELS A LLOC ATE, FREE

5 PRIMITIVE PRIMITIVE PROCESSES, WA IT, SIGNA L, SUSPEND,
PROCESSES SEMAPHORES, READY LIST RESUME

4 INTERRUPTS FAULT-HA NDLING PROGRA M S INVOKE, M A SK, UNM A SK,
RETRY

3 PROCEDURES PROCEDURE SEGMENT S, M A RK STACK, C A LL, RETURN.
C A LL STACK, DISPLAY

2 INSTRUCTION SET EVALUATION STACK,' LOAD, STORE, BRA NCH,
MICROPROGRA M INTERPRETER, ADD, SUBTRACT
SC A L A R D ATA , A RRAY DATA

1 ELECTRONIC REGISTER S, GATES, BUSES, ETC. CLEAR, TRA N SFER,
CIRCUITS ACTIVATE, COMPLEMENT

HIERARCHY OF ABSTRACTIONS is the essential organizing principle of an operating sys
tem. Each level is the manager of certain "objects," which can be hardware or software. A pro
gram at a given level has access only to operations defiued at lower levels; furthermore, the in
ternal details of those operations are hidden. The first seven levels concern operations within a
single machine; higher levels can draw on the resources ·of multiple computers in a network.

96

rise to a number of important conceptu
al advances, including parallel-process
synchronization, virtual memory, de
vice-independent input and output and
interactive command languages, all of
which we shall discuss below:'

As operating systems became more
elaborate they also grew larger. The
Compatible Time Sharing System, put
into operation at the Massachusetts In
stitute of Technology in 1963, consisted
of approximately 32,000 36-bit words
of storage. 05/360, introd uced a year
later by the International Business Ma
chines Corporation, had more than a
million machine instructions. By 1975
the Multics system, developed by M.l.T.
and Bell Laboratories, had grown to
more than 20 million instructions.

By then, however, a countervailing in
fluence was being felt: minicomputers
had entered the marketplace and micro
computers (including personal comput
ers) were beginning to appear. These
machines were slower and had a smaller
memory capacity than the mainframe
machines of the time, but they extended
access to computing to a much broad
er range of potential users. In order
to squeeze operating systems into the
smaller accommodations of mini- and
microcomputers the functions of th<Y
system were divided. Services needed by
almost all programs, such as input and
output routines, were put in a "kernel"
that remains in the main memory of the
computer whenever it is running. Other
programs, called system utilities, are
stored on disk and read into main mem
ory only when they are needed. Judging
from the operating systems introd uced
in the past several years, it appears the
minimum kernel needed to manage the
resources of a single computer consists
of a few tens of thousands of instruc
tions. The available utilities and librar
ies of software are continuing to grow
almost exponentially, straining the ca
pacity of secondary-storage facilities.

The evolution of operating systems
has not ended. A new population of

users, including many who do not make
computing a full-time occupation, has
placed new demands on software. One
response has been the development of
interactive graphic displays. With such
a display one might delete a file not by
typing the command de/ere but by point
ing to a drawing of a trash can. New
ways of organizing a computer system
have also evolved. Instead of having
a single large computer connected to
many terminals, each user can be given
a work station that has its own processor
and comm unicates with other work sta
tions by means of a high-speed network.
It is the operating-system software that
must coordinate the actions of the var
ious computers in such a distributed
processing network.

The hierarchical structure of a mod-

© 1984 SCIENTIFIC AMERICAN, INC

· .• computer/electronicS
. � book club

H'!:

FIBEROPTICS &
LASER HAnDBOOK

The best of both worlds!

hands-on interfacing projects
the . latest electronic applications
all from ,one easy-fa-use source!

Select'S Books
for ,Only $ 2 95

1553
List $15.95

1
List S24.95

1295
List $16.95 List $19.95 List $13.95

1556
List S21.95

1536
List $14.95

1341
List S13.50 (paper)

1195
List $13.95

1474
List S16.95

1531
List $17.95

1394
List $15.95

1541
List $24.95

,A.u..1>OQtJT TELEPHONES

1537
List S16.95

SECOND nOOK OJ'
EASY-TO·llUlW
ELECTRONIC

PROJECTS

1679
List $17.95

1389
List S15.95

1682
List $14.95

Plus FREE For Joining ---....... �

7 very good reasons to join
the computer/electronics

book club
Big Savings. Save 20% to 75% on books sure to increase

your computer and electronics know-how
• No-Risk Guarantee. All books returnable within 10 days
without obligation
• Club News Bulletins. All about current selections-mains,
alternates, extras-plus bonus offers. Comes 13 times a year
with hundreds of up-to-the-minute titles you can pick from
• "Automatic Order." Do nothing, and the Main selection will
be shipped automatically! But ... if you want an Alternate
selection-or no books at all-we'll follow the instructions you
give on the reply form provided with every News Bulletin
• Bonus Books. Immediately get a Dividend Certificate with
every book purchased and qualify for big discounts of 60% to
80%
• Extra .Bonuses. Take advantage of added-value promo
tions, plus special discounts on software, games, and more
• Exceptional Quality. All books are first-rate publisher's edi
tions selected by our Editorial Board and filled with useful,
up-to-the-minute information

----------------------.

computer/ electronics book club
P.o. Box 110, Blue Ridge Summit, PA 17214
Please accept my membership in the computer lelectronlcs book club and send the
5 volumes circled below, plus my FREE copy of 1001 Things To Do With Your
Personal Computer, billing me $2.95 plus shipping and handling charges. If not
satisfied, I may return the books within ten days without obligation and have my
membership canceled. I agree to purchase 3 or more books at reduced Club prices
(plus shipping/handling) during the next 12 months, and may resign any time thereaf
ter.

1195 1218 1295 1341 1389 1394 1409 1449 1466
1474 1531 1536 1537 1539 1541 1553 1556 1567 1604

1625 1650 1665 1671 1673 1679 1682 1712 1748
_____________________________________ Phone ______ _ Name

Address

City

State Zip ____ __

Valid for new members only. Foreign applicants will receive special ordering instructions. Canada
must remit in U.S. currency. This order subject to acceptance by the computer/electronics book club.

�-------------------�=�
97

© 1984 SCIENTIFIC AMERICAN, INC

ern operating system separates its [unc
tions according to their complexity,
their characteristic time scale and their
level of abstraction. The bottom illus
tration on page 96 shows an organiza
tion spanning I J levels. It is not a model
o[any particular operating system but
rather incorporates ideas from several
systems; facilities for distributed proc
essing are included. Each level is the
manager of a set of "objects," which can
be hardware or software and whose na
ture varies greatly from level to level.
Each level also defines the operations
that can be carried out on those objects.

The lowest levels include the hard
ware of the system. Level I is that of
electronic circuits, where the objects are
registers, memory cells, logic gates and
so on. The operations defined on these
objects are actions such as clearing a
register or reading a memory location.
Level 2 is that of the processor's instruc
tion set, which can deal with somewhat

2800
STACK

..
2600

co
C/) C/)

2400 UJ DATA u 0 a:
Il..

more abstract cntities, such as an cvalu
ation stack (a seq uence of registers or
memory cells where numerical values
are held pending some operation to be
carried out on them). The operations at
this level are the instructions the proces
sor itself can execute, such as add, sub

tract, load and store.

Level 3 adds the concept of a pro
cedure, or subroutine, a self-contained
program fragment that can be called on
within a larger program and that returns
control to the point at which it was
called. Level 4 in trod uces interrupts,
which cause the processor to save a
record of its current state and then turn
to a new task. Events that trigger an in
terrupt include error conditions, such
as the overflow of an arithmetic reg
ister, and more commonplace events,
such as the receipt of a character code
from a terminal.

The first four levels together corre
spond roughly to the basic machine as it

REGISTERS
2675

STACK POINTER
2227

INSTRUCTION POINTER
1 4

GENERAL REGISTER 1

2200 STATE WORD

I-----�-�-o�-�----;I�} INITIAL STATE

2000

1 800

1 600

1 400

1 200

1 000

«
C/)

INSTRUCTIONS

STACK

� 1----------1 u
� I------:D::-A:-=;I""A----; Il.. f-_---::.:....:�---. --1_

INSTRUCTIONS
STATE WORD -

1465
1 333

1 ,000,006

SP }
P SUSPENDED STATE
GR1
I

PRIMITIVE PROCESS represents a single program in the course of execution. Here two
primitive processes are shown loaded into a segment of main memory. Process B is executing.
The instruction pointer, one of the computer's hardware registers, indicates the address of the
next instruction; the stack pointer indicates the top item in the temporary storage area called
the stack, A real computer would have many more general-purpose registers, but here only one
register is shown. Process A has been suspended, but the contents of all the registers at the mo
ment of suspension were recorded in a reserved area called the state word. The operating system
can readily switch between processes. The current contents of tbe registers are put in the state
word of process B, and the registers are reloaded with the values from process A's state word.

98

is received from the manufacturer, al
though there are close interactions with
some elements of the operating-system
kernel. For example, interrupts are gen
erated by a hardware component, but
the routines invoked when the processor
is interrupted are part of the kernel.

Concepts associated explicitly with
the coordination of multiple tasks

first appear at level 5, which is identi
fied as the level of "primitive processes,"
or single programs in the course of ex
ecution. Because a primitive process
may be interrupted at any time, a mecha
nism is needed to suspend a process and
then resume it. The mechanism consists
of the "state word," a data structure that
can hold the contents of all the registers
in the central processor, and a "context
switch" operation. When a process is to
be suspended, the context-switch opera
tion copies the register values into the
state word for that process; on resump
tion it restores the registers to their for
mer values.

If all the activities going on within a
computer were completely independent
of one another, little more than the no
tion of a state word would be needed
to create a multiple-process operating
system. Actually one process often de
pends on results from another, so that
the processes must be synchronized. A
program that requires data from a file
on disk, for example, cannot proceed
until the data have been read and made
available in main memory. It is not pos
sible for the programmer to know be
forehand how long the disk-reading op
eration will take, and so there must be a
way to make one program wait until an
other signals it is ready.

The concept,that provides the key to
synchronization is the semaphore; it oc
cupies a central place in the.theory of
operating systems. In the simplest case
it is helpful to think of a semaphore as
being directly analogous to a railroad
signal, with green and red lights that in
dicate whether or not it is "safe" for a
process to continue. At the point where
a process must be synchronized with
some external routine, the programmer
inserts an instruction such as wait(sem

aphore A). Each time that point in the
program is reached. the semaphore is in
spected. If it is in the red state, execution
of the process is suspended; if it is green,
the process continues but the semaphore
is set to red. When the second process
issues a signal(semaphore A) instruction,
the semaphore is reset to green and the
first process resumes execution if it has
been waiting.

Actually, because multiple processes
may be controlled by the same sema
phore, the implementation of the sem
aphore must be somewhat more com
plicated: it must maintain a counter
and a queue of waiting processes. For
each wait instruction the counter is dec-

© 1984 SCIENTIFIC AMERICAN, INC

remented and for each signal instruc-
tion it is incremented. If the value of 1

ing a wait instruction is put in the queue;
the counter is negative, any process issu-

r-I ---------------l
when the next signal instruction is re- F====9
ceived, the first process in the queue is L-_---:)� [[[[If-----:)� C I D [B 1------'
transferred to the "ready list" of proc- SUSPENDED LIST --'-R-E--ALD--yc-'LLIS:CT='---'
esses available for execution. The two SEMAPHORE
operations defined on semaphores are
powerful enough to synchronize paral-
lel processes in a variety of contexts, r-2 _____________ ---l:

�
from the need to stop a process when an

I B E:

input buffer is empty or an output buffer
is full to the need to allow only one proc- I I ess at a time to manipulate shared data.)_-.l..�L..L--1_j-----:)� ��I�AL

0 I---...,:)�_---'_....LI_A__'_I_c__'_I _D_'II----'

Tevel 6 in the operating-system hierar
L chy handles access to the second
ary-storage devices of a particular ma
chine. The programs at this level are
responsible for operations such as po
sitioning the head of a disk drive and
reading a block of data. Software at a
higher level merely determines the posi
tion of the data on the disk and places
a request for it in the device's queue
of pending work. The requesting proc
ess then waits at a semaphore until the
transfer has been completed.

The function of level 7 is virtual mem
ory, a scheme for managing the comput
er's main and secondary memories that
gives the programmer the illusion of
having a main memory large enough to
hold a program and all its data even if
the available capacity of main memory
is much smaller. Addresses can be arbi
trarily large, and programs running con
currently can employ the same addres
ses without conflict; the operating sys
tem translates each virtual address into
a hardware address. If an attempted
translation fails because the information
called for is not in main memory, the
virtual-memory manager automatically
fetches it from disk storage. Before do
ing so it may have to make room in main
memory by removing other data. As in
other similar circumstances the request
ing process is interrupted until the need
ed information is made available.

Up to level 7 the operating system
deals exclusively with the resources of a
single machine. Beginning with the next
level the programs of the operating sys
tem encompass a larger world including
peripheral devices such as terminals and
printers and also other computers at
tached to the network.

Level 8 deals explicitly with commu
nication between processes, which can
be arranged through a single mecha
nism called a pipe. A pipe is a one
way channel: a stream of data flows
into one end and out of the other. The
stream has a write pointer, which keeps
track of the number of items written
into the pipe, and a read pointer, which
records the number of items read at the
other end. A request to read more items
is delayed until they are actually pres
ent. A pipe can connect two processes

4 D

SIGNAL
WAIT) B A C 1------'

SOFTWARE SEMAPHORE is a mechanism for controlling primitive processes that must be
synchronized. Here processes A, Band C all depend on a result from process D. For each wait
instruction the semaphore decrements a counter and for each sigllal instruction it increments
it. A waiting process is allowed to pass the semaphore only if the value of the counter is greater
than zero. Initially (1) process A is running, B, D and C are ready and the semaphore count of
+ 1 indicates that one of D's results is available. When A issues a wait instruction, it therefore
immediately passes the semaphore and rejoins the ready list. Then Bruns (2), eventually issues
a wait instruction and is suspended, allowing D to run (3). When D completes a new result, it is

sues a sigllal instruction, which allows B to move to the ready list (4). D rejoins the ready list and
C begins to run (5) but is suspended when it issues a wait instruction; in the same way A and C
run and are suspended, allowing D to resume execution (6). When D has a result, it issues a sig
lIal, .transferring C to the ready list (7); later cycles of D will release A and B from suspension.

99
© 1984 SCIENTIFIC AMERICAN, INC

root

hosts passwd laser plotter clock tty?

mbox project3 mail Is rm mv

user I' £ NAME TYPE OTHER POINTER
sell dir --

parent dir

pjd dir

rib dir

pjd I

-' NAME TYPE OTHER paiN'::)
sell dir

parent dir

mbox file

projects dir

TREE OF FILES AND DIRECTORIES organizes the resonrces of a computer system. The
root of the tree and the intermediate nodes are directories that can list either files or subordinate
directories. The "bin" directory, for example, holds the binary code of system utility programs,
such as programs for electronic mail and for listing, moving or removing files. Similarly, the
"dev" directory lists devices and the "etc" directory holds miscellaneous information such as the
host computers available and the encrypted passwords of users. The structure of the "user" di
rectory, where each user of the computer system keeps his own files, is shown in somewhat
greater detail in the lower part of the illustration. Each directory has a pointer to itself and to its
parent. The directory structure represented here is based on that of the U nix operating system.

ARGS

CODE FOR F :1
UJ PORTS U STACK it 0 DEFAULT INPUT
(f) DEFAULT OUTPUT �
a: DATA · 0 ·

� ·

STATE WORD CONTEXT

USER PROCESS is a virtual compnter: a simulated machine that appears to be dedicated to
executing a single program. A user process incorporates the elements of a primitive process (the
executable code, the work space and the state word) as well as a list of arguments supplied when
the program was started, a list of ports for input and output and a description of the program's
context. The arguments are parameters typed after the command name; they are entered into
successive slots of the ARGS array. The ports include two for "default" input and output, which
serve unless other ports are specified. The context lists such items as the working directory.

100

executing on a single machine, as when
the output of one program is designated
the input of another. A pipe can equally
well transmit information between com
puters; indeed, a set of pipes linking
processes in all the machines of a net
work can serve as a broadcast facility,
which is useful for finding resources that
might be anywhere in the network.

The file system, which provides for
the long-term storage of named files, is
implemented at level 9. Whereas level 6
deals with disk storage in terms of tracks
and sectors-the fixed-size divisions of
the hardware itself-level 9 addresses
more abstract entities of variable length,
whose boundaries do not necessarily
correspond to those of physical tracks
and sectors. Indeed, a file may be scat
tered over many noncontiguous sectors.

The create and destroy operations set
up a new file and discard an old one;
open and close make and break the con
nection between a file and a process. For
the content of a file to be examined
it must be copied into an area of virtu
al memory, and for information to be
saved it must be copied from virtual
memory into a file; the copying is done
by read and write operations. If a file
is kept in a different machine, level-9
software can, by using level 8, create a
pipe to the file's home machine. (The
best way of accomplishing this is still
an open question.)

Level 10 provides access to external
input and output devices, including the
time-of-day clock, printers, plotters and
the keyboards and display screens of ter
minals. The operations defined on these
objects are again create and destroy. open

and close. read and write; again a pipe can
be created to gain access to a device at
tached to another machine.

Tevel II manages a hierarchy of direc
L tories that catalogue the hardware
and software objects to which access
must be controlled: pipes, fiies, devices
and the directories themselves. The cen
tral element of a directory is a table that
matches the external name of an object
(that is, the name known to and sup
plied by the user, such as "addresslist")
to an internal name employed by the
operating system to find the object. A
hierarchy arises because a directory
can include among its entries the names
of subordinate directories.

Each directory is a list of entries giv
ing an object's external name (stored as
a string of characters), the internal name
(stored as a binary code), an indicator
of its type (file, device and so on) and
certain other information. For exam
ple, the directory entry commonly re
veals whether the object can be read
from or written to or, in the case of pro
gram files, executed; each kind of access
might be allowed for some users but
not for others.

The directory level is responsible only

© 1984 SCIENTIFIC AMERICAN, INC

Step into Toyota's 1984 Cressida,
and let the luxury begin.

Inside: seats with a rich velour
fabric, or a soft full-grain leather.

Cruise control for relaxed driving.
And now, as standard equipment,
power windows, power door locks,
an electronic AM/FM/MPX stereo
with 4 speakers, cassette, seven
band graphic equalizer, and auto
matic power antenna.

Outside, more luxury. Classic,
elegant lines. A sloping hood that
reduces aerodynamic interfer
ence for quieter motoring. Roof
height precisely scaled to allow
plentiful headroom.

Cressida's luxury soothes you,
but its performance excites you.
Its 2.8 liter electronically fuel
injected TWin cam engine pro
duces 143 horsepower at your
command. Its independent rear

suspension makes
for superb handling.

. Its Electronically
Controlled 4-speed auto
matic overdrive transmis-

sion with lock-up torque converter
lets you choose at the touch of a
button a "Normal;' "Power" or

"Economy" mode of driving. This
"thinking" transmission adjusts to
suit changing driving conditions.

And on
and on
and on.
There is
no end to
the wonders
of Cressida.
Ahhh what a feeling. The Cressida
Luxury Sedan.

BUCKLE UP-ITS A GOOD FEELING!

CRESSIDA. LUXURY THAT SOOTHES THE SOUL.
PERFORMANCE THAT LIFTS THE SPIRIT.

© 1984 SCIENTIFIC AMERICAN, INC

Exxon research is
todays cars by I<eeping

New fuels and lubr icants
must ant icipate
advancing technology
and increasing
performance demands.

Turbochargers, electronics, advanced
transmissions, knock sensors, fuel injec
tors and other sophisticated devices are
being rapidly incorporated into today's
automobiles. While they permit more pre
cisely controlled and optimized vehicle
operation, they also place greater de
mands on fuels and lubricants. Keeping
ahead of the changing requirements
has challenged scientists and engineers
at Exxon Research and Engineering
Company (ER&E), and their Exxon col
leagues at three major affiliated labora
tories outside the U.S.

Hotter Engines
Today's engines are smaller. They

operate at temperatures some 50° to
75°F hotter than their older V-8 counter-

hotter. Higher temperatures can cause
motor oils to oxidize faster, producing
sludge and varnish deposits which thick
en the oil. This in turn can lead to greater
friction and increased engine wear.

In the 1970's, ER&E scientists and
engineers discovered an additive tech
nology which resu�ed i� the first fu�I-.
saving motor oil uSing oll-solubl.e friction
modifiers. Today, they are creating new
oils for the hotter engines and subjecting
the most promising formulations to gruel
ing tests.

For example, a fleet of New York taxi
cabs runs on Uniflo® motor oil test formu
lations for 50,000 miles, using oil drain
intervals more than twice those recom
mended. The taxi engines are dis
mantled before and after each test to
measure wear on critical parts in mi
crons, and to examine engine deposits.

MOFT
Balancing friction and antiwear prop

erties of an oil is a delicate task. LONer
viscosity reduces friction, improves fuel

efficiency and aids start!3.bility, bu� too
ION viscosity may resutt In excessive
engine wear.

Minimum Oil Film Thickness (MOFT),
a patented technique developed at
ER&E, electronically measures the pro
tective lubricant film between the
bearings and crankshaft of a running
engine-sometimes only a fraction of a
micron thick. These measurements per
mit researchers to compare different
oil and additive formulations in their
search for better wear protection and
fuel mileage.

FWD Transaxles
The heat and wear demands of

"sealed for life" constant velocity joints in
front-wheel transaxles posed other chal
lenges for ER&E scientists in lubricant
research. Their response, a lithium
based grease, 5191, can be found in
many U.S. front-wheel-drive vehicles,

parts. Turbocharged engines run even ---"':'---.-...r--;-.�..-�-tr-:-1I'�71W�""""�IT-rr-lI--rrjqrA

© 1984 SCIENTIFIC AMERICAN, INC

I<eeping ahead of
an eye on tomorrow's.
withstanding temperatures up to 300°F
and lasting for aver 100,000 miles.

Electronic Knock Sensors
Pioneering research at ER&E demon

strated the concept of electronic knock
sensors which are nON being installed in
many of today's cars. These sensors
detect engine knock and feed the infor
mation to an on-board computer which
corrects spark timing to match gasoline
octane. This makes higher compression
ratios feasible at any given octane level,
resu�ing in more efficient engines.

Changing Fuels
for Changing Engines

The continuing replacement of carbu
retors with fuel injection systems places
increasing importance on fuel quality.
Gum, vamish, and dirt deposits can

even distribution to some cylinders and
reduced engine performance. Ongoing
work at ER&E is defining the cleanliness
needs of these and future systems and,
in parallel, developing fuel quality fea
tures to meet those requirements.

Exxon Research and
Engineering Company

Impraving products for the transporta
tion industry is just one example of the
research programs under way at ER&E.
A wholly ONned subsidiary of Exxon
Corporation, ER&E employs more than
2,000 scientists and engineers working
on petroleum products and processing,
pioneering science and the engineering
required to develop and apply new tech-

clog the very f ine holes through which
the fuel is sprayed. This resu�s in un- l7�l(,C1ll

_ l � vum l ' "'-U�"'Do�C�n���O����,IPM
T aJjff !.ftc!!.) W

;1 upto / OO '..-f �

niques to the manufacture of fuels and
other products. For more information on
automotive products research or ER&E,
write Dr. E. E. David, Jr., President, Exxon
Research and Engineering Company,
Room 200, Po. Box 101, Florham Park,
New Jersey 07932.

© 1984 SCIENTIFIC AMERICAN, INC

Fellowships
in Science
Broadcast
Journalism
WGBH-Boston, a major producer of
radio and television programs for public
broadcasting, including NOVA, seeks
indications of interest from proven
science writers who want to learn the
skills and move into science broadcast
reporting. We are creating six year-long
fellowships for experienced science
journalists willing to risk their talents on
a major career change.

Fellows will undergo an intensive training
program in the art and craft of producing
and writing science programs for radio
and television, in a working professional
environment.

If you have a track record in writing about
science in a clear and vital way for a
general audience, please send a letter
and resume for further information to:

David Kuhn
Director, Science Fellowships
WGBH
125 Western Ave.
Boston, MA 02134

Aha ••• :tt
� Li1J

CAMES FOR THINKERS
An exciting, new way to learn creative
problem solving! Games designed by uni·
versity professors improve thinking skills
using fun, strategy and challenging com·
petition. Like chess, each game can be
played at many levels from young chil·
dren to intelligent adults. Fascinating for
everyone!

Write for free catalOg and studies that
show how WFF 'N PROOF Games can:
• double math achievement
• cut school absenteeism by ,/, and
• raise I.Q. scores by 20 points

ORDER YOUR GAMES FOR THINKERS TODAYI
WFFN PROOF (logiC)
QUERIES 'N THEORIES (sci. method) .
EQUATIONS (creative mathematiCS)
ON·SETS (set theory)
ON·WORDS (word structures) .
PROPAGANDA (social studies)
CONFIGURATIONS (geometry) .

Complete 7-game Special

516.00
16.00
13.00
13.00
13.00
13.00

7.75

79_95
All prices include postage and handling.

Satisfaction .Guararlteed

Order from WFF 'N PROOF
1 490-FE South Blvd., Ann Arbor, MI48 104

104

for recording the associatIOn between
the external and the internal names of
objects; other levels manage the objects
themselves. Hence when a directory
of devices is searched for the string
"clock," the result returned to the call
ing program is merely the internal name
of the time-of-day clock. The internal
name is then passed to a program at lev
el 10, which does the actual reading of
the clock.

Level 12 implements user processes,
which are entire virtual machines exe
cuting programs. It is important to dis
tinguish the user process from the primi
tive process of level 5. All the informa
tion needed to define a primitive process
can be expressed in the state word that
records the contents of registers in the
central processing unit. A user process
includes a primitive process, but it en
compasses much else as well: a virtual
memory containing the program and its
work space, information supplied by the
user when the program was started
and a list of other objects with which
the process can communicate. A user
process is much more powerful than a
primitive process.

Level 13 is the "shell," so called be-

cause it separates the user from the
rest of the operating system. It is the in
terpreter of a high-level command lan
guage, through which the user gives
instructions to the system. The shell in
corporates the listener program that re
sponds to the terminal keyboard; it pars
es each line of input to identify program
names and other information; it creates
and invokes a user process for each pro
gram and connects it as needed to pipes,
files and devices.

An important principle adopted in the
I\.. hypothetical operating system we
are describing here is input-output inde
pendence. At levels 8, 9 and 10 the same
fundamental operations (namely create,
destroy, open, close, read and write) are
defined for pipes, files and devices. Writ
ing a block of data into a disk file calls
for a sequence of events quite different
from the one needed to transmit the
same data to a printer or to supply it to
the input of another program, but nei
ther the author nor the user of the pro
gram needs to be. concerned with those
d ifferences. All read and write state
ments in the program can refer to input
and output "ports. " The ports are at-

��� ________

F

______ ��� F

F F<A

FILE

B

F F >B

A B

F F<A>B

SOFTWARE PART, or component, is a program with a single input stream and a single output
stream, a structure that helps in combining programs and devices in various ways. If no other
source and destination are specified, a program is connected by default to the user's keyboard
and display. The " <" sign designates a source of input and the " > " sign a destination for out
put. The "I" sign creates a "pipe" linking the output of one program to the input of another.

© 1984 SCIENTIFIC AMERICAN, INC

Introducing Filevisiori for Macintosh:
The fine art of filing by pictures.

Filevision. The first software that
combines a practical filing system with
a simple-to-use, object-oriented drawing
system. It lets you file things the way
you see them. And quickly visualize
your data in pictures. Instead of sorting
through tedious line-by-line listings.

To use Filevision, you simply place
objects in a picture, or choose from the
ready-made symbol menu to represent
the pieces of information you wish to file.

In the click of a mouse, you can re
trieve the data behind each object in your
picture. You can even select the objects

in your pictures based on the data
in your files.

Each object in your picture is
automatically connected to the
information about that object.

lllustrate anatomy and study PhysiolDgy.
Map sales territories and track volume.
Seat a convention and highlight non
smokers. Filevision pops requests right
off the screen. In the click of a mouse.

Filevision is a trademark of Telos Software Products.
Telos is a trademark of Telos Corporation.
Macintosh is a trademark licensed to Apple Computer Inc.

Each object is automatically connected
to a data form. Which you custom design,
quick as a click.

For a change, it's simple
to modify my files.

Updating your files is just as easy.
Whenever the best-laid plans of
mouse and man
need a little
replanning,
you're just a
click or two
away from
reperfecting
your files.
Create new sym
bols, and add them
to your picture.
Make a data form for any new object,
and all objects of that type will have the
same form. Automatically.

Modify a symbol, and all matching
symbols in your picture will be modified.
Automatically.

Change an existing form, and all forms
of that type will change. Automatically.

The possibilities are endless.
Filevision can study anatomy while
fleshing out the physiology, peek at the
population behind a map, show a
business person just what's in stock, or
lay out an office and see who's got what.
In fact, if you can see it, you can file it
visually with Filevision. And retrieve it
visually, too.

Filevision. The unique filing system
for Macintosh that lets you store and

work with information in pictures,
as well as numbers and text.

SOFTWARE PRODUCTS Software for the real world.

© 1984 SCIENTIFIC AMERICAN, INC

In the battle between
the mM PC, there can be

Hear the guns?
It's a battle for your desktop. Apple" versus IBM."

The easy-to-use Macintosh against the serious business
computer from Big Blue.

And the winner? Epson." That's right, Epson. Because
for the person who simply wants to buy one relatively
perfect personal computer, the Epson offers an opportunity
for peace in our time.

A computer that is easy to use, like the Mac, but also
nms all sorts of business software, like the Pc.

And aren't those two computers exactly the one you need?

An easier way to be easy . . .
A more serious way to be serious.

The Epson is easy because
its keyboard works in English,
not computerese. And only

the Epson comes with Va/docs,'" a powerful integrated
software system that takes you step-by-step through the five
most important business functions: word processing,
business graphics, telecommunications, electronic filing
and daily scheduler.

As a result, while IBM owners are still pondering their
manuals, and Macintosh owners are still drawing sneakers,
Epson owners are churning out productive work with
electronic speed and accuracy.

The Epson also opens the doors of your disk drives
to the largest collection of software in captivity In fact, the
Epson runs more business programs than the IBM pe

To start, the Epson is available !"ith an optional 16 bit
co-processor so you can use almost any MS"'-DOS program,
including SuperCalc " 3 and Lotus" 1 -2-3.'"

The Epson also comes with Microsoft" BASIC and
CP/M-SO'" 2.2 .

The CP/M library is impressive. It includes the
most popular, most powerful business
programs like WordStar" and dBase If'"
Plus about a thousand other business
programs, everything from fixed asset
accounting to pipe network analysis.

With MS-DOS, Valdocs and CP/M, the

© 1984 SCIENTIFIC AMERICAN, INC

the Apple Macintosh and only one winner. The Epson
Epson should be able to handle any future busi
ness need. And that should make you feel velY
good about siding with Epson today.

The ultimate technical
specification: value.

The Epson QX-I0 comes complete
with a 12 " high resolution monitor, 600 x
400 Pixels, driven by one of the most
powerful graphic processors available.
With screen resolution this good, text
and graphics will leap off the screen.
And when you add a graphics pro
gram, like Q-plotter,'" you can
produce presentation graphics of
the highest ordet:

Standard issue on the Epson
also includes 256K memory, plus

380K Epson-made disk drives, a

option slots for some real options.
Best of all, everything is Epson quality,

the same quality that has made Epson the
number one manufacturer of computer
printers, worldwide. And when you consider

that Epson gives you a complete com
puter system at a price a thousand dol

lars less than either Apple or IBM,
you understand why this computer

can not only bring peace to your
desktop, but to your budget, as well.

"W"" optional MS·OOS boa<d. _. the _ logo. IBM. Epson. Superl:aic 3.
lotus 1-2-3, CPIM-SO, Microsoft, WlrdStar and dBase g ere registered �

01 Apple CooIputers, Inc., IBM, Epson Corp., SorClm, l<tus, Digital Research,
�osoft, Micropro and Ashton-Tale respectivef¥ YaIdocs. MS, Q-pktter

are tra:lernarks ol Risiog � Microsofl and MetroSoftware

,"""""'"

128K resident video memory, dual EPSON CMOS Realtime Clock/Calendar with .J:D.'-. :1(!>'-'"
battery backup, a I -year warranty, an
RS-232C port and a parallel port; thlls
freeing the five - that's right, five -

© 1984 SCIENTIFIC AMERICAN, INC

l04D

, DSI

Mentorize this syntbol.
It ntight help keep you front ntaking

a tnillion dollar ntistake
in Contputer-Integrated Manufacturing.

If you want to find out more about the intelligent approach to eIM,
write us at our North American Headquarters.

Or see us at Booth #2646 at the International Machine Tool Show September 5-13.

MANUFACTURING DATA SYSTEMS INCORPORATED

North American Headquarters
425 1 Plymouth Road, P.O. Box 986
Ann Arbor, Michigan 48 106
U.S.A.
'Telephone: 3 13-995·6000
TWX: 810/2236039

European Headquarters
Hahnstrasse 70
Lyoner Stem
D-6000 Frankfurt/Main 7 1
West Germany
Telephone: 49.61 1 .66.41 .420
'Telex: 8411413591

Asian Headquarters
Koito Building 8F
12-4 Nishi-Shinjuku, 6-Chome
Shinjuku-ku, Tokyo 160
Japan
'Telephone: 8 1 .3.348.45.01
'Telex: 781102324413

© 1984 SCIENTIFIC AMERICAN, INC

tached to particular files, p ipes or devic
es only when the program is executed.

This strategy, called delayed binding,
can greatly increase the versatility of a
program. A sorting routine, for exam
ple, could take its input e ither from a file
or directly from a terminal and could
send its output to another file, to a ter
minal or to a printer. Without delayed
binding a separate routine might be
needed for each possible combination of
source and destination.

Another principle observed in the
construction of the operating system has
the enigmatic name "information hid
ing ." Each level builds on the levels be
low but hides all the internal details of
its operations from the levels above . For
example, the primitive-process manager
at level S creates the illusion that all the
primitive processes on the ready list
are executing in parallel; the details of
queuing, interrupts and so on are invisi
ble to higher levels. A program that
makes use of primitive processes deals
with only a small set of external com
mands for creating and destroying proc
esses, suspending and resuming their
execution and sending and receiving
messages. Similarly, the user-process
manager at level 12 gives the illusion
that each program operates in its own
machine; the creation of the primitive
process, the work space and connections
to input and output ports are hidden.

J ust as no level has access to the inter
nal workings of lower levels, so no lev
el depends on assumptions about high
er levels. The virtual-memory manager
(level 7) m ust have access to the inter
r upt system (level 4) and the -secondary
storage system (level 6), but it knows
nothing of the file structure (level 9).
The stratification of the operating sys
tem aids in its construction because the
levels can be installed and tested one at a
time from the bottom up.

The description of an operating sys
tem given so far is static: the parts

have been listed, but how they work
has not been demonstrated. The state
of the system changes as commands
are executed. The following examples
of system dynamics are based on the
Unix operating system, which incorpo
rates many features of the hypothetical
system discussed above.

The user sees a computer as a large
system with many useful resources.
Some of the resources are programs
stored as binary code that can be execut
ed merely by giving a file name. In a
Unix system this category might include
the date program, compilers for high
level languages, and programs for pre
paring documents, including formatting
programs for tables, equations and or
dinary text. Other elements of the sys
tem are data files, perhaps holding doc
uments of various kinds, including the
"source code" of programs. Hardware

Software development .. .
another good reason
to thinliof Westico.

Westico is the place to get all the
latest Digital Research programs.
We carry a complete line of Digital
Research language processors, de
velopment tools and operating sys
tems, including Concurrent DOS™
with windows. In fact , we ' re the
only source for their CB-68KTM
Compiler and GSX-86™ Program
mer's Toolkit .

And with Westico, you get more
than just the technical expertise
built into every Digital Research

program. You get all the support you
need. Fast, reliable delivery. Expert
technical assistance . Plus, outstand
ing dealer discounts to keep every
independent software vendor smil
ing. Westico offers hundreds of
other software programs in for
mats for over a hundred personal
computers.

So when you' re thinking devel
opment software, think Westico. For
a Westico software catalog and com
plete information, call or write today.

C Cl':K;CU/ In .I. + 86, C ClLM.<OUJ'V"
PUI-86, DR Assembler
Compiler, PascallMT + ,

[j]] DIGITAL
RESEARCH·
We make computers work. �

_ __ ''-___ I Manager, PascalIMT +
CB-86, CP/M-68K, '"'v

Access '"J/' O.".,_>'

'YFS I ICO
The Software Express ServiceTllf
25 Van Zant Street , Norwalk, CT 06855

Telephone (203) 853-6880. Telex 64-3788.

Access Manager. CBASIC Compiler, CBASIC·86, CB·80, CB·86, CP/M-6BK, CB-68K Compiler, Concurrent DOS,
Concurrent PC DOS, Display Manager, Digital Research C, Dr. Logo, DR Graph, DR Draw, FORTRAN 77, GSX-80,

GSX-68K, GSX·86, PascaUMT + , PascaUMT + 86, PascaUMT + 68K, Personal BASIC, PUI-80, PUI·86, DR Assembler
Tools are trademarks of Digital Research Inc.

© Copyright 1984, Westico, Inc. WES-46 105
© 1984 SCIENTIFIC AMERICAN, INC

devices such as terminals, the clock and
printers are also accessible .

The directories listing all these re
sources are arranged in an inverted tree,
with the highest-level directory at the
root. Some directories are reserved for
the use of the system; they might include
d irectories of devices, of commands and
of files holding miscellaneous data such
as the passwords of authorized users. A
d irectory labeled "user" has a subdirec
tory for each person who has an account
on the system, and each user in turn can
create a tree of further subdirectories
in which to store all the files, pipes and
devices he has created.

Most users of the system spend most
of their time employing existing pro
grams, not writing new ones. The de
sign of the operating system, and in par
ticular the principle of input-output
independence, encourages this style of
computing. Most of the programs in
the system libraries are "software parts"
that can work interchangeably with var
ious sources of input and destinations
for output.

When a user "logs in," generally by
giving a password, the operating system
creates a user process that includes a
copy of the shell program. The input to
the shell is connected to the keyboard of
the user's terminal and the output to the
same terminal's d isplay. The shell "lis
tens," without taking any action, until a
full line of input has been typed, sig
naled by the receipt of the carriage-re
turn character. The line is then scanned
to pick out the names of programs being
invoked and the values to be passed as
arguments to those programs. For each
program called up in this way the shell
creates a user process, including a copy
of the executable code for the pro
gram and a work space. The processes

ARGS

are connected according to the data flow
specified in the command line.

Operations of substantial complexity
can be specified in the command lan
guage of the Unix shell. For example,
a sequence of operations that formats a
file named "text" could be set in motion
by the command line

tbl < text l eqn I lptroff > output

Here the first program invoked is fbi,
whose function is to search a file for
descriptions of tables of information
and insert the formatting commands.
The " < " symbol indicates that fbi is to
take its input from the file "text. " The
output of fbi is d irected by a pipe (the
" I " symbol) to the input of eqn, which
supplies formatting commands for any
descriptions of equations. The output
of eqn is then piped to IpfrojJ, another
formatting program that prepares the
rest of the text for printing; the name
of the program is shorthand for "laser
printer typesetter r unoff." Finally, the
" > " symbol indicates that the format
ted document is written in a file named
"output ." It is ready to be sent to a laser
printer, a high-q uality printer that works
much like a photocopying machine .

If the formatting and printing of doc
uments is to be done often, typing such
an elaborate command would soon be
come tedious. Unix encourages the user
to store complicated commands in exe
cutable files called shell scripts that be
come simpler commands. A file named
Ip might be created with the contents

tbl < $ l l eqn l lptroff > $2 .

Here the names of the input and output
files have been replaced by the variables
$ 1 and $2. When the command Ip is in-

tbl <text I eqn I lptrofl -rns -Fern -02 -6 >output
ARGS

G �§ B �§ 1 1Ptrofi I

PORTS PORTS

D D 0

D
I READ I I WRITE I I READ I IWRITE I I READ I

TEXT PIPE 1 PIPE 2

voked, the variables are replaced in turn
by the arguments that follow the com
mand. For example, typing

lp text output

would substitute "text" for $ 1 and "out
p ut" for $2 and so would have exactly
the same effect as' the longer command
given above .

One more small but essential piece of
the operating system needs to be

d iscussed. Given that various compo
nents of the operating system have re
sponsibility for loading all programs
into the machine, the question naturally
arises of how the operating system itself
is loaded and started . The answer is a
"bootstrap sequence." The sequence be
gins with a program of j ust two instruc
tions permanently inscribed in read
only memory and hence present even
when the power is off. This small pro
gram initiates the loading of a some
what larger program from d isk, which
then takes control and loads the operat
ing system itself.

The hierarchical principle we have
applied here to the organization of an
operating system is one that has proved
to be of great utility throughout the nat
ural sciences. After all, structures and
events in the natural world span many
orders of magnitude in space and time
and cannot be grasped all at once: it is
not possible to comprehend the evolu
tion of a galaxy by plotting the trajecto
ries of its constituent atoms. Of all man
made objects computer systems have
the greatest d isparity between the small
est and the largest components. The de
signers of operating systems have begun
to cope with that vast range of scales by
creating a hierarchy of abstractions.

ARGS
1�
2 -Fern
3 -02 - 6

PORTS
0
1
2

IWRITE I

OUTPUT ms MACRO FILE

PROCESS PIPELINE brings together three programs, two pipes and
three files to prepare a text for printing. The first program, tbl, takes
its input from the file nam ed "text" and inserts formatting commands

for tabular matter. The output of tbl is piped to eqll, which does simi
lar formatting of equations. The second pipe carries the text to lptroff,
which completes the formatting; the name of the program stands for

"laser-printer typesetter runoff." Three options to lptroff are given as
arguments in the command line: -IUS instructs the program to open a
"macro" file called "ms" in order to expand abbreviated format codes
found in the text, -FeIU specifies a type font nam ed Computer Mod
ern and -02-6 indicates that only pages 2 through 6 of the output
are to be generated. The output is directed to a file for later printing.

106
© 1984 SCIENTIFIC AMERICAN, INC

• �on
a fraction

puter.

© 1984 SCIENTIFIC AMERICAN, INC

Now theres Macintosh
For the rest of us.

In the olden days, before 1984,
not vel)' many people used computers.

For a vel)' good reason.

complicated you'd have to be a computer
to understand them.

Then, on a particularly bright day
---..., in Cupertino, California, some

particularly bright engineers
had a particularly bright idea:
since computers are so smart,
wouldn't it make more sense

Some particularly bright engineers.' "--_"--II to teach computers about
Not vel)' many people knew how people, instead of teaching people about
And not vel)' many people wanted computers?

to learn. So it was that those vel)' engineers
After all, in those days, it meant worked long days and late nights and

listening to your stomach growl through a few legal holidays, teaching tiny
computer seminars. Falling asleep over silicon chips all about people. How they
computer manuals. And staying awake make mistake; and change their minds.
nights to memorize commands so How they refer to file folders and save

old phone numbers. How they labor for
their livelihoods, and doodle in their
spare time.

For the first time in recorded
computer history, hardware engineers

actually talked to software engineers
in moderate tone; of VOice, and both
were united by a common goal: to build
the most powerful, most portable, most
flexible, most versatile computer not-vel)'
much-money could buy

And when the engineers were
finally finished, they showed us a
personal computer so personable, it can
practically shake hands.

And so easy to use, most people
already know how

They didn't call it the QZ190, 'or
the Zipchip 5000.

They called it Macintosh�"
And now we'd like to show it

to you.

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

3 palettes dbplay availahle tools, line
lI'idtbs, and patterns.

Point. Click.
Th tell Macintosh what you want to

do, all you have to do is point and click.
You move the pointer on the screen

by moving the mouse on your desktop.
When you get to the item you want to
use-click once, and you've selected
that item to work with.

In this case, the pointer appears
as the pencil you've selected to put some
finishing touches on an illustration
you'd like to include in a memo.

}bu're not limited to tlJe work area
you see here. }bu can scroll up and
down, Irji and right.

71Je pOinter beromes whatever tool
)IOU select to work witb - in tbis case,
'a penCil

© 1984 SCIENTIFIC AMERICAN, INC

'Pull-down menu" displays atlyoul'
options.

C l e a r

I n u e rt

To select wbatever you want "cut"
.from tbe screen, just put a rectangle
around it.

Trac e E d g e s
F l i p H o ri z o n t a l
F l i p U e rt i c a l
R o t a t e

Cut.
Once you've completed your illus

tration, you need to cut it out of the
document you created it on, so that you
can put it into the word processing
program you used to write your memo.

To do thiS, you simply use the mouse
to draw a box around the illustration,
which tells Macintosh this is the area
you want to cut.

Then you move the pointer
to the top of the screen where it
says "Edit: ' Hold the mouse
button down and Edit will then
show you a list, or "pull-down
menu" of all the editorial com
mands available. Then pull the
pointer down this menu and
point to the command," Cut; ' high
lighted by a black bar.

Release the mouse button and, zap,
it's done.

Macintosb stores tbe image you've ' 'cut"
out on a "clipboard" in its memory

© 1984 SCIENTIFIC AMERICAN, INC

Macintosh automatically makes room
Jor your illustration in the text.

��'�lIit �� up your people ill marketing, I wanted tv
make !Zapata I the hottest sell ing aU-sport

y.;.)) 1 43-page report at your le1sure, but
th Is really g Ives you everyth ing you need to know.

Paste.
And now, to finish your memo,

bring up MacWrite;" Macintosh's word
processing program. Just pick a place
for your illustration.

In the meantime, your illustration
has been conveniently stored in another
part of Macintosh's ample memory.

To paste the illustration in
to your memo, move the mouse
pointer once again to the Edit
menu at the top of the screen.

This time, you pull the mouse
down until "Paste" is highlighted
by a black bar. Release the mouse
button and, once again, zap.

© 1984 SCIENTIFIC AMERICAN, INC

Witb Macintosb, you can
print out your own Q/fice forms
or stationery in addition to
whatever you print on tbem. Athen./Sport MEMO

From: Nancy Aronson

To: Chris Jordan

Subject: Launching IZapatal

CONFIDENTIAL

Now that you're gearing up your people in marketing. I wanted to
bottom line what's goJng to make IZapata' the h.ottest seiling all-sport

shoe in our Hne.

You can read the attached l -'O-page report at your leisure, but

thIs really gives

And print.
You tell a Macintosh Personal

Computer to print the same way you tell
it to do everything else-move the
mouse pointer to "File" and pull it down
until "Print" is highlighted in a black bar.
And, provided you have a printer, you' ll
immediately see your work in print.

Your work, all your work, and
nothing but your work. Because with
Macintosh's companion printer, Image
writer, you can print out everything you
can put on a Macintosh's screen.

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

!fyou can 2oin�
you can use a Macintosh.

You do i t at baseball games. At the premise that a computer is a lot more
counter in groce!), stores. And eve!)' useful if it's easy to use.
time you let your fingers do the walking. So,

By now, you should be pretty first of all, li�!1 II·: . L :11

and move these objects around.
We put a pointer on the screen,

I D good at pointing. we made
And having mastered the the screen

Mac intosh C lock Trash Can MacPaint MacWri te DoclJlleOl

oldest known method of making layout resemble a desktop, displaying
yourself understood, you've also pictures of objects you'll have no trouble
mastered using the most sophisticated recognizing. File folders. Clipboards.
personal computer yet developed. Even a trash can.

Macintosh. Designed on the simple Then, we developed a natural way
,"._�I!II!!'� for you to pick up, hold,

and attached the pointer to a small,
rolling box called a " mouse:'. The
mouse fits in your hand, and as you
move the mouse around your desktop,
you move the pointer on the screen.

Th tell a Macintosh Personal Com
puter what you want to do, you simply
move the mouse until you're pointing
to the object or function you want. Then
click the button on top of the mouse,
and you instantly begin working with
that object. Open a file folder. Review
the papers inside. Read a

memo. Use a calculator. And so on.
And whether you're working with

numbers, words or even pictures,
Macintosh works the same basic way.
In other words, once you've learned
to use one Macintosh program, you've
learned to use them all.

If Macintosh seems extraordinarily
simple, it's probably because conven
tional computers are extraordinarily
complicated.

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

If you have a desk,
you need a Macintosh.

Macintosh was designed for anyone dormitory, Macintosh isn't just a tool,
who handles, collects, distributes, but a learning tool. For doing everything
interprets, organizes, files, comprehends, from problem sets in Astrophysics 538
generates, duplicates, or otherwise futzes to term papers in Art Appreciation 10l .
with information. Not to mention perfecting skills in

Any information. Whether it's words, programming languages like Macintosh
numbers or pictures. BASIC and Macintosh Pascal. Which

We've narrowed it down to anyone explains why colleges and universities
who sits at a desk. across the country are ordering Mac-

If, for example, your desk is in a intoshes by the campus-full.
If you own your own business,

owning your own Macintosh Personal
Computer could mean the difference
between getting home before dark, and
getting home before Christmas. With
software programs like MacWrite,
MacProject,'" MaCIerminal;" MacDraw,'"
MacPaint;"data base managers, business
graphics programs and other personal
productivity tools available from leading
software developers, you can spend more
time running your business, and less
time chasing after it.

�� .. -=..

And even if you work for a company
big enough to have its own mainframe
or minicomputer, Macintosh can fit right
in. It's fluent in DEC®VnOO, Vf52 and
plain old TTY With additional hardware,
it can talk to IBM® mainframes in their
very own 3278 protocols.

If your company has a subsidiary
abroad, your colleagues there can use
all the same tools. Because Macintosh
will be available in international versions
with local conventions (alphabets,
currencies, dates, etc.) .

In other words, wherever there's a
desk, there's a need for a Macintosh.

And the less you can see of your
desktop, the more you could use one.

© 1984 SCIENTIFIC AMERICAN, INC

An ordinary personal computer
maKes Macintosh

even easier to understand.

In 1977, Apple set the first standard
for the personal computer industry with
the first generation Apple II.

In 1981, IBM set the second standard
with their Pc.

And in 1984, Macintosh will set the
third industry standard, redefining the
term "personal computer:'

To give you an idea just how far
the technology has advanced over the
past three years, we're going to compare,
screen-to-screen, the way IBM's PC and
Macintosh perform five typical personal
computer functions.

Take word processing, for example.
Any computer worth its weight in

silicon does an adequate job of shuffling
words. Provided, of course, you know all
the keystroke "command sequences"
to make it happen. And the IBM PC is

no exception.
Macintosh, on the other hand, is

quite an exception.
Using Macintosh's word processing

program, MaCMite, anything and
everything you might want to do with
words can be done with a point-and
click of the mouse.

Mac\Xtite not only shuffles words,
it can shuffle them in many different
type styles and sizes (not to mention
boldface, italics and underlining). So
you can create documents that look like
they came from a typesetter, not a
computer. For your foreign correspond
ence or scientific documents, the
Macintosh keyboard gives you 217 char
acters including accented letters and
mathematical symbols.

But what really separates Macintosh

� pUll Mwn menue a
commands you will tiVfl'"
you can US<!> MacWriu
anotb wor" glmply Ul4

Menu

from the blue suits is its extraordinary
ability to mix text with graphics. You can
actually illustrate your words, memos
and letters with tables, charts and free
hand illustrations composed on other
graphics programs. All by cutting and
pasting with the mouse.

That capability alone makes Mac
intosh its very own foim of communica
tion. A new medium that allows you
to supplement the power of the written
word with the clarity of illustrations.
In other words, if you can't make your
point with a Macintosh, you may not
have a point to make.

Actually, the difference between
Macintosh and the IBM PC becomes
obvious the minute you twn both of
them on.

The two screens top right show you

© 1984 SCIENTIFIC AMERICAN, INC

precisely how each of them greets you.
Notice the IBM presents you with a
laundry list of files available for accessing.
And multiple steps are required to "get
at" the particular file you choose to
work with.

Macintosh, on the other hand,
shows you everything you've saved
(charts, graphs, illustrations and docu
ments), pretty much the same way
you'd see them arranged on your desk.
Choose one with the mouse, click, and
you're ready to work.

Even comparing a program as

pr�ing program tor Macilltosll
ports, etc. Cbarl.$, tables, grapbs aDd
g (31l be pasWd Inw MacWrlt.
(31l be empllaSlud by t�i'q

• or changing sizes.

. wp ot the display contain au tbe
r you (31l point, ctlcx, rut and paste,
in8ta.ne&, W reptace � word wltb

named �. trom the �.

commonplace as the electronic spread
sheet clearly shows you that Macintosh
is anything but commonplace.

Microsoft's® Multiplan" for Macintosh
has been designed to take full advantage
of Macintosh's built-in Lisa 'Technology
-clumsy cursor keys are replaced by a

point-and-click of the mouse.
Let's say you want to change the

width of a column in your spreadsheet.
On the IBM PC, that's a 4-key command
sequence. On Macintosh, you simply
move the pointer and click.

Should you need to make a few
quick computations before entering new
spreadsheet figures, you can use the
built-in desk calculator, for example.

When it comes to business graphics,
in all fairness, IBM has color and bar

the additional cost to add the color card
and separate color monitor required to
make use of them.

When you compare the actual unit
you purchase initially with our Mac
intosh, the IBM PC not only comes up
short a few bar and pie charts, it draws
a complete blank.

Macintosh uses its graphics program,
Microsoft's Chart, to tum numbers no
body understands into charts and graphs
that everybody understands. With it,
you can "cut" numbers you want charted
from another Macintosh program and

Business graphics bifore Madntosb.

"paste" them directly into Chart. Just
choose the style of chart you want from
a "pull-down" selection of pie and
bar charts, line and scatter graphs. Then
customize your graph with legends
and labels in whatever type style your
little chart requires.

There is one thing that the IBM PC
manages to do as well as Macintosh:
IBM 3278 terminal emulation, so you
can communicate with heftier IBM's.

But with MaCThrrni.nal software,
your Macintosh can also fully emulate
all the popular DEC terminals.

Madntosb's Finder

Microsqft's Multiplan for Madntosb.

Microsqft's Cbart for Madntosb.

charts to spare. Provided you can spare Tenninal emulation bifore Madntosb. Matrerrninal

Comparisons made using standard conjiguration Madntosb and IBM PC (5150 2-disk unit, 256K bytes RAM, 5151 lIIonitor). Not/ember 5, 19H3

© 1984 SCIENTIFIC AMERICAN, INC

And heres where
ordinarY. personal computers

draw a blank.
You've just seen some of the logic,

the technology, the engineering genius
and the software wizardry that separates
Macintosh from conventional computers.

virtually any image the human hand
can create. Because the mouse allows the
human hand to create it.

MacPaint gives you total freedom

able by enlarging MacPaint illustrations
or making transparencies for overhead
projection. Or clarify a memo or report
by " cutting out" your illustration and

---------------------..... "pasting" it into your text.

MacPaint proiuces uiltualO! any image the human hand can create.

Now, we'd like to show you some to doodle. To cross-hatch. To spray paint.
of the magic. To fill-in. To erase.

First, there's MacPaint. A program And even if you're not a terrific
that transforms Macintosh into a artist, MacPaint includes special tools
combination architect's drafting table, for designing everything from office
artist's easel and illustrator's sketch pad. forms to technical illustrations. Plus

WIth MacPaint, for the first time, type styles to create captions, labels and
a personal computer can produce headlines.

So you can have custom-designed
graphics without hiring a design studio.
Make your presentations more present-

What MacPaint does
for helping you visualize
your wildest imaginings,
MacProject does for help
ing you visualize the
unforeseen.

You simply enter all
the tasks and resources
involved in a project
whether it's opening a
new office or producing
a brochure-and
MacProject will chart the

"critical path" to com
pletion, calculating dates
and deadlines. If there's
a single change in any
phase of the project, it
will automatically recal
culate every phase.

So with MacProject,
you can generate business
plans and status reports
that reflect the realities

of the job, not the limitations of your
computer.

But more important than the
practical benefits of programs like
MacPaint and MacProject, they represent
the very tangible difference an attitude
can make.

An attitude that the only thing

© 1984 SCIENTIFIC AMERICAN, INC

limiting what a computer can do, is the
imagination of the people creating it.

Not just the engineers who design it,
but software developers like Lotus®
Development Corporation, currently
developing a Macintosh version of their
1 -2-3'"program.

And Software Publishing Corp. ,
with a newpfs:® filing program as easy to
use as the Macintosh it was designed for.

And Microsoft, with Productivity
Tools, like Multiplan, Chart, File andWord.

MacProjf£t does for project management what
VisiCaIc® did.fOr spreadsheets.

If Macintosh has an extraordinary
future ahead of it, it's because of the
extraordinary people behind it.

" lbcreatea newstand
ard takes something
that's not just a little
bit different It takes
something that's really
new and captures
poople's imaginations.
Macintosh meets that
standard" - Bill
Gates, Chairman if
the Board & CEO
MicrQ5qft Corporation.

\

"Macinta5h is much sets a whole new
more natural, intuitive standard, and we want
and in line with how oor products to take
people think and advantage if this." -
work . . . this is going to Mitch Kapor, PrfSident
change the way people & CEO, Lotus Develop-
think aboot personal ment Corporation.
_ Madnimh /

"If yoo were to put
machine 'x" on the
table and a Macinta5h
on the table beside It,
and then put pj sqft
ware on both macbines
. . . like a taste test . .
we think Macinta5b's
bentifits W()U/d be pretty
obvious." -Fred
Gibbons, President,
Sqftware Publishing
CorporatiOn.

MacPaint can create both .freehand sketches and
pr££ise tf£hnical illustrations

----------------�

ABCDEFGHIjKLMNOPQRSTU
abcdefghijklmnopqrstuvwxyz ABCDE
....,....jl.I-.-MfZ- 'tlD'GK:l�
abcdefghijklml'lOPQrstuvwxyz ABCD
... kft: .. i.I t.sl . • ..,' l.-.c:t
'*'IIfltIM- E b . ee

If yoo don't see a lJPiface yoo like here,
Macinta5h leJs yoo dfSign yoor own.

Microsqft's Cbart dispklys a more graphic
approach to business graphics.

Using insets with MacPaint, yoo can even
illustrate your illustrations.

-------,

With Macinta5h's unlimited graphics, there'll soon
be no limit to the games it can pkly

© 1984 SCIENTIFIC AMERICAN, INC

What makes Macintosh tick.
And, someday, talk.

Macintosh has a lot in common
with that most uncommon computer,
the Lisa'"personal office system.

The garden vari
ety 16-bzt 8088
microprocessor.

i

i'" "" ... _ ... r ('

Macintosh's 32-bit MC68000 microprocessor.

Its brain is the same blindingly
fast 32-bit Mc68000 microprocessor
far more powerful than the 16-bit 8088
found in current generation computers.

Its heart is the same Lisa Thch
nology of windows, icons, pull-down
menus and mouse commands -all of
which makes that 32-bit power far more
useful by making Macintosh far easier
to use than current generation computers.

And, thanks to its size, if you can't
bring the problem to a Madntosh,
you can always bring a MaCintosh to

the problem. (MaCintosh actually
weighs 9 pounds less than the most
popular "portable ')

Small potprint
Macintosh is
1/3 the size
and volume if
the IBMPC

Another miracle of miniaturization
is Macintosh's built-in 31h /I microfloppy
drive. Its 31h /I disks store more than
conventional 5 1h /I floppies-400K So
while they're big enough to hold a desk
full of work, they're small enough to fit
in a shirt pocket.

And speaking of talking, Macintosh
has a built-in polyphonic sound generator
capable of produdng high quality speech
or music.

Standard 5 -1/4"
jkJppy disk.

Macintosh's 400K On the back of the machine, you'll
3-1/2" disk. find built-in RS232 and RS422 AppleBus

--,..---- serial communications ports. Which
means you can connect printers,

The inside story -a rotating
ball and optical sensors trans
late movements o/the mouse
to Macintosh's screen pointer
with pin -point accuracy.

modems and other peripherals without
adding $150 cards. It also means that
Macintosh is ready to hook in to a local
area network. (WIth AppleBus, you can
interconnect up to 16 different Apple ®
computers and peripherals.)

Should you wish to double
Macintosh's storage with an external disk
drive, you can do so without paying
extra for a disk controller card -that
connector's built-in, too.

And, of course, there's a built-in
connector for Madntosh's mouse,
a feature that costs up to $300 on
computers that can't even run mouse
controlled software.

Of course, the real genius of
Macintosh isn't its serial ports or its
polyphonic sound generator.

The real genius is that you don't
have to be a genius to use a Madntosh.

You just have to be smart ..-::::�;ijijiii""
enough to buy one.

© 1984 SCIENTIFIC AMERICAN, INC

13.5"

'. \

- 10.9"--

9" high resolution
512 x 342
pixel bit-mapped
display

Brightness
control

128K bytes RAM

Buili-in 3-1/2"
disk drive.

-- 9 7"
-

Ultra compact, switching -type
power supply and high
resolution video
circuitry.

Keyboard connector
-a telephone-type jack you
already know how to use.

I�

ronnector.

AppI. 1Ind 1M APSU logo ... , ... t.t.tecI l,ildefMl'UofAppleCor!oputef,lnc

Polyphonic sound port.

RS232, RS422 AppleBus serial
communications ports for printers,
modems and other periphe.rals.

Built-in handle for getting
carried away

Thanks to cleve.r venting,
Madntosh requires no
internal jim

32-bit Motorola MC68000
microprocessor

Macintosh's digital
board - the processing
powe.r qf an entire 32 -bit
digital graphics rompute.r
in 80 square inches.

© 1984 SCIENTIFIC AMERICAN, INC

What to give the computer
that 11as eve

· g.
Macintosh comes well outfitted.

111e �tem includes the main unit
(computer, display, built-in disk drive
and firmware), a detached keyboard
you can put wherever it feels most com
fortable, the mouse, a System Disk
(Finder and Desk Accessories), a Guided

Tour of Macintosh tutorial disk and audio
cassette, and one (count it), one manual.

Everything you'll need to start doing
everything you'll need to do.

But, should your needs suddenly
expand, so can Macintosh. As easily as
putting a plug in a socket.

. 1 J J J J .1 I j J J

Security Kit. Being ffansporf£lhle is one if Macintosb s
many advantages. Provided it doesn't go anywhere
without you. This specially designed secun'ty kit makes
sure it doesn't Metal plmes snap into tbe main unit
and keyboard Then, a sffong, steel cable loops through
and locks to your desk.

Apple Imagewriter Printer. Imagewriter
produces bighjidelity printed copy
if everything you see on a Macinta;b
screen. Multiple fonts. Pictures. Pro
portional tm. Mixed tm and grapbics.
And it prints on both sheetfed and
ffaawfed�per. nsf�, qwd and
inexpensive.

Apple Numeric KeJpad.
Patterned ajer the
standard acmuntants
cal.culatw 10-key pad, the
Numeric Keypad speeds
up doing spreodsheets,
acmunting, any number
if number-related tasks.
It plugs dittdly into tbe
keyboard, and works with
Macintash applications .

(
.-J

Apple Modem. Using MaCf'erminal, a
standard telephone and tbe Apple Modem,
you can plug yourselfinto electronic
infwmation services like Dow jones News/
Rdneval,'" The Source'" and CompuServe.®
Or communicate with other computers.
It operates completely automatically, with
both auto-dial and auto-answer, and
COliles in 300 and 300/1200 baud models.

© 1984 SCIENTIFIC AMERICAN, INC

Macintosb £A1ernal Disk Drive. By
adding a second bigb-capacity (400K
bytes) 3-1/2"disk drive like tbe one
already budt into your Macintosb,
you can access more documents and
programs witbout swapping disks. It
also speeds
making back
up copies if
your infor
mation

Sqfl Carrying Case. At less
tban 20 pounds in weigbt,
Macintosb is easily canied
}rom bere to tbere. But bandies
always belp. Tbis durable,
water-resistant carrying case
is tbickly padded so tbe
Macintosb main unit,
keyboard, mouse, manual
and disks}it snugly inside.

© 1984 SCIENTIFIC AMERICAN, INC

AWie, the AWie �, Ma<.\\lite, MacPaint, MaCJenninal,
MacProj<a, MacDraw and U\a are trademarks of AWie
Computer, Inc.
Macinu.h is a trademarl< licmsed to AWie Computer. Inc.

DlM is a regisIfred trademark of Intematiooal Busine!s pi;, is a reg;.ered trademark of Software P\Jblishing
Machine; Capocation. (.apor.nioo.

1-2-3 and Wus are tr:ukmarks of Wus 1lM1'1Jf11"" VisiCalc is a reg;.ered trademarl< ofV.iCap. Capocation.

Da.v jones NeIIs/Re!riMl is a trademark of Da.v jones &
Compan� Inc.
CompuSe!w is a reg;.ered trademark of ComJ'lSe!w Cap.

The Soorre is a S<lViC611ark of Soorre 1eleComputing _ is a trademark of MimJPro lntematiooal Capor.uioo.
DEC is a regisIfred trademarl< of Digital Equipment Capor.uioo. MiaUlOft 0; a regisIfred trademarl< ofMiau;o!i Capor.uioo. Capocation, a sut.idiruyofThe Reader.; Dige;t A=iatloo, Inc.

Printed in l&\.
Multiplan is a trademarl< of Miau;o!i Capocation.

We could, as they say in com
puterese, dump another Gigabyte (write
another 50,000 or so pages) on
Macintosh.

But you really can't appreciate how
insanely great Macintosh is until you
bring your index finger to an authorized
Apple dealer.

Over 1,500 of them are eagerly
waiting to put a mouse in your hand.
1b prove that, if you can pOint, you can

-' -' '" - �
use a Macintosh.

And if you can
fill out a credit
application, in most

cases you can take one home the very
same day. With the help of an Apple
credit card.

Which makes owning the world's
newest computer just as easy as using it.

Soon there'll be just two kinds
of people. Those who use computers.

And those who use Apples.
I..

For an authon'zed Apple dealer nearest you call (800) 538 ·9696 In Canada, call (800) 268 -7796 or (800) 268-7637. © 1984 Apple Computer Inc.

© 1984 SCIENTIFIC AMERICAN, INC

ADVERTISI NG SALES OFFICES: N EW YOR K (212) 661 -6040 · DETROIT (313) 874- 181 8 · LOS AN GELES (213) 738-6003 · CHI CAGO (312) 938-4223
1 27

© 1984 SCIENTIFIC AMERICAN, INC

It's called Macintosh. And it
has a lot of our personality.

We're called Microsoft: And
our part of Macintosh is five new
programs that are bright, intuitive,
outgoing, understanding and
born to perform.

Microsoft BASIC Our pride, vour J·O'1. on Apple's new Macintosh , ' , ..

Taking advantage of Macintosh's mouse and rich
graphics, we've designed
software that works like
you, even thinks like you.

All our programs share .. lIiiiiiiiiiiiiiiiiiiiill

the same plain English Microsoft Multiplan Microsoft Chad

commands. So what once took days to learn, now takes
hours or minutes to learn with Macintosh.

Meet the fatnily.
Our financial whiz is MULTIPlAN� an electronic

spreadsheet that actually remembers how you work. Even
offers suggestions on spreadsheet set-up.

When it comes to writing, nothing will travel faster than

Mic rosofr and Multiplan are registered trademarks of Microsoft Corporation. Apple is (l registered trademark and Macintosh is a trademark licensed to Apple Compu(er, Inc .

© 1984 SCIENTIFIC AMERICAN, INC

our best features.
our WORD, available this Fall. Using the mouse, it will
let you select commands faster than you can say "cheese:'

Our most artistic child will be CHARI Available
late this Summer.

It gives you 42 presentation--quality chart and graphic
styles to choose from.

Later this year, we'll offer our . most manageable
child, FILE, an advanced personal MICROSOFt
record management program. The High Performance Software

And BASIC, the language spoken by nine out of ten
. . � ' .. . - --'-.::._- --' - . microcomputers world--
�j!���� · wide, is the granddaddy

IJlJ/q Itft:ll -.ripl Uld ...,w::ripC. d:bpk,.,._ Ue �

f th all .�-===-IO�_lMtIIiIiIJIo_1na l..:kila'.fHa. ..

• ... ' ,··,"", __ tl .. --.-. 1llpI.
', , ' 0 em plU fOnI:5 U1d.iza. : f::: _ •

• ��\O"..:.uddlldl:Jo'paiIIlbotoentt tkt n , 1 745"''' '''' 101(

nh ed _1 _ :�.:-.. -:':�"'-�==:':' :�i;' •. :.�1'::.:r�':., Now e anc to taKe
Microsoft Word Microsoft File full advantage of the

Macintosh mouse, windows and graphics.
So call 800--426--9400 (in Washington State, Alaska

and Hawaii call 206--828--8088) for the name of your
nearest Microsoft dealer.

© 1984 SCIENTIFIC AMERICAN, INC

The sonata is tough for her to play on the violin.

SPECIFIER: THE

SUBJECT: NUMBER: SINGULAR

PREDICATE: 'sonata'

TENSE: PRESENT

PREDICATE: 'be «IADJECTIVAL COMPLEMENT» '

SUBJECT

PREDICATE: 'tough < (I SENTENTIAL COMPLEMENT) >'

SUBJECT: PREDICATE: 'her'

ADJECTIVAL
COMPLEMENT:

SENTENTIAL
COMPLEMENT:

TO: +

INFINITIVE: +

PREDICATE:

OBJECT

PREPOSITIONAL CASE: ON

ON:

REPRESENTATION OF A SENTENCE in a way that makes ex
plicit the linguistic relations among its parts has been a goal of the sci
ence of linguistics; it is also a necessary aspect of the effort to design
computer software that "understands" lauguage, or at any rate can
draw inferences from linguistic input. In this illustration a sentence is
given in "functional structure" form, which has the property that

130

OBJECT:

SPECIFIER: THE

NUMBER: SINGULAR

PREDICATE: 'violin'

when part of a sentence plays a role in another part, the former is
"nested" in the latter. The nesting is shown by placing one box in
another, or (in three places) by a "string." The sentence was analyzed
by Ronald M. Kaplan and Joan Bresnan of Stanford University and
the Xerox Corporation's Palo Alto Research Center. Another func
tional-structure diagram appears in the illustration on pages 142-143.

© 1984 SCIENTIFIC AMERICAN, INC

Computer Software
for Working with Language

Programs can manipulate linguistic symbols with great facility,

as in word-processing software, but attempts to have computers

deal with meaning are vexed by ambiguity in human languages

In the popular mythology the comput
er is a mathematics machine: it is
designed to do numerical calcula

tions. Yet it is really a language ma
chine: its fundamental power lies in its
ability to manipulate linguistic tokens
symbols to which meaning has been as
signed. Indeed, "natural language" (the
language people speak and write, as
distinguished from the "artificial" lan
guages in which computer programs are
written) is central to computer science.
Much of the earliest work in the field
was aimed at breaking military codes,
and in the 1950's efforts to have com
puters translate text from one natural
language into another led to crucial
advances, even though the goal itself
was not achieved. Work continues on
the still more ambitious project of mak
ing natural language a medium in which
to communicate with computers.

Today investigators are developing
unified theories of computation that em
brace both natural and artificial lan
guages. Here I shall concentrate on the
former, that is, on the language of every
day human communication. Within that
realm there is a vast range of software to
be considered. Some of it is mundane
and successful. A multitude of micro
computers have invaded homes, offices
and schools, and most of them are used
at least in part for "word processing."
Other applications are' speCUlative and
far from realization. Science fiction is
populated by robots that converse as if
they were human, with barely a mechan
ical tinge to their voice. Real attempts to
get computers to converse have run up
against great difficulties, and the best of
the laboratory prototypes are still a pale
reflection of the linguistic competence
of the average child.

The range of computer software for
processing language precludes a com
prehensive survey; instead I shall look
at four types of program. The pro
grams deal with machine translation,
with word processing, with question an-

by Terry Winograd

swering and with the adjuncts to elec
tronic mail known as coordination sys
tems. In each case the key to what is
possible lies in analyzing the nature of
linguistic competence and how that com
petence is related to the formal rule
structures that are the theoretical basis
of all computer software.

The prospect that text might be trans
lated by a computer arose well be

fore commercial computers were first
manufactured. In 1949, when the few
working computers were all in military
laboratories, the mathematician Warren
Weaver, one of the pioneers of com
munication theory, pointed out that the
techniques developed for code break
ing might be applicable to machine
translation.

At first the task appears to be straight
forward. Given a sentence in a source
language, two basic operations yield the
corresponding sentellce in a target lan
guage. First the individual words are
replaced by their translations; then the
translated words are reordered and ad
justed in detail. Take the translation of
"Did you see- a white cow?" into the
Spanish "/ fl:iste una vaca blanca?" First
one needs to know the word correspon
dences: "vaca" for "cow" and so on.
Then one needs to know the structural
details of Spanish. The words "did" and
"you" are not translated directly but
are expressed through the form of the
verb "viste." The adjective "blanca" fol
lows the noun instead of preceding it as
it does in English. Finally, "una" and
"blanca" are in the feminine form corre
sponding to "vaca." Much of the early
study of machine translation dwelt on
the technical problem of putting a large
dictionary into computer storage and
empowering the computer to search ef
ficiently in it. Meanwhile the software
for dealing with grammar was based on
the then current theories of the struc
ture of language, augmented by rough
and-ready rules.

The programs yielded translations so
bad that they were incomprehensible.
The problem is that natural language
does not embody meaning in the same
way that a cryptographic code embodies
a message. The meaning of a sentence in
a natural language is dependent not only
on the form of the sentence but also on
the context. One can see this most clear
ly through examples of ambiguity.

In the simplest form of ambiguity,
known as lexical ambiguity, a single
word has more than one possible mean
ing. Thus "Stay away from the bank"
might be advice to an investor or to a
child too close to a river. In translating it
into Spanish one would need to choose
between "orilla "and "banco," and noth
ing in the sentence itself reveals which is
intended. Attempts to deal with lexical
ambiguity in translation software have
included the insertion of all the possibil
ities into the translated text and the sta
tistical analysis of the source text in an
effort to decide which translation is ap
propriate. For example, "orilla" is likely
to be the correct choice if words related
to rivers and water are nearby in the
source text. The first strategy leads to
complex, unreadable text; the second
yields the correct choice in many cases
but the wrong one in many others.

In structural ambiguity the problem
goes beyond a single word. Consid

er the sentence "He saw that gasoline
can explode." It has two interpretations
based on quite different uses of "that"
and "can." Hence the sentence has
two possible grammatical structures,
and the translator must choose between
them [see bottom illustration on page 133].

An ambiguity of "deep structure" is
subtler still: two readings of a sentence
can have the same apparent grammati
cal structure but nonetheless differ in
meaning. "The chickens are ready to
eat" implies that something is about to
eat something, but which are the chick
ens? One of the advances in linguistic

13 1
© 1984 SCIENTIFIC AMERICAN, INC

theory since the 1950's has been the de
velopment of a formalism in which the
deep structure of language can be repre
sented, but the formalism is of little help
in deducing the intended deep structure
of a particular sentence.

A fourth kind of ambiguity-semantic
ambiguity-results when a phrase can
play different roles in the overall mean
ing of a sentence. The sentence "David
wants to marry a Norwegian" is an ex
ample. In one meaning of the sentence
the phrase "a Norwegian" is referential.
David intends to marry a particular per
son, and the speaker of the sentence has
chosen an attribute of the person-her
being from Norway-in order to de
scribe her. In another meaning of the
sentence the phrase is attributive. Nei
ther David nor the speaker has a partic
ular person in mind; the sentence simply
means that David hopes to marry some
one of Norwegian nationality.

A fifth kind of ambiguity might be
called pragmatic ambiguity. It arises
from the use of pronouns and special
nouns such as "one" and "another."
Take the sentence "When a bright moon
ends a dark day, a brighter one will
follow." A brighter day or a brighter
moon? At times it is possible for trans
lation software to simply translate the
ambiguous pronoun or noun, thereby
preserving the ambiguity in the transla
tion. In many cases, however, this strat
egy is not available. In a Spanish trans
lation of "She dropped the plate on the
table and broke it," one must choose ei
ther the masculine "10" or the feminine
"Ia" to render "it." The choice forces
the translator to decide whether the
masculine "plato" (plate) or the femi
nine "mesa" (table) was broken.

In many ambiguous sentences the
meaning is obvious to a human reader,

Did you see

a 1 1 1 - tu ver

b 1/
i Viste

C 1
i Viste

but only because the reader brings to the
task an understanding of context. Thus
"The porridge is ready to eat" is unam
biguous because one knows porridge is
inanimate. "There's a man in the room
with a green hat on" is unambiguous
because one knows rooms do not wear
hats. Without such knowledge virtually
any s�ntence is ambiguous.

Although fully automatic, high-quality
n machine translation is not feasible,
software is available to facilitate trans
lation. One example is the computeriza
tion of translation aids such as diction
aries and phrase books. These vary from
elaborate systems meant for technical
translators, in which the function of
"looking a word up" is made a part of a
multilingual word-processing program,
to hand-held computerized libraries of
phrases for use by tourists. Another
strategy is to process text by hand to
make it suitable for machine transla
tion. A person working as a "pre-editor"
takes a text in the source language and
creates a second text, still in the source
language, that is simplified in ways fa
cilitating machine translation. Words
with multiple meanings can be eliminat
ed, along with grammatical construc
tions that complicate syntactic analysis.
Conjunctions that cause ambiguity can
be suppressed, or the ambiguity can be
resolved by inserting special punc
tuation, as in "the [old men] and [wom
en]." After the machine translation a
"post-editor" can check for blunders
and smooth the translated text.

The effort is sometimes cost-effective.
In the first place, the pre-editor and post
editor need not be bilingual, as a transla
tor would have to be. Then too, if a sin
gle text (say an instruction manual) is to
be translated into several languages, a

a

1
un

1
un

1
una

white cow ?

1 1
blanco vaca?

X
vaca blanco?

1 1
vaca blanca?

MACHINE TRANSLATION of text from one language into another was thought to be quite
feasible in the 1950's, when the effort was undertaken. In the first step of the process (a) the
computer would search a bilingual dictionary to find translations of the individual words in a
source sentence (in this case Spanish equivalents of the words in the sentence "Did you see a
white cow? "). Next the translated words would be rearranged according to the grammar of the
target language (b). The changes at this stage could include excision or addition of words. Final
ly, the morphology of the translation (for example the endings of words) would be adjusted (c).

1 3 2

large investment i n pre-editing may be
justified because it will serve for all the
translations. If the author of the text
can be taught the less ambiguous form
of the source language, no pre-editor
is needed. Finally, software can help in
checking the pre-edited text to make cer
tain it meets the specifications for input
to the translation system (although this
is no guarantee that the translation will
be acceptable).

A machine-translation system em
ploying pre- and post-editing has been
in use since 1980 at the Pan-American
Health Organization, where it has trans
lated more than a million words of text
from Spanish into English. A new sys
tem is being developed for the European
Economic Community, with the goal of
translating documents among the offi
cial languages of the community: Dan
ish, Dutch, English, French, German,
Greek and Italian. Meanwhile the the
oretical work on syntax and meaning
has continued, but there have been no
breakthroughs in machine translation.
The ambiguity pervading natural lan
guage continues to limit the possibili
ties, for reasons I shall examine more
fully below.

I turn next to word processing, that is,
to software that aids in the prepara

tion, formatting and printing of text.
Word processors deal only with the
manipulation and display of strings of
characters and hence only with superfi
cial aspects of the structure of language.
Even so, they pose technical problems
quite central to the design of computer
software. In some cases the end prod
uct of a word-processing program is no
more than a sequence of lines of text.
In others it is a complex layout ·of ty
pographic elements, sometimes with
drawings intercalated. In still others it
is a structured document, with chapter
headings, section numbers and so on,
and with a table of contents and an in
dex compiled by the program.

The key problems in designing word
processing software center on issues
of representation and interaction. Rep
resentation is the task of devising data
structures that can be manipulated con
veniently by the software but stilI make
provision for the things that concern the
user of the system, say the layout of the
printed page. Interaction tj:lkes up the
issue of how the user expresses instruc
tions and how the system responds.

Consider the fundamental problem of
employing the data-storage devices of a
computer to hold an encoded sequence
of natural-language characters. The first
devices that encoded text were card
punch and teletype machines, and so the
earliest text-encoding schemes were tai
lored to those devices. The teletype ma
chine is essentially a typewriter that con
verts key presses into numerical codes
that can be transmitted electronically;

© 1984 SCIENTIFIC AMERICAN, INC

'ijBASE Ilgave us something
that money can't buy."

Richard Sommers
Lead Programmer/Analyst

at a major health
maintenance organization.

"dBASE II gave us time.
"And in the research

battle against breast cancer,
time is an invaluable
weapon.

"Our research people
are not computer people.
They're doctors and nurses.
So I had to write a customized
1ayman's' application for them very fast�'
liMy program development speed

even impressed me�'
"Using dBASE II, the relational

database management system (DBMS)
from Ashton-Tate, I was able to quickly
develop a very large and sophisticated
program for research data storage and
analysis. The real beauty of the new
program is its speed and ease of use.
A simple two-word command starts the
program, so data can be entered much
faster. And when our researchers need
to query the database, they ask their
questions in English using medical
terminology familiar to them, without
having to deal with computerese.

"In the past few months, I've
recommended dBASE II to at least four
of my programming colleagues in other
hospitals�'

-

Put time on your side
with dBASE II.

When you're customizing an
applications program and fighting the
clock at the same time, you won't firid
a faster, more flexible solution than
dBASE II* from Ashton-Tate. We'll be
glad to rush you all the details. Ashton
Tate, 10150 West Jefferson Boulevard,
Culver City, CA 90230. (800) 437-4329,
Ext. 217. In Colorado, (303) 799-4900.
In the U.K., call (0908) 568866.

ASHTON .TA1E

'Suggested retail price, $700.
dBASE II is a registered trademark of Ashton-Tate.

©Ashton-Tate 1983

© 1984 SCIENTIFIC AMERICAN, INC

America's largest household products company
�o they know something yourcompanydoesn't?

Ask them. They're Procter & Gamble.
Motorola is a world leader in advanced electronics
for memory, logic and voice and data communications.

© 1984 SCIENTIFIC AMERICAN, INC

relies on our business information systems.

® MOTOROL.A / Four-Phase Systems

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

thus there are teletype codes for most
of the keys on a typewriter. The codes
inc! ude the alphabetic characters A
through Z, the digits 0 through 9 and
common punctuation marks such as the
period and the comma. Standards are
harder to establish, however, for sym
bols such as #, @, ¢ and) . And what
about keys that print nothing, such as
the tab key, the carriage-return key and
the backspace key?

The difficulties that arise in choos
ing standards can be illustrated by one
peculiarity of text encoding. The tele
type code distinguishes between a car
riage return (which returns the type car
riage to the beginning of the line with
out advancing the paper) and a line feed
(which advances the paper without re
positioning the carriage). Hence the end
of a line is marked by a sequence of
two characters: a carriage return and a
line feed. One code would suffice, and
so some programs eliminate either the
carriage return or the line feed, or they
replace both characters with another
code entirely. The problem is that vari
ous programs employ different conven
tions, so that lines encoded by one pro
gram may not be readable by another.

The problems become worse when a
full range of characters-punctuation
marks, mathematical symbols, diacriti
cal marks such as the umlaut-is consid
ered. Moreover, word processing is now
being extended to languages such as
Chinese and Japanese, which require
thousands of ideographic characters,
and to languages such as Arabic and
Hebrew, which are written from right
to left. Coding schemes adequate for
English are useless for alphabets with
thousands of characters. It should be
said that the schemes continue to vary
because political and economic forces
play a role in the design of computer
systems. A given manufacturer wants to
promulgate a standard that suits its own
equipment; thus some present-day stan
dards exist because they were offered by
a vendor that dominates a market. On
the other hand, technical matters such
as the efficiency of certain software run
ning on certain hardware perpetuate dif
ferences in detail. It will be quite a while
before universal standards emerge and
users gain the ability to transport text
from one word-processing system to
any other.

Encoding schemes aside, there is the
form of the letters themselves. On a
typewriter keyboard an A is simply an
A. Typographically, however, an A is
an A or an A or an A. In the new field
of digital typography the computer is a
tool for the design and presentation of
forms of type. Some of the efforts in
the field are applied to the forms them
selves: in particular the representation
of characters as composites of dots and
spaces. Additional efforts go into the
devising of code for the computer stor-

Stay away from the bank.

bank n 1. the rising terrain that borders a river or lake.

bank n 2. an establishment for the deposit, loan, issuance and transmission of money.

AMBIGUOUS MEANINGS permeate natural languages (that is, languages that people speak
and write) and thus subvert the attempt to have computers translate text from one language into
another. Here lexical ambiguity, the simplest type of ambiguity, is diagrammed. In lexical
ambiguity a word in a sentence has more than one possible meaning. In this case the word is
"bank" (color), which might equally well refer to either a river or a financial institution. A
translator must choose. The following four illustrations show more complex types of ambiguity.

S

NP

I
Pron Verb

I
He I saw

NP

I
Pron Verb

I
He I

saw

He saw that gasoline can explode.

S

VP

S �
NP VP

I �
Noun Aux Verb

I I I
gasoline can explode

VP

s'

I
S

�
NP VP

� I
Det Noun Noun Verb

I I I I
that gasoline can explode

STRUCTURAL AMBIGUITY arises when a sentence can be described by more than one
grammatical structure. Here the conflicting possibilities for the sentence "He saw that gasoline
can explode" are displayed in the form of grammatical "trees." In one of the trees the sentence
has a subordinate clause whose subject is "gasoline" (color); the sentence refers to the recogni
tion of a property of that substance. In the other tree "gasoline can" is part of a noun phrase
(NP) meaning a container of gasoline; the sentence refers to the sight of a specific explosion.

1 3 3
© 1984 SCIENTIFIC AMERICAN, INC

WHAT PEOPLE CARRIED
BEFORE THEY CARRIED

THE CITIBANK PREFERRED
VISA CARD.

The bulging wallet.
Universal symbol of success and

power.
The Citibank Preferred Visa

Card deflates that myth.
We offer you a credit line from

$5,000 to $50,000. T hat's more
than enough to start taking some
credit cards out of your wallet.

You'll also get four times the
acceptance of the American Express
Gold Card. That's another card you
can leave at home.

But most importantly, only
the Citibank Preferred Visa lets you
tap into the worldwide financial
resources of Citicorp. That means
opportunities to invest in CDs, high

interest savings plans,* -even the
chance to buy gold bullion.

And everything you buy with
your card earns you bonuses. You can
use them to get guaranteed savings
on anything from reproductions of
antiques to original works of con
temporary art.

To get all this power behind you,
just fill out the attached
application and send it in.
But you'll need an income
of at least $25,000 to qual-
ify. If you'd like more infor-
mation, call us toll-free
at 800-952-2152.

Then start empty
ing your wallet to make

THE CARD TO END ALL CARDS
• Federal regulations require substantial penalties for early withdrawals from time accounts.

Copyright. Clticorp 1984. Citlbank (South Dakota). N.A. Member FDIC.

room for the Citibank Preferred Visa.
Even though it's just one card,

you'll be carrying a lot more weight.

CITIBAN(O
A CIT/CORP COMPANY

© 1984 SCIENTIFIC AMERICAN, INC

age of text that combines different fonts
(such as Times Roman and Helvetica)
and different faces (such as italic and
boldface).

so far I have dealt only with stored
sequences of characters. Yet one of

the major tasks of a word-processing
program is to deal with margins and
spacing-with the "geography" of the
printed page. In the typesetting language
called TEX commands that specify non
standard characters, change the style of
type, set the margins and so on are em
bedded in the text [see top illustration on
page 138]. A command to TEX is distin
guished from ordinary text by the back
slash character (\). The stored text is
"compiled" by the TEX program, which
interprets the embedded commands in
order to create a printed document in
the specified format.

The compiling is quite complex, and a
good deal of computation is often need
ed to get from code created by means of
a word-processing program to code that
readily drives a printer or a typesetting
machine. An algorithm that justifies text
(fills the full width of each line of type)
must determine how many words will fit
in a line, how much space should be in
serted between the words and whether a
line would be improved by dividing and
hyphenating a word. The algorithm may
also take actions to avoid visual defects
such as a line with wide interword spac
ing followed by a line that is very com
pact. Positioning each line on the page is
further complicated by the placement of
headings, footnotes, illustrations, tables
and so on. Mathematical formulas have
their own typographic rules.

TEX and similar programs are prim
itive with respect to another aspect of
word processing: the user interface. The
high-resolution display screens becom
ing available are now making it pos
sible for the computer to display to
the user a fair approximation of the
pages it will print, including the place
ment of each item and the typeface to
be employed. This suggests that the user
should not have to type special com
mand sequences but might instead ma
nipulate page geography directly on the
screen by means of the computer key
board and a pointing device such as
a "mouse." The resulting interface be
tween the computer and the user would
then fall into the class of interfaces
known as WYSIWYG, which stands for
"What you see is what you get."

I t is worth noting that programs for
manipulating text are called d iffer

ent things by different professions. Pro
grammers call them text editors, but
in business and publishing they are re
ferred to as word processors; in the lat
ter fields an editor is a person who works
to improve the quality of text. Comput
er software is emerging to aid in this

NP

�
Del Noun I I
The chickens

NP A
Del Noun

I I
The chickens

NP

A
Del Noun I I
The chickens

s

Aux I
are

S

Aux I
are

The chickens are ready 10 eat.

s

Verb I
are

VP

r
ready

VP

VP

/A
r CTP r

ready to Verb I
eat

AP

S

�
NP VP

A A
De! Noun Verb NP I I I I The chickens eat

AP

/J
r �

ready NP Verb NP

I I A
ea! De! NOrn

I
The chickens

DEEP-STRUCTURAL AMBIGUITY ariscs when a sentcnce has a single apparent structure
but nonetheless has more than one possible meaning. In this example the sentence is "The
chickens are ready to eat." Its grammatical structure (top) leaves the role of the chickens am
biguous: in one interpretation they will eat; in the other they will be eaten. Deep-structure trees
make the chickens' role explicit: they are the subject of the sentence (middle), in which case
their food is undetermined, or they are the object (bottom), and their eaters are undetermined.

135

© 1984 SCIENTIFIC AMERICAN, INC

more substantive aspect of editing. It
deals with neither the visual format of
language nor the conceptual content but
with spelling, grammar and style. It in
cludes two kinds of programs: mecha
nized reference works and mechanized
correctness aids.

An example of a mechanized refer
ence work is a thesaurus program de
signed so that when the writer desig
nates a word, a list of synonyms appears
on the display screen. In advanced sys
tems the thesaurus is fully integrated
into the word-processing program. The
writer positions a marker to indicate the
word to be replaced. The thesaurus is
then invoked; it displays the alterna
tives in a "window" on the screen. The
writer positions the marker on one of
the alternatives, which automatically
replaces the rejected word.

The design of such a program in
volves both linguistic and computa
tional issues. A linguistic issue is that
the mechanism for looking up a word
should be flexible enough to accept vari
ant forms. For example, the store of in
formation pertaining to "endow" should
be accessible to queries about "en
dowed," "endowing," "endows" and
even "unendowed" or "endowment."
Recognizing the common root in such
words calls for a morphological analy
sis, which can be done by techn iq ues
developed in the course of work on
machine translation. Computational is
sues include devising methods for stor
ing and searching through a thesa urus
or a dictionary, which must be fairly
large to be useful.

A correctness aid deals with spelling,
grammar and even elements of style.
The simplest such programs attempt to
match each word in a text with an en
try in a stored dictionary. Words that
have no match are flagged as possible
misspellings. Other programs look for
common grammatical errors or stylis
tic infelicities. For example, the Writ
er's Workbench software developed at
AT&T Bell Laboratories includes pro
grams that search for repeated words,
such as "the the" (a common typing mis
take), for incorrect punctuation such as
" ?" and for wordy phrases such as "at
this point in time." A different correct
ness aid calls attention to "pompous
phrases" such as "exhibit a tendency"
and "arrive at a decision" and suggests
simpler replacements such as "tend"
and "decide." Still another correctness
aid searches for gender-specific terms
such as "mailman" and "chairman" and
suggests replacements such as "mail
carrier" and "chairperson."

In addition to searching a text for
particular strings of characters, some
correctness-aid programs do statisti
cal analyses. By calculating the aver
age length of sentences, the length of
words and similar quantities, they com
pute a "readability index." Passages that
score poorly can be brought to the writ
er's attention. No program is yet able
to make a comprehensive grammatical
analysis of a text, but an experimen
tal system called Epistle, developed
at the International Business Machines
Corporation, makes some grammatical
judgments. It employs a grammar of

David wants to marry a Norwegian.

3x Norwegian(x) 1\ Want(David,[Marry(David,x)])

Want(David,[3x Norwegian(x) 1\ Marry(David,x)])

SEMANTIC AMBIGUITY arises when a phrase can play different roles in the meaning of a
sentence. Here the roles of the phrase "a Norwegian" become explicit when the sentence "David
wants to marry a Norwegian" is "translated" into a logical form based on the notation called
predicate calculus. According to one interpretation, the speaker of the sentence has a partic
ular person in mind and has chosen nationality as a way to specify who. Hence the sentence
means: There exists (3) an x such that x is Norwegian and (A) x is the person David wants to
marry. According to another interpretation, neither David nor the speaker has any particu
lar person in mind. David might be going to Norway hoping to meet someone marriageable.

She dropped the plate on the table and broke it.

She dropped the plate on the table and broke [the plate).

She dropped the plate on the table and broke [the table).

PRAGMATIC AMBIGUITY arises when a sentence is given more than one possible meaning
by a' word such as the pronoun "it." Suppose a computer is given the sentence shown in the iIIus
tration .. 1f the computer has access to stored knowledge of the grammar of English sentences
but lacks access to commonsense knowledge of the properties of tables and plates, the com
puter could infer with equal validity that the table was broken or that the plate was broken.

136

400 rules and a dictionary of 130,000
words. As with all software that tries to
parse text without dealing with what the
text means, there are many sentences
that cannot be analyzed correctly.

I s there software that really deals with
meaning-software that exhibits the

kind of reasoning a person would use
in carrying out linguistic tasks such as
translating, summarizing or answering a
question? Such software has been the
goal of research projects in artificial
intell igence since the mid- 1960's, when
the necessary computer hardware and
programming techniques began to ap
pear even as the impracticability of
machine translation was becoming ap
parent. There are many applications
in which the software would be use
ful. They include programs that accept
natural-language commands, programs
for information retrieval, programs that
summarize text and programs that ac
quire language-based knowledge for ex
pert systems.

No existing software deals with mean
ing over a significant subset of English;
each experimental program is based on
finding a simplified version of language
and meaning and testing what can be
done within its confines. Some inves
tigators see no fundamental barrier to
writing programs with a full under
standing of natural language. Others ar
gue that computerized understanding of
language is impossible. In order to fol
low the arguments it is important to
examine the basics of how a language
understanding program has to work.

A language-understanding program
needs several components, correspond
ing to the various levels at which lan
guage is analyzed [see illustrations all

pages 138-144]. Most programs deal with
written language; hence the analysis of
sound waves is bypassed and the first
level of analysis is morphological. The
program applies rules that decompose a
word into its root, or basic form, and
inflections such as the endings -s and
-iI/g. The rules correspond in large part
to the spelling rules children are taught
in elementary school. Children learn,
for example, that the root of "baking"
is "bake," whereas the root of "bark
ing" is "bark." An exception list han
dles words to which the rules do not
apply, such as forms of the verb "be."
Other rules associate inflections with
"features" of words. For example, "am
going" is a progressive verb: it signals
an act in progress.

For each root that emerges from the
morphological analysis a dictionary

yields the set of lexical categories to
which the root belongs. This is the sec
ond level of analysis carried out by the
computer. Some roots (such as "the")
have only one lexical category; others
have several. "Dark" can be a noun or

© 1984 SCIENTIFIC AMERICAN, INC

.'

What is the latest R&D activity in Japan in the field
of industrial robots?

What are the market trends for frozen orange juice?
What are the mechanical properties of shape memory materials?

Introducing In-Search - immediate answers to
millions of questions like these �

through DIALOG�
In-Search is an easy-to-use personal computer software
package that lets you instantly retrieve answers to your
questions from DIALOG, the world's largest collection
of online databases.

With In-Search,. your personal computer and
modem, you can access this information over
telephone lines.

All the Answers.
Imagine scanning thousands of articles in
seconds. In-Search can do just that.

In-Search gives you over 80 million
articles from thousands of sources: Newspapers,
magazines, technical journals, investment reports,
wire services, annual reports and the Yellow Pages.

Easy Answers.
1. Type the words or subject you wish to research into

your personal computer.
2. In-Search takes it from there, bringing up all the articles

and references you need.
3. Simple on-screen graphiCS gUide you through

every step.

Fast Answers.
In-Search can find in minutes what could take days or
weeks to find. You can now spend more time using
information because you spend less time tracking
it down.

Once you have the information, you can store it
on disk or print it out. In-Search is compatible with
most word processing programs.

How to get the Answers.
To see a demonstration or to purchase In-Search, call
(408) 986 -1200 for your nearest dealer. Or send this

coupon and $5.00 for a
demonstra tion disk deSigned

for IBM-compatible or TI.
personal computers.

I

�

I 00 MenloCOrporation 0 Enclosed is $5.00 for my
I 00 . In-Search demonstration

4633 Old Ironsides Dr diskette.
Suite 400 0 Please send me a free
Santa Clara, CA 95050 booklet with more details.

NAME

COMPANY

PHONE

ADDRESS

CITY STATE ZIP I
I

MY OCCUPATION IS 104 I
L ____________________ �

137

© 1984 SCIENTIFIC AMERICAN, INC

a \inset
This is a sample of a {\italic justified} piece of text, which contains l\eightpoint small letters {\bold and}} {bigFont big ones}.
It includes foreign words such as \lquote pe\-na\rquote-which is Spanish-and foreign letters like \alpha\ and \aleph,
which can be baffling, and includes one \hskip 1.3in wide space.

b

FONT X-POSI-
e CODE TION

b g o n e s

1000000001000000011101011111101101101001011001 010010011 011101001001000001011010011.
NEW FONT X-POSI- Y-POSI- X-INCRE- SPACE

ENTITY CODE TION TION MENT

c This is a sample of a justified piece of text. which contains small letters and

big ones. It includes foreign words such as "peiia"-which is Span

ish-and foreign letters like a and K which can be baffling. and includes
one wide space.

WORD PROCESSING, that is, the computer-aided preparation and
editing of text, requires several representations of the text, because
the format best for interactions between the software and its user is
not efficient for sending instructions to a printing machine, nor can it
efficiently give a preview of the result of the printing. In the typeset
ting language TEX the user's typed input (a) includes commands that
specify nonstandard characters, change the style of type, set margins

and so on. Such commands are distinguished by a backslash (I). The
TEX software "compiles" the input, producing computer code that will
drive a printing machine (b). To that end the code is divided into "en
tities," each of which specifies the typeface and the starting posi
tion for a sequence of words. Coded "X increments" space out the
words to fill the distance between margins on the printed page; thus
they "justify" lines of type. The printed page (c) shows the result.

an adjective; "bloom" can be a noun or a
verb. In some instances the morpholog
ical analysis limits the possibilities. (In
its common usages "bloom" can be a
noun or a verb, but "blooming" is only
a verb.) The output of the morpholog
ical and lexical analysis is thus a se
quence of the words in a sentence, with
each word carrying a quantity of dic
tionary and feature information. This
output serves in turn as the input to the
third component of the program, the
parser, or syntactic-analysis component,
which applies rules of grammar to de
termine the structure of the sentence.

Two distinct problems arise in design
ing an adequate parser. The first prob
lem is the specification of a precise set of
rules-a grammar-that determines the
set of possible sentence structures in a
language. Over the past 30 years much
work in theoretical linguistics has been
directed toward devising formal linguis
tic systems: constructions in which the
syntactic rules of a language are stat
ed so precisely that a computer could
employ them to analyze the language.
The generative transformational gram
mars invented by Noam Chomsky of
the Massachusetts Institute of Technol
ogy were the first comprehensive at
tempt; they specify the syntax of a lan
guage by means of a set of rules whose
mechanical application generates all al
lowable structures.

The second problem is that of the
parsing itself. It is not always possible to
tell, when a part of a sentence is encoun-

138

tered, just what role it plays in the sen
tence or whether the words in it go to
gether. Take the sentence "Roses will
be blooming in the dark gardens we
abandoned long ago." The words "in
the dark" might be interpreted as a com
plete phrase; after all, they are gram
matically well formed and they make
sense. But the phrase cannot form a co
herent unit in a complete analysis of the
sentence because it forces "Roses will be
blooming in the dark" to be interpreted

as a sentence and therefore leaves "gar
dens we abandoned long ago" without a
role to play.

Parsers adopt various strategies for
exploring the multiple ways phrases can
be put together. Some work from the top
down, trying from the outset to find pos
sible sentences; others work from the
bottom up, trying local word combi
nations. Some backtrack to explore al
ternatives in depth if a given possibil
ity fails; others use parallel processing

Spoken Written

1

language

Phonological
analysis

IJ'

Phonological
rules

2

Phonemes

language

\

Morphological
analysis

I

Morphological
rules

3

Morphemes

�

Lexical
analysis

I

Item
dictionary

COMPUTERIZED UNDERSTANDING OF LANGUAGE requires the computer to draw
on several types of stored data (white boxes) and perform several levels of analysis (colored
boxes). If the language is spoken, the first.analysis is. phonological (1): the computer analyzes
sound waves. If the language is written, the first analysis is morphological (2): the computer de
composes each word into its root, or basic form, and inllections (for example -ing). Next is lexi-

Words

,

•

© 1984 SCIENTIFIC AMERICAN, INC

�

"7

to keep track of a number of alterna
tives simultaneously. Some make use of
formalisms (such as transformational
grammar) that were developed by lin
guists. Others make use of newer for
malisms designed with computers in
mind. The latter formalisms are better
suited to the implementation of parsing
procedures. For example, "augmented
transition networks" express the struc
ture of sentences and phrases as an ex
plicit sequence of "transitions" to be fol
lowed by a machine. "Lexical-function
grammars" create a "functional struc
ture" in which grammatical functions
such as head, subject and object are ex
plicitly tied to the words and phrases
that serve those functions.

Although no formal grammar suc
cessfully deals with all the grammati
cal problems of any natural language,
existing grammars and parsers can han
dle well over 90 percent of all sentences.
This is not entirely to the good. A given
sentence may have hundreds or even
thousands of possible syntactic analy
ses. Most of them have no plausible
meaning. People are not aware of con
sidering and rejecting such possibilities,
but parsing programs are swamped by
meaningless alternatives.

The output of a parsing program be
comes the input to the fourth com

ponent of a language-understanding
program: a semantic analyzer, which
translates the syntactic form of a sen
tence into a "logical" form. The point is
to put the linguistic expressions into a
form that makes it possible for the com
puter to apply reasoning procedures and
draw inferences. Here again there are
competing theories about what repre
sentation is most appropriate. As with
parsing, the key issues. are effectiveness
and efficiency.

4 � 5

Syntactic

Syntactic structures

analysis

I
Grammatical Definition

rules dictionary

Effectiveness depends on finding the
appropriate formal structures to en
code the meaning of linguistic expres
sions. One possibility is predicate calcu
lus, which employs the quantifiers V to
mean "all" and 3 to mean "there ex
ists." In predicate calculus "Roses will
be blooming . . . " is equivalent to the as
sertion "There exists something that is a
rose and that is blooming " This en
tails a difficulty. Is one rose adequate to
represent the meaning of "roses will be
blooming," or would it be better to spec
ify two or more? How can the computer
decide? The dilemma is worsened if a
sentence includes a mass noun such as
"water" in "Water will be flowing "
One cannot itemize water at all. In de
signing a formal structure for the mean
ing of linguistic expressions many simi
lar problems arise from the inherent
vagueness of language.

Efficiency must also be considered,
because the computer will employ the
logical form of a sentence to draw infer
ences that in turn serve both the analysis
of the meaning of the sentence and the
formulation of a .response to it. Some
formalisms, such as predicate calculus,
are not directly amenable to efficient
computation, but other, more "proce
dural" representations have also been
devised. Consider the effort to answer
the question "Are there flowers in the
gardens we abandoned long ago?" The
computer needs to know that roses are
flowers. This knowledge could be repre
sented by a formula in predicate calcu
lus amounting to the assertion "Every
thing that is a rose is a flower." The
computer could then apply techniques
developed for mechanical theorem
proving to make the needed ded uction.
A different approach would be to give
certain inferences a privileged compu
tational status. For example, basic clas-

� �
Representation

sificational deductions could be repre
sented directly in data structures [see
bottom illustration on page 144) . Such de
ductions are required constantly for rea
soning about the ordinary properties of
objects. Other types of fact (for exam
ple that flowers need water in order to
grow) could then be represented in a
form closer to predicate calculus. The
computer could draw on both to make
inferences (for example that if roses do
not get water, they will not grow).

A good deal of research has gone
into the design of "representation lan
guages" that provide for the effective
and efficient encoding of meaning. The
greatest difficulty lies in the nature of
human commonsense reasoning. Mo"st
of what a person knows cannot be for
mulated in all-or-nothing logical rules;
it lies instead in "normal expectations."
If one asks, "Is there dirt in the garden?"
the answer is almost certainly yes. The
yes, however, cannot be a logical infer
ence; some gardens are hydroponic, and
the plants there grow in water. A person
tends to rely on normal expectations
without thinking of exceptions unless
they are relevant. But little progress
has been made toward formalizing the
concept of "relevance" and the way it
shapes the background of expectations
brought to bear in the understanding of
linguistic expressions.

The final stage of analysis in a lan
guage-understanding program is

pragmatic analysis: the analysis of con
text. Every sentence is embedded in a
setting: it comes from a particular
speaker at a particular time and it refers,
at least implicitly, to a particular body
of understanding. Some of the embed
ding is straightforward: the pronoun "I"
refers to the speaker; the adverb "now"
refers to the moment at which the sen-

�
Representation

Semantic structures
...,

Pragmatic structures
Reasoning

analysis analysis

\
I

��
I'

Semantic Pragmatic Deductive Inferential
rules rules rules rules

cal analysis (3), in which the computer assigns words to their lexical
category (noun, for instance) and identifies "features" such as plu
rals. Then comes syntactic analysis, or parsing (4): the application of
rules of grammar to yield the structure of the sentence. After that
comes semantic analysis (5). Here the sentence is converted into a

form that makes it amenable to inference-drawing. The final stage
is pragmatic (6): it makes explicit the context of the sentence, such
as the relation between the time at which it is spoken and the time
to which it refers. The computer is now in a position to draw infer
ences (7), perhaps in preparation for responding to the sentence.

1 39
© 1984 SCIENTIFIC AMERICAN, INC

IBM PC SQ{tware: the value Q{ choosing

If they don't fi t , they're not worth wearing .
Software programs .

If they don't fi t , they're not worth using .
That's why it's altogether fitting that IBM

Personal Computer Software offers you a choice .

Size up the selection.

You'll find many types of programs in the
IBM software library. They'll help keep you on
your toes in the office , at home or
in school .

There are , in fact , seven
different categories of IBM pro
grams called "families :' A family
of software for business , productivity,
education , entertainment, lifestyle ,
communications or programming .

Of course , every program in
every family is tested and approved by
IBM . And IBM Personal Computer
Software is made to be compatible
with IBM Personal Computer hardware .

© 1984 SCIENTIFIC AMERICAN, INC

programs that fit.

Puttingyour
best foot forward.

Although every person isn't on equal footing
when it comes to using personal computer
software , there's something for almost everyone in
the IBM software library.

For example , you may be on a shoestring
budget and want a big selection of programs
with small price tags .

You may be introducing students to
computing and want programs that are simple to

use and simple to learn .
You may run a business requiring

sophisticated inventory and payroll
programs . Or you may run a business

requiring a single accounting program .

You may write interoffice memos and want a
streamlined word processing program . Or you
may be a novelist looking for a program with
features worth writing home about .

Now you can find IBM Personal Computer
Software that fits - to help you accomplish
specific tasks and reach individual goals .

Stroll into a store today.
What's the next step ?
Visit a n authorized I B M Personal Computer

dealer or IBM Product Center near you . To find
out exactly where , call 800-447-4700 . In Alaska
or Hawaii , 800-447-0890 .

Ask YOut dealer t o demonstrate your choice
of programs . Then get comfortable . Sit down at
the keyboard and try IBM software on for size .

= =- =- .=®
- - - - -
- - --
- - - - -
- - - - - -

- - - - -
- - _ . -

Personal Computer Software

© 1984 SCIENTIFIC AMERICAN, INC

tence is uttered. Yet even these can be
problematic: consider the use of "now"
in a letter I write today expecting you
to read it three or four days hence.
Still, fairly uncomplicated programs can
draw the right conclusion most of the
time. Other embedding is more com
plex. The pronoun "we" is an example.
"We" might refer to the speaker and the
hearer or to the speaker and some third
party. Which of these it is (and who the
third party might be) is not explicit and
in fact is a common source of misunder
standing when people converse.

Still other types of embedding are not
signaled by a troublesome word such
as "we." The sentence "Roses will be
blooming . . . " presupposes the identifi
cation of some future moment when the
roses will indeed be in bloom. Thus the
sentence might have followed the sen
tence "What will it be like when we get
home? " or "Summer is fast upon us."
Similarly, the noun phrase "the dark
gardens we abandoned long ago" has a
context-dependent meaning. There may
be only one instance of gardens in which
we have been together; there may be
more than one. The sentence presup
poses a body of knowledge from which
the gardens are identifiable. The point
is that a phrase beginning with "the"
rarely specifies fully the object to which
it refers.

One approach to such phrases has
been to encode knowledge of the world
in a form the program can use to make
inferences. For example, in the sentence
"I went to a restaurant and the waiter
was rude" one can infer that "the wait
er" refers to the person who served the
speaker's meal if one's knowledge in
cludes a script, so to speak, of the typical

Roses will be blooming
in the dark gardens
we abandoned long ago.

--3l

2

Morphological
analysis

3

events attending a meal in a restaurant.
(A particular waiter or waitress serves
any given customer.) In more complex
cases an analysis of the speaker's goals
and strategies can help. If one hears
"My math exam is tomorrow, where's
the book? " one can assume that the
speaker intends to study and that "the
book" means the mathematics text em
ployed in a course the speaker is taking.
The approach is hampered by the same
difficulty that besets the representation
of meaning: the difficulty of formalizing
the commonsense background that de
termines which scripts, goals and strate
gies are relevant and how they interact.
The programs written so far work only
in highly artificial and limited realms,
and it is not clear how far such programs
can be extended.

Even more problematic are the effects
of context on the meaning of words.
Suppose that in coming to grips with
"the dark gardens we abandoned long
ago" one tries to apply a particular
meaning to "dark." Which should it be?
The "dark" of "those dark days of tribu
lation" or that of "How dark it is with
the lights off!" or that of "dark colors" ?
Although a kernel of similarity unites
the uses of a word, its full meaning is
determined by how it is used and by the
prior understanding the speaker expects
of the hearer. "The dark gardens" may
have a quite specific meaning for the
person addressed; for the rest of us it is
slightly mysterious.

At first it might seem possible to distin
.£\. guish "literal" uses of language
from those that are more metaphorical
or poetical. Computer programs faced
with exclusively literal language could

Word Root

Roses rose

1_ will
I-be
'-bf90mlng bloom

In
tile

Lexical � I-dark analysis

gardens garden

1-we
abandoned abandon

1- long
ago

then be freed from contextual dilem
mas. The problem is that metaphor and
"poetic meaning" are not limited to the
pages of literature. Everyday language
is pervaded by unconscious metaphor,
as when one says, "I lost two hours
trying to get my idea across." Virtual
ly every word has an open-ended field
of meanings that shade gradually from
those that seem utterly literal to those
that are clearly metaphorical.

The limitations on the formalization
of contextual meaning make it impossi
ble at present-and conceivably forev
er-to design computer programs that
come close to full mimicry of human
language understanding. The only pro
grams in practical use today that at
tempt even limited understanding are
natural-language "front ends" that en
able the user of a program to request
information by asking questions in En
glish. The program responds with En
glish sentences or with a display of data.

A program called SHROLU is an early
example. Developed in the late 1960's, it
enables a person to communicate with a
computer in English about a simulat
ed world of blocks on a tabletop. The
program analyzes requests, commands
and statements made by the user and
responds with appropriate words or
with actions performed in the simulat
ed scene. SHROLU succeeded in part be
cause its world of conversation is limit
ed to a simple and specialized domain:
the blocks and a few actions that can be
taken with them.

Some more recent front-end inter
faces have been designed with practical
applications in mind. A person wanting
access to information stored in the com
puter types natural-language sentences

Lexical categories Features

Noun lDlural

verb" auxiliary modal

Vero{auxiliary) l�nfinitiv�l
Verb icoQular) infinitive

VerblintransitiveY [prggressive]

PreRosition

Determiner [definitef

. Adjective
Noun [mass]

'Noun -Iflunil]
Verb third-�rson singular Rresentl

Pronoun first-�rson, I1luI!II, nominatlvr

Vern (transitive) [past]
Verb (transitive) [participle]

Adiective

Adverb

SUCCESSION OF ANALYSES done by a hypothetical computer
program suggests how software that understands language works. In
this illustration the program has been given the sentence "Roses will
be blooming in the dark gardens we abandoned long ago." The first
analyses (morphological and lexical) yield a list of the words in the

sentence, with their roots, their lexical categories and their features.
"Blooming," for instance, is a progressive verb: it signifies an act in
progress. The data serve as input for the syntactic level of analysis:
the parsing of the sentence. Here the surface, or grammatical, struc
tnre of "Roses will be blooming ... " is put in the form of a tree. Pre-

142

t----,

•

© 1984 SCIENTIFIC AMERICAN, INC

that the computer interprets as queries.
The range of the questioning is circum
scribed by the range of the data from
which answers are formulated ; in this
way words can be given precise mean
ing. In a data base on automobiles, for
example, "dark" can be defined as the
colors "black" and "navy" and nothing
more than that. The contextual meaning
is there, but it is predetermined by the
builder of the system, and the user is
expected to learn it.

The main advantage of a natural-lan
guage front end is that it presents a low
initial barrier to potential users. Some
one invited to pose a question in English
is usually willing to try, and if the com
puter proves unable to handle the spe
cific form of the question, the user is
probably willing to modify the word
ing until it works. Over time the user
will learn the constraints imposed by
the system. In contrast, a person who
must learn a specialized language in
order to formulate a question may well
feel that an inordinate amount of work
is being demanded.

I want finally to look at a rather new
type of system called a coordinator.

In brief it replaces standard electronic
mail with a process that aids the genera
tion of messages and monitors the prog
ress of the resulting conversations. Co
ordinators are based on speech-act the
ory, which asserts that every utterance
falls into one of a small.number of cate
gories. Some speech acts are statements:
"It's raining." Some are expressiv.e: ' �I'm
sorry I stepped on your toe." Some are
requests:, "Please take her the package"
or "What is your name?" Some are com- .
mitments: "I'll do it tomorrow." Some

4

Syntactic
analysis

are declarative: "You're fired . " (Oeclar
atives differ from statements in that
they take effect by virtue of having
been said.)

The classification of speech acts is
useful because acts in the various cate
gories do not occur at random. Each

S

VP

Nou n

I
Verb Prep Det Adj

Roses
I I I

blooming in the
I

dark wil l be

NP

Head:

speech act has "felicity conditions" un
der which it is an appropriate thing to
say and "conditions of satisfaction" un
der which it is fulfilled . For example, a
request or a commitment carries with it,
either implicitly or explicitly, a time by
which it should be satisfied . Moreover,

S

()
NP

AdvP

(\
Nou n Pron Verb Adv Adv

I I I I I
gardens we abandoned long ago

Roses
Number: Plu ral

f
Person: Third

S Definite: No

Head: blooming
Subject: •

Auxiliaries : w i l l be
Tense: Future Progressive

NP Modifiers: , j Head: we
Number: Plu ral
Person : First r NP Definite: Yes

Head: gardens
PP Determiner: the

Head: i n Number: Plural S
Object: Person : Third

Definite: Yes Head: abandoned

,- Modifiers: dark Subject:

Qualifiers: Object:
Tense: Past
Modifiers: _t

I
AP

Head: ago
Modifiers: long

sumably the computer discards numerous incorrect trees. For exam
ple, it discards a tree in which "Roses will be blooming in the dark" is
construed as a sentence. The deep structure of "Roses will be bloom
ing . . . " is put in the form of a functional-structure diagram. There the
relations between the parts of a sentence become explicit; they are

shown by strings between boxes. Some relations were explicit in the
snrface structnre (for example that "roses" is the subject of "bloom
ing"). Others were not (for example that "gardens" is the object of
"abandoned"). The syntactic analysis is supplied to the final stages
of the program, which appear in the top illustration on the next page.

143
© 1984 SCIENTIFIC AMERICAN, INC

x quantified variable
y possibly unspecified

identity determined

5 3 xyz,to,t" t2 [Rose(x) 6 by context
speaker of the sentence

7
/I Garden(y) Z

/I Dark(y) plus unspecified others,

-1 Semantic Pragmatic
analysis /I Abandon(z,y ,t2) analysis

possibly hearer Reasoning
moment of utterance of /I Bloom(x,y,t,) to

/I After (to ,t ,) the context
/I LongAfter(t2, to)] t, unspecified future moment

determined by context
t2 past moment described

as " long ago"

ANALYSES CONCLUDE with the conversion of the syntactic struc
ture of "Roses will be blooming . . . " into a form from which the com
puter can draw inferences. In this example the conversion is based
on predicate calculus; thus the semantic-analysis module of the hy
pothetical software represents the logical content of "Roses will be
blooming . . . " by symbols that can be translated as "x is a rose and y is
a garden and y is dark. . . . " Finally, the pragmatic-analysis module

specifies what is known about the variables x, y, Z, /0, / 1 and /2' The
variable x, for example, is "quantified": it declares the existence of
something instead of identifying a particular object. In other words,
the computer takes "roses" as referring to roses in general, not to par
ticular roses. Hence roses is not a "definite" noun. (That decision was
made in the course of semantic analysis.) On the other hand, z re
mains ambiguous because it stands for the ambiguous pronoun "we."

each speech act is part of a conversa
tion that follows a regular pattern. The
regularity is crucial for successful com
munication.

As with every aspect of language, the
full understanding of any given speech
act is always enmeshed in the unarticu
lated background expectations of the
speaker and the hearer. The speech act
"I'll be here tomorrow" might be a pre
diction or a promise, and "Do you play
tennis?" might be a question or an invi
tation. In spoken conversation intona
tion and stress play a prominent part in
establishing such meaning.

Coordinator systems deal with the
speech acts embodied in messages by
specifying what ne.eds to be done and
when. The system does not itself at
tempt to -analyze the linguistic content
of messages. Instead the word-process
ing software at the sender's end asks the
sender to make explicit the speech-act
content of each message. A person may
write ' ' I'll be happy to get you that re
port" in the message itself but must add
(with a few special keystrokes) that the

flower

is-part

stamen petal

message is an ACCEPT of a particular RE
QUEST. The computer system can then
keep track of messages and their inter
connections. In partic ular the system
can monitor the completion of conver
sations, calling the users' attention to
cases in which something immediate is
pending or in which an agreed-on time
for satisfaction has not been met.

From a broad perspective, coordi
nators are just one member of a large
family of software that gives users a
structured medium in which language
is augmented by explicit indications of
how things fit together. Another type of
software in this family provides tools
for outlining and cross-indexing docu
ments. Still another type is a comput
erized bulletin board that enables users
to store and receive messages not ad
dressed to a specific receiver. The mes
sages are "posted" with additional struc
ture that indicates their content and
helps interested readers to find them.

The most obvious prediction about
the future of computer software deal
ing with language is that the decreas-

plant

is-part

ing cost of hardware will make applica
tions that are possible but impractical
today available quite widely in the fu
ture. Yet software that mimics the full
human understanding of language is
simply not in prospect. Some specific
trends can be noted.

The first is that spoken language will
get more emphasis. To be sure, the

computerized understanding of spoken
language presents all the difficulties of
written language and more. Merely sep
arating an utterance into its component
words can vex a computer; thus hopes
for a "voice typewriter" that types text
from dictation are just as dim as hopes
for high-quality machine translation
and language-understanding. On the
other hand, many useful devices do
not require the analysis of connected
speech.· Existing systems that can identi
fy a spoken word or phrase from a fixed
vocabulary of a few hundred items will
improve the interface between users and
machines; the recent emergence of in
expensive integrated-circuit chips that

fruit l eaf

is-a

�
daisy rose apple orange

is-a is-a

Mci ntosh pippin

SEMANTIC NETWORK is a specialized form of stored data that
represents logical relations so that certain types of inference can be
drawn efficiently by a computer. Here a simple tracing of links in

the network (color) has yielded the inference that a pippin is a fruit
and that a rose has petals. Facts not readily represented by a network
can be represented in other ways, for example by predicate calculus.

1 44
© 1984 SCIENTIFIC AMERICAN, INC

process acoustic signals will facilitate
the trend. Speech synthesizers that gen
erate understandable utterances (al
though not in a natural-sounding voice)
will also play an increasing role . Im
proved speech "compression" and en
coding techniques will make acoustic
messages and acoustic annotation of
computer files commonplace .

A second trend in software dealing
with language .is that constraints on lin- .
guistic domain will be handled with in
creasing care and theoretical analysis.
At several points in this article I have
noted instances in which computers deal
with meaning in an acceptable way be
cause they operate in a limited domain
of possible meanings. People using such
software quickly recognize that the
computer does not understand the full
range of language, but the subset avail
able is nonetheless a good basis for com
munication. Much of the commercial
success of future software that deals
with language will depend on the dis
covery of domains in which constraints
on what sentences can mean ' still leave
the user a broad range of language .

A third trend lies in the development
of systems that combine the natural and
the formal. Often it is taken for granted '
that natural language is the best way for
people to communicate with computers.
Plans for a "fifth generation" of intelli
gent computers are based on this propo
sition. It is not at all evident, however,
that the proposition is valid. In some
cases even the fullest understanding of
natural language is not as expressive as a
picture . And in many cases a partial un
derstanding of natural language proves
to be less usable than a well-designed
formal interface . Consider the work
with natural-language front ends. Here
natural language promotes the initial
acceptance of the system, but after that
the users often move toward stylized
forms of language they find they can
employ with confidence, that is, with
out worrying about whether or not the
machine will interpret their statements
correctly.

The most successful current systems
facilitate this transition. Some systems
(including coordinators) mix the natural
and the formal: the user is taught to rec
ognize formal properties of utterances
and include them explicitly in messages.
Thus the computer handles formal
structures, while people handle tasks in
which context is important and precise
rules cannot be applied. Other systems
incorporate a 'highly structured query
system, so that as the user gains experi
ence the artificial forms are seen to save
time and trouble. In each case the com
puter is not assigned the dilftcult and
open-ended tasks of linguistic analysis;
it serves instead as a structured linguis
tic medium. That is perhaps the most
useful way the computer will deal with
natural language .

Chivas Regal • 12 Years Old Worldwide • Blended Scotch Whisky • 86 Proof
© 1984 General Wine & Spirits Co. , N. Y

145
© 1984 SCIENTIFIC AMERICAN, INC

Computer Software for Graphics

No longer the exclusive domain of specialists, interactive

computer graphics 1S fast becoming the standard medium

of communication between computers and all kinds of users

I
van E. Sutherland, a pioneer in the

programming of computers to cre
ate and manipulate images, once re

marked about his favorite subject: "I
think of a computer display as a window
on Alice's Wonderland in which a pro
grammer can depict either objects that
obey well-known natural laws or purely
imaginary objects that follow laws he
has written into his program. Through
computer displays I have landed an air
plane on the deck of a moving carrier,
observed a nuclear particle hit a poten
tial well, flown in a rocket at nearly the
speed of light and watched a computer
reveal its innermost workings."

Until recently Sutherland's experi
ence of the seemingly magical powers of
interactive computer graphics could be
shared by only a handful of workers:
mainly scientists and engineers engaged
in computer-aided design, data analysis
and mathematical modeling. Now the
privilege of exploring real and imagi
nary worlds through the looking glass of
the computer is becoming increasingly
common. Indeed, graphics is well on its
way to being the standard form of com
munication with computers.

There are a num ber of reasons for this
change. First, dramatic improvements
in the price-performance ratio of cer
tain components of computer hardware
have made sophisticated graphics termi
nals and graphics-based personal com
puters widely affordable. In particular,
advances in the design and fabrication
of microelectronic circuits have led to a
new generation of memory "chips" that
offer enormous information-storage ca
pacity at extremely low unit cost. This
development has in turn made the tech
nique of raster graphics economically
competitive. A raster is the pattern of
horizontal scanning lines in a television
type display. In raster-graphics systems
each pixel, or picture element, in the ras
ter is represented individually in the
computer's memory· and hence can be
controlled independently by software,
giving the programmer maximum flexi
bility in the creation and manipulation
of images.

146

by Andries van Dam

Meanwhile corresponding improve
ments in software have greatly extended
the range of applications that can be
handled pictorially. New software pack
ages for business applications, for ex
ample, make it possible to display data
in the form of charts and graphs even on
inexpensive home computers. In addi
tion standard high-level software pack
ages for graphics are becoming widely
available, making it easier for new ap
plications programs to be written and
transported from one make of computer
to another.

Another factor in the growing popular
.£\.. ity of computer graphics is the way
computer displays contribute to what
has come to be called a "user-friendly"
operator-machine interface. This over
worked term refers to a philosophy of
software design perhaps best exempli
fied by a set of techniques developed in
the 1 970's at the Xerox Corporation's
Palo Alto Research Center. Computer
displays based on this approach (which
was influenced by earlier work by Doug
las C. Engelbart's group at the Stanford
Research Institute) are now available
in commercial products ranging from
the Xerox Star work station to the Ap
ple Computer, Inc., Macintosh personal
computer. A notable feature of this kind
of user interface is the "desktop" meta-

phor: the display is divided into sepa
rate, possibly overlapping regions called
windows, which can be thought of as
pieces of paper spread out on a desk.
Each window can serve as the display
for a different application program; thus
one can work simultaneously with both
textual and pictorial material, and with
the aid of simulated "cut and paste" op
erations one can compose these different
elements into a single document.

The new user-friendly systems are
generally based on the WYSIWYG ("What
you see is what you get") approach, in
which the display resembles as close
ly as possible what will eventually be
printed out (or otherwise recorded in
hard-copy form). To design a page of
text, for example, no specialized format
ting codes (such as .pp for "paragraph"
or .s2 for "skip two lines") have to be
entered, to be interpreted by a separate
"batch formatting" program only after
the user has finished editing. Instead
margins and indentations are adjusted
by manipulating a facsimile of a rul
er with markings on it for the various
stops, and the text is continuously refor
matted to the current settings as it is ed
ited. Because the characters are gener
ated entirely by graphics software, they
can be displayed in almost any size
or font, spaced either equally or pro
portionally to their width. Mathemati-

IMAGINARY WORLD of vines and flowers is viewed from the inside in this computer image
created by Ned Greene of the New York Institute of Technology. The vines trace the edges of
a three-dimensional lattice analogous to the crystal structure of diamond. The image is a frame
from an animated sequence in which the viewpoint moves down one of the "corridors" between
the vines. The objects in the scene were first defined mathematically as meshes of polygons.
The vines were rendered with a "bump mapping" technique that gives the impression of relief
by adjusting the shading according to depth information obtained from X-ray images of a pIas
ter cast of real tree bark. The leaves and flower sepals were colored by mapping previously re
corded "paintings" onto their mesh representations with a technique known as texture map
ping. To produce a smooth gradation of color across the flower petals, colors were assigned to
the vertexes in the mesh representations of the petals and the vertex colors were then interpo
lated across the polygonal faces by the rendering program. The appearance of fog was achieved
by reducing the contrast as an exponential function of distance from the viewer. "Without fog
or some other form of depth cueing," Greene notes, "the scene is practically incomprehensible."
There are approximately 1.9 million polygons in the scene, and rendering them took 18 hours
on a Digital Equipment Corporation VAX 111780 minicomputer. Each pixel, or picture ele
ment, in the 1,536-by-l,536 raster pattern carries 24 bits of color information. Besides Greene,
Jules Bloomenthal, Paul Heckbert and Lance Williams wrote programs used in the project.

© 1984 SCIENTIFIC AMERICAN, INC

cal symbols, non-Roman alphabets and
even Chinese or Japanese ideograms
can be handled in much the same way.

The application programs for such
systems rely on a uniform set of conven
tions to specify commands. For exam
ple, instead of typing a series of com
mands on an alphanumeric keyboard,
one can pick and choose from various
"menus," or lists of commands, that ap
pear on the display. A command is exe-

cuted by simply pointing to it with the
aid of a device such as a light pen or a
"mouse" (a mechanism one slides on the
desk to move a pointer on the screen).
Simple graphic symbols, called icons,
represent familiar office items such as
file drawers, folders, wastebaskets, cal
culators and clocks; the functions they
symbolize can be selected by pointing
to them. It has been found that an inter
face based on menus and icons is pre-

ferred by most people over a strictly
alphanumeric interface because, when
these graphic features are properly de
signed, they seem more natural, are eas
ier to learn and use, require little memo
rizing and result in fewer mistakes.

Computer graphics has also become
commonplace in a variety of other,
everyday contexts. Children (and even
many adults) are gaining a kind of
literacy in graphics by playing arcade

© 1984 SCIENTIFIC AMERICAN, INC

TWO MODES OF OPERATION are available for producing an image on the screen of a
cathode-ray tube. In a vector display (left) the electron beam is steered continuously between
any two points on the screen to create a straight line called a vector. The simple line drawing of
a house, for example, is the result of several such operations. In a raster, or television-type, dis
play (right) the electron beam traces out a regular raster pattern of horizontal scanning lines,
and the beam's intensity is increased at the pixels closest to the straight lines to form the corre
sponding picture. Raster graphics has recently become the dominant form of computer display.

148

games and doing educational exercises
based on visual effects that often entail a
good deal of animation and interaction.
In addition artists are now producing
eye-catching and sometimes spectacular
computer-animated displays for televi
sion advertising and for special effects
in science-fiction films, taking copious
amounts of computer time to produce
each highly detailed frame. Image syn
thesis, currently one of the most rapidly
expanding fields of computer graphics,
is discussed in greater detail below.

Most interactive graphics displays
are based on the technology of the

cathode-ray tube (although solid-state
fiat panels are coming into vogue for
some purposes, such as portable com
puters). The electron beam in a cath
ode-ray tube strikes a phosphor-coated
screen, which emits light with an intensi
ty that depends on the kinetic energy of
the electrons. Because the light output
from the phosphor fades in millisec
onds, the entire image must be redrawn
at frequent intervals, typically 30 times
per second or more; the redrawing is
based on a digital representation of the
picture stored in a memory unit called a
refresh buffer.

The electron beam is steered to the
desired place on the screen in one of two
modes: the vector mode or the raster
mode. In a vector display the beam can
be deflected continuously between any
two points in the display's two-dimen
sional x,y coordinate system to create a
crisp, straight line, called a vector. The
result of several such operations is a line
drawing. Characters are also composed
of short vectors. A set of basic display
"primitives"-the lines, arcs, characters
and other elements of an image-is
stored in the refresh buffer in the form
of a list of coded commands specifying
the endpoint coordinates and other at
tributes of the primitives, such as their
thickness, intensity and color. For dis
play systems with a "real time" three
dimensional viewing capability special
hardware is provided to perform the
"viewing transformation," an operation
that consists in projecting three-dimen
sional primitives onto the two-dimen
sional screen.

While the image is being refreshed,
either the computer itself or special
purpose hardware can be commanded
to assign translation, rotation or scaling
values to the endpoints of the vectors or
to the viewing-transformation parame
ters in order to change the picture for
the next refresh cycle. These parameters
can be specified by an animation pro
gram or by the operator, using a mouse,
a joystick or dials. The ability to have
either the objects on the screen or the
viewpoint of the user appear to move
smoothly has been found to be very
helpful in giving people kinesthetic
feedback as they explore the structure of

© 1984 SCIENTIFIC AMERICAN, INC

Lotus 1 ... 2 ... 3™on the Tandy® 2000
Outruns IBM's PC!

If your job seems like a
constant race against the
clock, you need Lotus
1-2-3. This versatile "inte
grated" software package
combines spreadsheet
analysis with graphics and
information management
in a single program.

Lotus 1-2-3 can help you
get the job done right. But
if you want the job done
fast, make sure your com
puter is a Tandy TR5-S0
Model 2000.

With a Tandy 2000. you
can sort through your
Lotus database in less than
half the time it takes on an

IBM PC. And if you need to
recalculate your spread
sheet, you can do it in less
than a third of the time!

A complete two-disk
Tandy 2000 system with
monitor and 1-2-3 sells for
$3793, and can be leased
for only $130 per month. *

For those of you who al
ready own a 256K Tandy
2000, Lotus 1-2-3 can be
yours for $495.

So tonight, jog by your
nearby Radio Shack Com
puter Center and see how a
Tandy 2000 lets you race
right by IBM. And IBM
compatibles, too.

We Invite Comparison!
In speed, graphics, disk storage and
support, the Tandy 2000 offers more
than IBM's PC. Come in and see!

Available at over 1200
Radio Shack Computer Centers and at

participating Radio Shack stores and dealers.

ladle IhaeK
COMPUTER CENTERS

A DIVISION OF TANDY CORPORATION

r- Newl-;-985�RS.80 c;;alog. -l
I Send me a copy. I
I Mail to: Radio Shack. Dept. 85·A·112 I
I

300 One Tandy Center. Fort Worth. Texas 76102

I N�E ____________________ __

I COMPANY I
I ADDRESS I
I CITY I
I I
I

STATE ZIP
I

L��
O
� __________ J

© 1984 SCIENTIFIC AMERICAN, INC

"JAGGIES," or jagged edges, appear in a raster display along any lines or edges that are neither
horizontal nor vertical, owing to the way such display "primitives" are approximated by dis
crete sets of closest pixels. This artifact, also known as staircasing, is barely noticeable in the
radial pattern at the upper left; it can be seen more clearly in the enlargement at the lower left.
One way to minimize the problem in systems in which there are multiple bits per pixel is to vary
the intensity of the pixels lying on the boundary in order to blur the edge, as in the pattern at
the upper right and in the corresponding enlargement at the lower right. The jagged-edge prob
lem is a form of aliasing; the solution shown here is called anti-aliasing. The diagrams were pro
duced on a computer screen by Paul S. Strauss and James K. Rinzler of Brown University.

an unfamiliar three-dimensional scene.
Vector graphics, which was initially

the most common mode of computer
display, offers several advantages: it rep
resents display primitives in a way that
req uires little memory; the primitives
are crisply drawn, and the operator can
change the image continuously in real
time. Its main disadvantage is that it
cannot show solid areas; both two- and
three-dimensional objects must be rep
resented by "wire frame" diagrams.
Furthermore, if there are too many dis
play primitives on the screen for all of
them to be redrawn in the time allotted
for a single refresh cycle, there are too
few cycles and the image flickers.

In a raster display the beam is not de
flected in a pattern determined by the
image being drawn. Instead, as in the
case of a television set, the beam traces
out a regular raster pattern. The only
control is on the beam's intensity. In
a color display the intensities of three
beams-one each for red, green and
blue-are controlled individually; each
beam strikes its corresponding phos
phor dot in a triad of red, green and blue
dots for each pixel. The primitives in

150

a raster display are formed by intensi
fying the pixels that are closest to the
straight line, curve or edge that is de
fined by the endpoints of the primitive.
Solid areas are filled in by intensifying
all the interior pixels. Raster displays,
because of their fixed deflection pattern,
are generally simpler and less expensive
than vector displays. On the other hand,
raster displays usually call for a much
greater memory capacity in the refresh
buffer, which must now store an intensi
ty value or a color value amounting to
at least one bit for every pixel on the
screen. (In this context the refresh buffer
is also known as a frame buffer or a bit
map.) One advantage of storing the im
age in the form of individual pixels rath
er than higher-level primitives is that the
former representation is completely in
dependent of the number of primitives
specified for display. As a result raster
displays avoid the problem of flicker.

Avector display draws lines and edges
in a way that is analogous to the

way a draftsman uses a ruler or a T
square. A raster display, in contrast, re
lies on an electronic version of the poin-

tillist technique developed by the 1 9th
century French Impressionist painter
Georges Seurat. A discrete sampling
technique of this kind may cause indi
vidual pixels to be noticeable, and prim
itives that are neither horizontal nor ver
tical have jagged edges. This artifact,
sometimes referred to as staircasing or
the "jaggies," is a form of aliasing, a
common problem in signal processing.
It can be minimized by increasing the
resolution of the display or by varying
the intensity of the pixels lying on the
boundary in order to blur the line or the
edge. (The latter process is sometimes
referred to as anti-aliasing.) A new tech
nique that simulates higher resolution
and avoids blurring is called pixel phas
ing by its developer, the Megatek Cor
poration. In this approach each pixel
can be slightly repositioned by shifting it
by a quarter, a half or three-quarters of
a pixel diameter horizontally or verti
cally; the size of the pixel can also be
adjusted to help fill the gaps.

The ability to specify each pixel's in
tensity or color value independently in
raster systems is particularly important
for the creation of detailed character
fonts or icons. Typically a font is defined
as a set of small pixel arrays, one for
each character or icon. As a character or
icon is needed, its array is copied from
the computer's main memory or from a
special part of the frame buffer to the
part holding the representation of the
characters on the screen. On the other
hand, because of the large number of
pixels that must be updated whenever a
significant part of the image is moved
or deleted, making changes is usually
much slower on raster displays than it is
on vector displays, where only encoded
primitives have to be changed. Modern
raster systems enable the programmer
to quickly copy and move rectangular
blocks in the frame buffer by means
of special operations that facilitate the
"scrolling" of text, the rearrangement
of windows and the creation of simple
animated sequences. Such systems may
also provide a display-list representa
tion, with rapid "rasterization" from en
coded primitive form to pixel form for
the frame buffer.

The function of high-level support
software is to insulate the program

mer from these kinds of low-level hard
ware details so that he can concentrate
on matters pertaining directly to the ap
plication. In the early days of computer
graphics this was not possible, because
graphics applications were programmed
at the assembly-language level. Efficien
cy took precedence over ease of pro
gramming, and the transportability of
programs from one make of computer
to another was hardly even a considera
tion. It was not until the late 1 960's and
early 1 970's that the drive began to write
graphics programs at a higher level and

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

No one knovvs more
about putting fiber optics to

vvork than NevvYorkTelephone.

Our advanced lightvvave technology
doesn't just promise virtually
error-free transmission.
It guarantees it.

© New York Telephone 1984

© 1984 SCIENTIFIC AMERICAN, INC

The New York lelephone network.
Taking the lead in the information age.

Fiber optics may be something new to most
people, but not to us. We've been working with
fiber optics technology for years.

As a matter of fact, fiber optics, the transmis
sion medium of the future, is in place and working
at New York Telephone today.

Right now, New York Telephone has 32,000
fiber miles of lightwave cables serving the telecom
munications needs of many of America's largest
financial and industrial companies. And we have
fiber optics projects already built or under con
struction in New York, Long Island, Westchester,
Albany, Syracuse, Buffalo and other locations
around the state.

The special things fiber optics
can do for you.

Fiber optics can transmit voice, data and
video messages from one point to another faster,
more reliably and less expensively than any other
transmission system available.

Possibly the most important feature of our
fiber optics network is its ability to transmit
information practically error free. A major reason
that reliability is made possible is that fiber optics
do not have to electronically repeat transmissions
as many times as conventional facilities do. Other
reasons are that they're immune to interference
from moisture and electrical currents and they
transmit data in a digital format-the language that
computers "speak."

And, since fiber optics utilize laser light
sources, they can transmit voice, data and video at
speeds of up to 405 million bits of information per
second.

A fast, efficient net work.
But fiber optics are only one part of our

remarkable network .
• > New York Telephone's network consists of a

vast combination of electrical equipment, micro
chips, processors and memory units-all woven
together to work with fantastic speed, efficiency
and precision.

And we're constantly working with new tech
nologies to modernize and upgrade that network.

As the communications needs of New Yorkers
and businesses such as yours grow in scope and
sophistication, New York Telephone will have the
solutions. We are anticipating the future. We have
made the necessary capital commitments. We have
the people, the ingenuity, the imagination and the
technology. As we have for nearly a century, we will
continue to provide you with high-quality com
munications service in the future.

New York lives on
New York Telephone.

@
New YorkTelephone

A NYNG Company

© 1984 SCIENTIFIC AMERICAN, INC

Air Force engineers are designing tomorrow's tech
nology today. It takes imagination to dream new dreams
and skills to bring those dreams to life.

If you're an electrical or aerospace engineer, or plan to
be, the Air Force gives you a chance to push your skills to
the limit and learn new ones. And while you're growing,

you'll be helping your country grow stronger, too.
For more detailed information, call us toll-free at

1-800-423-USAF (in Calif. 1-800-232-USAF). Better
yet, send your resume to HRS/RSAANE, Randolph
AFB, TX 78150. We' re waiting for your ideas.

AIM HIGH AIR FORCE

© 1984 SCIENTIFIC AMERICAN, INC

to make them independent of any par
ticular computer system.

The first graphics software of the new
era was designed in imitation of the
input-output strategy of high-level pro
gramming languages. Idealized "virtu
al" devices corresponding to real inter
active devices were generated by means
of low-level "device driver" programs
that handled both the tricky graphics

hardware and the equally tricky input
output communications with the central
processing unit. Each virtual display
had a square virtual screen designed
to coincide with the largest square that
could fit on the actual display surface
or the plotter. The same unit coordinate
system was used to address the virtual
screen regardless of the real screen's
dimensions. Each virtual display could

REPRESENTATION OF OBJECT
IN "WORLD" COORDINATE SYSTEM

VIEW VOLUME

also have virtual input devices. Input de
vices not available on a particular con
sole could be simulated by means of the
devices present; in this way one could
create, for example, a virtual keyboard,
virtual dials or even a virtual mouse.

Most graphics programs at the time
were developed for applications in com
puter-aided design and data visualiza
tion. The programs ran on vector dis-

VIEWING TRANSFORMATION is the operation whereby a stored
representation of an object (in this case an idealized milling machine)
is projected from a three-dimensional "world" coordinate system
onto the two-dimensional coordinate system of a screen, represented
by the image plane in this schematic diagram. Mimicking the opera-

tion of a camera, the software "clips" the parts of the object that are
outside the view volume and then projects only the parts that are in
side the view volume onto the screen. For a three-dimensional per
spective projection the clipping boundary is typically a pyramid. In
this case hidden edges were eliminated before the projection stage.

151
© 1984 SCIENTIFIC AMERICAN, INC

play systems and plotted pictures de
rived from an application data base,
known as the application model. The
graphics software provided the applica
tion programmer with a two- or three
dimensional "world" coordinate system
equally suited to handling angstrom
units, centimeters, miles or light-years.

The world coordinate system enabled
the programmer to abstract the defini
tion of primitives to a level even further
removed from the hardware than that
of the virtual screen's standard coordi
nate system. The software also handled
the entire viewing-transformation opera
tion, specifying the area currently in

IMAGE SYNTHESIS BY COMPUTER can be thought of as proceeding through a sequence
of steps, although in fact they are often interlaced in a single program. In this demonstration of
the process the object (a close-up of the milling machine) is defined as a mesh of polygons and
is displayed first in the form of a "wire frame" diagram (1). Hidden edges are then removed (2).
In the next step shading (in this case color shading) is applied individually to the polygons as a
function of the angle of the polygon with respect to the light sources and of its surface proper
ties; the result is a picture with an unnatural, faceted appearance (3). The discontinuities at the
shared edges between adjacent polygons can be smoothed by Gouraud shading (4), and specu
lar (mirrorlike) highlights can be added by Phong shading (5). In the final step anti-aliasing
smooths out the jaggies (6). The images were made by Rinzler and Strauss in collaboration with
Roger L. Gould, Richard L. Hagy, David H. Laidlaw and Gerald I. Weil, all students at Brown.

152

view in the world coordinate system and
the region of the virtual screen on which
it was to appear. The viewing-transfor
mation software "clipped" primitives
that were outside the viewing area and
projected only those primitives that
were inside the viewing area onto the
actual screen. In two dimensions the
clipping boundary was a rectangle,
whereas in three dimensions it could be
either a rectangular solid (for a parallel
projection) or a pyramid (for a perspec
tive projection).

In effect, the type of graphics software
that was first developed a decade or
more ago can be described by the "syn
thetic camera" metaphor: the applica
tion program constructs a world consist
ing of objects such as flow-chart sym
bols, circuit elements or atoms in the
application-dependent model, incl uding
all the appropriate attributes and pa
rameters, and then extracts geometric
information from it to pass on to the
graphics software. The graphics soft
ware, which is typically under the view
er's control, then takes a snapshot of
the specified primitives in the viewer's
world from the specified viewpoint and
posts the snapshot on the screen. Thus
modeling is the responsibility of the ap
plication program, and viewing some
part of the model is the responsibility of
the synthetic-c<!mera software. The ap
plication itself typically consists of two
subsystems: a graphics editor that en
ables the viewer to create and manipu
late the application model and its vis
ual representation, and an independent
set of postprocessing packages that ana
lyze the completed application model.
In computer-aided design these pack
ages include provisions for simulating
and testing the design and subsequently
specifying manufacturing data for fab
rication and construction, often by nu
merically controlled machine tools.

Two standard graphics packages are
now becoming available for all

categories of commercial displays: the
three-dimensional Core Graphics Sys
tem sponsored by the Association for
Computing Machinery and the two
dimensional Graphical Kernel System
adopted by the International Standards
Organization. Derived from a common
ancestor, they are both essentially syn
thetic-camera packages. As it happens,
they were largely designed before raster
graphics became the dominant form of
computer display. Although they can
handle raster primitives such as pixel ar
rays and filled polygons, they still oper
ate in the world coordinate system, with
user-defined objects. For many simple
applications in raster graphics the appli
cation program cannot take enough ad
vantage of the facilities of the package
to justify the considerable computation
al "overhead" needed to handle more
complex applications. Moreover, a pro-

© 1984 SCIENTIFIC AMERICAN, INC

OUR MTOS REAL-TIME
OPERATING SYSTEMS ARE
THE NUMBER ONE CHOICE

FOR CONTROL APPLICATIONS
WORLDWIDE.

Since 1973, IPI's MTOS family has been
used in more control applications than
any other real-time operating system.

From radar to robotics. Avionics to
process control. The list of potential MTOS
applications is limited only by your
imagination.

Available for 8-bit and 16-bit
Intel and Motorola microprocessors.

MTOS is fast. It's simple to use. And all
our systems are conceptually compatible.
So once you've learned to use one sys
tem, you can use them all.

MTOS is also rich in coordination
and other critical services. And unlike
some operating systems, it's written in
assembly language; the result is speed
and compactness.

MTOS offers
multiprocessor support.

MTOS is the only system that will control
several microprocessors on a common
bus. For advanced applications such as
vision systems and signal processing,
this unique capability is indispensable.

Our customer list is a
who's who in high technology.

MTOS is sold in the United States and in
twenty countries overseas. Our customers
include many Fortune 500 companies
and some of the most prestigious names
in academia.

Specially configured versions of
MTOS are available for various hardware,
such as the IBM® PC. Other versions are

available in source form, and are sold
under a liberal licensing policy.

To learn more about real-time oper
ating systems in general, and MTOS in
particular, call or write for our free booklet
"On Operating Systems." Industrial .
Programming, Inc., 100 Jericho Quad
rangle, Jericho, NY 11753. Telephone:
800-228-MTOS (in New York State call
516-938-6600). Telex 429808 (ITT).

IBM is a registered trademark of International Business MochinesCorporofion.

• •

• f). Industrial
Programming Inc.

The standard-setter in operating system software.
153

© 1984 SCIENTIFIC AMERICAN, INC

HIGH-QUALITY, REAL-TIME ANIMATION is achieved in certain special-purpose appli
cations, as seen in this sequence of frames selected from an interactive flight-simulation sys
tem for training pilots in aerial-refueling procedures. The ultrahigh-performance system,
which is capable of generating 50 frames per second, is a product of Evans & Sutherland.

154

gram relying on a graphics package may
not be able to take full advantage of
several powerful new hardware capa
bilities associated with raster-graphics
work stations and personal computers.

Programs that do not adhere to the
modeling-followed-by-viewing scheme
of the synthetic-camera metaphor in
clude the "painting" programs now be
coming popular on raster-graphics sys
tems. The objects manipulated in such
programs are not world coordinate ob
jects but rather the individual pixels,
and the package must enable the viewer
to recolor, move or even logically com
bine arbitrary regions in the frame buff
er. Painting by manipulating pixels in
the frame buffer is analogous to making
a photograph by altering areas on the
emulsion directly rather than by expos
ing the film through a camera aimed at a
real scene. Synthetic-camera packages
are unsuitable for such low-level, de
vice-dependent operations.

The situation is further complicated
by the need to manage multiple win
dows on the bit-mapped screen. The ex
isting graphics packages have no way to
handle multiple application programs.
Most raster-gr.aphics work stations are
therefore provided with a "window
manager," a low-level part of the system
software that keeps track of which pro
gram runs in which window and where
the window is defined on the screen. One
window might run a painting program,
another a word-processing program and
a third an application program based on
a standard graphics package. The win
dow manager must handle such prob
lems as moving windows, covering and
uncovering overlapping windows, scal
ing or clipping primitives to fit in the
currently visible part of a window and
finally rasterizing the visible primitives
for display on the screen. As yet there is
no commonly accepted design for such
window managers.

For the foreseeable future a number
of graphics standards designed by differ
ent communities of users will coexist.
Examples include the Initial Graphics
Exchange Specification, an engineering
drawing standard for computer-aided
design, and the North American Presen
tation Level Protocol Syntax, for dis
plays of text and graphics on television.
All the standards share the common
purpose of defining primitives, their at
tributes and their groupings in named
collections for selective manipulation
as a group. Eventually these diverse
standards should be brought together.

Most traditional applications of com
puter graphics have been two-di

mensional. Lately, however, there has
been increasing commercial interest in
three-dimensional applications, arising
from the significant progress made in
the past decade on the twin problems of
modeling three-dimensional scenes and

© 1984 SCIENTIFIC AMERICAN, INC

displaying them as realistically as possi
ble. In flight simulators for training pi
lots, for example, the emphasis is on re
sponding to input from both the pilot
and the instructor. To give the impres
sion of smooth motion the simulator
must present a fairly realistic picture of
a dynamically changing world at a rate
of at least 3 0 frames per second. In
contrast to this real-time animation,
pictures for the advertising and enter
tainment industries are computed off
line, often for hours, in order to get
maximum realism or visual impact. In
computer-aided design there is now
increased emphasis on creating wire
frame diagrams interactively and then
promptly displaying them in a fully ren
dered version. The newest hardware
even makes possible the interactive cre
ation of polygonal "solid" objects.

Two-dimensional objects are mod
eled by such primitives as lines defined
by two endpoints, polygons defined by a
list of vertexes and possibly a fill pat
tern, circles defined by a center, a radius
and possibly a fill pattern, and polyno
mial curves defined by their coefficients.
In three dimensions the corresponding
primitives are defined by adding the z

coordinate. Primitives that exist only in
three dimensions can also be defined;
they include polyhedrons, pyramids,
spheres, cylinders and surfaces de
scribed by certain polynomial functions.

Solid-modeling systems for creating
three-dimensional objects rely on either
interactive or off-line specification of
parameters. Off-line specification can be
done with data files created by another
program or with a text editor. Alterna
tively a procedural description, such as
the one used to generate fractal curves
and landscapes, can do the job. Further
more, an object can be modeled direct
ly as a solid or indirectly as a volume
bounded by its surface.

In systems based on constructive solid
geometry objects are modeled directly
by solid primitives such as blocks, cylin
ders and spheres. The primitives can be
combined by means of three-dimension
al set operations such as union (joining
two objects), intersection (taking a com
mon subset) and difference (taking all
of the first object except for those parts
it has in common with the second ob
ject). Indirect representation is done in
boundary-representation systems that
may also provide set operators but that
define an object as bounded by polygo
nal facets, cylindrical facets or even
surface patches defined by polynomial
functions. Such "free form" surface def
inition with curved patches has become
important to aerospace and automobile
companies for sculpting the bodies of
their vehicles.

An object with rotational symmetry
.£\. can also be described by a surface of
revolution; a vase or a bottle is defined

by its generator (the silhouette curve)
and an axis of revolution. Analogous to
such a rotational sweep is the transla
tional sweep: here a face of arbitrary
complexity, including holes, is translat
ed along a space curve to create a vol
ume. An idealized gear can be made by
first defining a quarter section of a face,
using symmetry operations to complete
the face and then sweeping the face
along a short straight path to define the
cylindrical form of the solid gear.

Many other mathematical techniques
are useful in defining classes of objects,
and hybrid systems incorporate a varie
ty of techniques. The special case of
making objects interactively presents
an additional problem with these meth
ods in that the user is forced to look at a
two-dimensional projection of a three
dimensional scene in which depth is dif
ficult to assess. Among the techniques
that can give the user some feedback as
the specification process proceeds are

RAY-TRACING TECHNIQUE relies on an extremely time-consuming algorithm to com
pnte the reflection and refraction of light from the surfaces of imaginary objects. Basically the

computer program traces individual light rays, starting at the viewpoint and passing backward
through each pixel in the image plane until the ray hits a surface. The reflected ray is then con
tinued to see if it could have come from a light source, either directly or after reflection from
another object. For a transparent surface a second, refracted ray must also be traced. In this
demonstration of the technique, produced by Lee Westover and Turner Whitted of the Univer
sity of North Carolina and Numerical Design Ltd., a ray-traced image is shown at the top and
the technique by which the image was made is shown in the computer-generated diagram at
the bottom. White lines trace two reflected rays; refracted components of the rays are omitted.

155
© 1984 SCIENTIFIC AMERICAN, INC

multiple views (such as the standard or
thographic projections of front, side and
top, as well as a three-dimensional per
spective view), drawing in a plane of
constant x, y or z coordinates and aids
such as dynamically updated dimension
lines and two- or three-dimensional
grids with tick marks.

When the objects in the scene have
been defined, the next phase is to pass
the object description to the image-syn
thesis programs for rendering. Current
image-synthesis algorithms work either
with polygonal descriptions or with pol
ynomial or other higher-order defini
tions of mathematical surfaces. It is
common to reduce higher-level defini
tions to a simpler "piecewise" approxi
mation with a mesh of small polygons

prior to rendering. The rendering proc
ess can be idealized as a sequence of
steps, but the steps are often interlaced
in an actual program. All of them are
basically adaptations of the fundamen
tal laws of optics.

The first step is the elimination of hid
den surfaces, that is, surfaces or parts of
surfaces that are not visible from the
point of view of the synthetic camera.
This category includes both surfaces
on the far side of objects and those ob
scured by other objects closer to the
viewpoint. Various techniques for the
elimination of hidden surfaces can be
implemented in hardware. The algo
rithms typically assume that the screen
lies in the z = 0 projection plane for the
scene that lies behind it. For example,

SIMPLE TECHNIQUE for generating a realistic image of a mountain is loosely based on the
concepts of fractal geometry originally formulated by Benoit B. Mandelbrot of the IBM Thom
as J. Watson Research Center. This demonstration of the technique is reproduced through the
courtesy of Lucasfilm Ltd. Starting with the single triangle shown in step I, the computer pro
gram generates step 2 from it by the following procedure. First, break each side of the triangle
at its midpoint. Second, displace each midpoint by a distance proportional to the length of the
corresponding side. (The factor of proportionality can be generated at random or taken from a
table of, say, 100 well-dispersed random numbers.) Third, connect the three new points to one
another to form four new triangles. Step 3 is generated from step 2 by applying the same pro
cedure in turn to each of the four new triangles, generating 16 triangles, to each of which the
procedure is applied again in step 4, and so on. Although the subdivision algorithm is simple,
it can yield a very complex polygonal surface. The mountainlike surface in step 8 can lat
er be rendered by standard computer-graphics techniques to produce a finished landscape.

156

the z-buffer algorithm maintains a sepa
rate buffer of z val ues, one value for
each pixel. The z val ue of a pixel records
the depth of the corresponding point on
the nearest polygon encountered so far
that projects on the pixel. When a new
polygon is transformed, clipped and
projected onto the z = 0 plane, the z val
ues of its component pixels are com
pared one at a time with those stored in
the z buffer. Only if the z value of a pixel
in the current polygon is smaller (signi
fying that the polygon is closer to the
screen at this pixel than any polygon
previously encountered) is the current
pixel "in view" and stored in both the
refresh buffer and the z buffer. It actu
ally becomes visible only if it has not
been replaced by the time the last poly
gon is processed.

Unlike the z-buffer algorithm, which
takes polygons in any order, the "paint
er's algorithm" first orders them from
back to front. In the event that pairs of
polygons cannot be simply ordered,
they are subdivided until their pieces
can be. They are then projected and
"painted" in the frame buffer in back
to-front order so that the polygons clos-'
er to the viewpoint properly eclipse
more distant ones, without the need for
further computation.

After the visible surfaces have been
I\. computed the next step is to calcu
late the shading for each one. The shad
ing rule must take into account both the
properties of the surface (its color, tex
ture and reflectance) and the relative lo
cation, orientation and properties of the
light sources and other surfaces. Illumi
nation models for light sources can take
into account ambient light, point sour
ces (such as the sun or an incandescent
bulb) or distributed sources (such as a
window or a row of fluorescent tubes).

Ambient light is most easily modeled
by adding a constant amount of light
intensity to all surfaces, but naturally
that strategy affords no way of differen
tiating among surfaces. The reflection of
point sources of light by matte, or dif
fuse, surfaces (those that scatter light
equally in all directions) is modeled by
Lambert's cosine law, which states that
intensity varies as the cosine of the angle
between the direction of the light source
and a vector perpendicular to the sur
face, called the surface normal. The
brightest illumination appears when the
surface is perpendicular to the light
source. For shinier surfaces that yield
specular, or mirrorlike, highlights, such
as brightly polished wood or metal, the
amount of light reflected depends on
both the angle of the light source and the
angle of the viewpoint with respect to
the surface normal. The surface acts like
a mirror in that it reflects most of the
light only when the angles are almost
eq ual (that is, when the viewpoint and
the light source are arranged symmetri-

© 1984 SCIENTIFIC AMERICAN, INC

cally with respect to the surface nor
mal). As the angles become more un
equal, the light intensity falls off rapidly.
Adding the components of ambient, dif
fuse and specular reflection gives the
intensity of a single surface. If color is
involved, there is an equation for each
of the three primary colors.

The effect of this combination of op
erations is an unnatural, faceted appear
ance. Since the polygon is described by a
single surface normal, adjacent poly
gons with different surface normals
have different intensity values, and there
is a noticeable discontinuity at the
shared edge. Gouraud shading (named
after its inventor, Henri Gouraud) aver
ages intensity values at the vertexes of
the polygons and then across the scan
lines to achieve smoothness. Phong
shading (named after its inventor, the
late Bui-Tuong Phon g) improves on
Gouraud shading by using a more de
tailed calculation that is more sensitive
to the directional effects of specular
highlights. The newest medium-priced,
high-performance raster-graphics sys
tems are now capable of doing the entire
rendering job for approximately 3 ,000
polygons per second. They proceed by
first processing an object hierarchy,
including the application of geometric
transformations to its components to
simulate motion, next computing the
viewing transformation and then carry
ing out the hidden-surface and smooth
shading algorithms. A few years ago
this level of performance was available
only on special-purpose flight simula
tors costing millions of dollars.

Other effects to be dealt with include
shadows, light transmission and surface
properties such as texture and grain.
Shadow algorithms for point sources re
semble algorithms for eliminating hid
den surfaces in that they determine what
surfaces can be "seen" from the light
sources. Surfaces that are simultaneous
ly visible from the viewpoint and from
the light sources are not in shadow,
whereas those that are visible from the
viewpoint but not from the light source
are. For distributed light sources the
complex calculations must include both
the umbra and the penumbra.

Tight transmission is an even more dif
L ficult subject. "Specular" transmis
sion, characteristic of transparent sur
faces such as glass, is determined by the
substance's index of refraction. Diffuse
transmission through translucent mate
rials such as frosted glass causes scatter
ing in all directions. The most compu
tationally complex and most realistic
algorithms for dealing with both reflec
tion and refraction are called ray-trac
ing algorithms. In essence they trace in
dividual light rays to determine which
of them end up at the viewpoint and how
they got there. In order to avoid having
to deal with an infinity of lines emanat-

COMPOSITE IMAGE of a seaside landscape, titled "Point Reyes," was produced by a team
of workers at Lucasfilm. The landscape was defined by a variety of techniques; the different
elements of the scene were rendered separately and later combined. The simple procedural
modeling technique shown in the iIInstration on the opposite page was used by Loren Carpen
ter to define the rocks, the mountains and the lakes; he also wrote the hidden-surface program
and an "atmosphere" program for the sky and the haze. Rob Cook directed the project, de
signed the road, hills, fence and rainbow, and wrote the texture-mapping software. Tom Por
ter provided the procedurally drawn texture for the hills and also wrote the software for com
bining the elements to form a composite image. Bill Reeves defined the grass by means of a
"moving particle" system he developed; he also wrote the modeling software. David Salesin put
the ripples on the puddles, and Alvy Ray Smith designed and rendered the /lowering plants.

ing from a point source, the process
works backward, starting at each pix
el. Each ray starting at the viewpoint
and passing through a pixel is project
ed backward until it hits a surface. The
backward tracing of the reflected ray
then continues to determine whether it
could have come from a light source or
from reflection from another object. For
a transparent surface a second, refract
ed ray must also be traced. Each ray is
in effect a probe that must be tested
for intersection with each object; only a
small percentage of the rays ultimately
have antecedents in a light source. New
techniq ues exist to handle the reflection
and refraction of diffuse light, but they
are still very expensive in terms of the
amount of computation they require.

Surface texture can be handled by
various models that build in local irreg
ularities. For mapping a two-dimension
al pattern onto a surface a pattern of
intensity values can be used to modulate
the intensities computed by the shading
and shadowing algorithms. Some of the
most recent work in image synthesis is
concerned with effects such as depth of
field, motion blur and the realistic ren
dering of objects in nature that exhibit
both statistical regularity and irregulari
ty, such as mountains, water, sky, trees
and bushes.

Whether one is dealing with simple
block diagrams or highly realistic pic
tures, the most important function of
computer graphics is to increase one's

understanding, to enable one to experi
ment without danger, discomfort or un
due cost and to help answer "what if 'l
questions. For most modeling and simu
lation studies, however, mere static rep
resentations will not suffice: the phe
nomena one generally wants to under
stand are dynamic. A static picture may
be worth a thousand words, but a mov
ing picture is often worth many static
ones. A key capability of the new gener
ation of powerful work stations is to re
veal the behavior of objects as they vary
over time, by means of real-time user
controlled animation.

Among the objects exhibiting dynam
ic behavior that are of particular interest
to programmers are programs and their
data structures. Since the beginning of
computer graphics in the early 1 960's
there has been considerable interest in
using a diagrammatic approach to the
design of computer hardware and soft
ware. Block diagrams, flow charts, mod
ule-interconnection diagrams, data-flow
diagrams and many other symbolic rep
resentations have been used to portray
systems whose designs were specified
by typing in statements in a textual lan
guage. Although much hardware design
today is done with graphical symbols,
there are as yet no programming lan
guages in common use in which the
basic elements are pictorial rather than
textual.

Thus graphics programs are specified
in an ordinary programming language

157
© 1984 SCIENTIFIC AMERICAN, INC

158

such as FORTRAN or Pascal with "calls"
to special-purpose graphics packages,
not by specifying graphically what is
wanted. The reasons for this curious
contrast between the specification tech
niques for hardware and those for soft
ware include the compactness and preci
sion a conventional programming lan
guage affords and the ease with which
changes can be made with a text editor
that includes good facilities for seeking
out specified text patterns. Experience
with true pictorial languages is lacking.

Although computer scientists know
rather well what facilities a programmer
needs to specify how to do something in
a conventional programming language,
they are still not very good at the much
more difficult problem of letting a user
specify what is to be done and then hav
ing the system automatically compile an
appropriate procedure from this speci
fication. Meanwhile considerable prog
ress has been made in the development
of work-station-based programming en
vironments. In general these facilities
enable the programmer to edit interac
tively and to "debug" programs with the
aid of multiple views of programs and
data, represented in the form of text or
icons. The views are dynamically updat
ed as the program is executed.

Two promising areas for the appli
cation of dynamic computer graph

ics are the classroom and the laborato
ry. Many schools and universities are
turning to microcomputer-based in
struction. One of the techniques adopt
ed is the traditional "programmed learn
ing" style of computer-assisted instruc
tion, which emphasizes the acquisition
of facts and skills. Computer-assisted in-

MA THEM A TICALAPPLICA TION of com
puter graphics is represented in this sequence
of frames, adapted from the computer-ani
mated film "Topology and Me�hanics," by
Huseyin Kocak, Frederick Bisshopp, Thom
as F. Banchoff and David Laidlaw of Brown.
A hypersphere, an analogue in four-dimen
sional space of an ordinary sphere, can be vis
ualized by "filling" it with two interlinked cir
cles and a succession of surrounding toroidal
surfaces. (The operation is roughly analogous
to slicing a sphere into two points at opposite
poles and a succession of parallel circles in be
tween.) The frames show a series of perspec
tive projections onto three-dimensional space,
made from a viewpoint on the hypersphere,
of two toroidal surfaces (one blue and one red)
closely enveloping the two circles of the hy
persphere. A third toroidal surface (yellow) is
shown as it moves from the blue surface to the
red one in six steps. The yellow surface has
been cut into bands to reveal its linkage with
the other two surfaces. This method of "dec om
posing" a hypersphere was inspired by work
done by the German mathematician Heinz
Hopf in 1931. The computer is invaluable in
implementing such mathematical procedures,
since it can easily be made to manipulate ab
stract objects in a higher-dimensional space.

struction is now being augmented by
simulated "laboratory" experimentation
and by "browsing environments" in
which information is available much as
it is in an encyclopedia or a library. Five
years ago, at the instigation of my col
league Robert Sedgewick, the computer
science department at Brown University
began to study the applications of work
station technology to education and re
search. Last year we inaugurated a nov
el electronic classroom, equipped with
5 5 high-performance work stations con
nected in a high-speed network. Most
introductory courses in the computer
science curriculum are now taught in
this specially constructed auditorium,
as are sections of courses in differen
tial equations, differential geometry and
neuroscience.

Our aim is to offer students an oppor
tunity to "see" an abstract phenomenon,
and thereby to develop some geometric
intuition about it, before delving into
the details of programming or mathe
matics. We also want to involve them
with the material more quickly by com
bining the classroom lecture with the
laboratory experiment. Most students in
a formal lecture are passive, even when
questions are encouraged. As a result
they do not really confront the material
until they have to do homework or a
laboratory exercise. Now an instructor
can introduce a new topic by talking his
way through an animated sequence of
images viewed by all students and then
letting each of them work independent
ly on the same "interactive movie."

Our primary support environment,
the Brown Algorithm Simulator and
Animator (BALSA), enables users to con
trol the speed of an animated sequence,
to decide which views of the subject to
look at and to specify the input data to
be processed. There is even a facility for
running programs backward and undo
ing their graphical effects.

Multiple dynamic views of complex
objects have turned out to be valua
ble not only to students but also to re
search workers. Much work has begun
at Brown to learn how the technique
can be generalized, both to other sub
jects in science and engineering and to
fields that have no tradition of graphi
cally representing their objects and proc
esses of study. Are there intrinsic rea
sons for the absence of pictorial repre
sentation in some fields, or is it merely a
cultural artifact? If many other ways of
using graphics in various disciplines
are found, how might that change class
room pedagogy? This question is partic
ularly relevant as work stations start
proliferating on the campus and many
students have 24-hour-per-day access to
them in their dormitory rooms. How do
instructors not accustomed to program
ming specify and implement "course
ware" without having to invest the usual
preparation time for computer-aided

© 1984 SCIENTIFIC AMERICAN, INC

ELECTRONIC CLASSROOM developed by Robert Sedgewick and
the author together with their cOlleagues in the computer-science de
partment at Brown is equipped with SS high-performance work sta
tions connected in a high-speed network. The instructor can first pre-

view a topic through an animated sequence of images viewed by all
students and then let each of them work independently on the same
"interactive movie." The specially constructed auditorium has been
used for courses in computer science, mathematics and neuroscience.

instruction of 1 00 hours or more per
classroom hour? Many years of devel
opment and experimentation will be
needed before this promising new capa
bility can be widely disseminated.

Our interactive classroom demon
strations at Brown are an example

of the more general category of what
might be called "electronic books." A
rather different example is the Spatial
Data Management System developed
at the Massachusetts Institute of Tech
nology. This system makes it possible
to browse in a two-dimensional "data
land," an arbitrarily large desktop popu
lated by icons. The cursor can be moved
to point at any icon to display its con
tents. The data base stores text, dia
grams, photographs, sound and televi
sion frames (retrieved in real time from
a videodisk).

In a related experimental system at
Brown the desktop metaphor is replaced
by that of an associative network of text
pages and footnotes, marginalia and
cross-references. The reader can follow
a trail of cross-references between asso
ciated topics, much as one would with
an encyclopedia. Such a nonlinear man
uscript has been called a hypertext by
Theodor H. Nelson, a leader in the

movement to exploit computer-display
technology to create a new literary
form. Other projects at the frontier of
computer graphics, initiated by Nicho
las P. Negroponte and his co-workers
at M. I.T., include an interactive auto
mobile-maintenance-and-repair manual
that can explicate text by creating cus
tomized "movies" based on sequences
of stored frames from videodisks, and
an electronic newspaper that continu
ously scans the wire-service reports and
its data base and formats stories and pic
tures for the reader on the basis of a
stored reader-interest profile.

Computer professionals, and particu
larly specialists in graphics, can take
pleasure in the fact that finally our
promises of the utility and convenience
of computing for the general public are
being kept. Computer graphics, once
the domain of experts, is commonplace
as even children in elementary school
work with windows, mice and comput
er displays as instruments for draw
ing and indeed for imagining. Thinking
and programming in terms of graphics
are becoming an integral part of learn
ing to construct algorithms.

And what of the future? There must
still be an improvement of orders of
magnitude in the price-performance ra-

tio of hardware before the average user
can have the equivalent of a real-time
flight simulator on his desk (let alone
on his lap), and much more progress
will have to be made in understanding
the interaction of the laws of physics
and aesthetics before computer artists
will know how to render convincingly
realistic scenes that also please the eye.
Eventually true three-dimensional dis
plays will open up yet another realm:
research on digital holograms may re
sult in real-time computation of lifelike
scenes. On the input side, additional
work is needed on the user interface. For
example, pictures must be better inte
grated with sound, as in the case of voice
input and output. Much progress will
also have to be made in understanding
the structure of natural language and in
related areas of artificial intelligence be
fore users can carry on conversations
with their computers. New methods of
providing tactile control and feedback
are also needed for exploring the "feel"
of the objects seen on the screen. For me
the ultimate ideal is expressed in the old
comic strip "Mandrake the Magician" :
"Mandrake gestures hypnotically . . . "
and in the twinkling of an eye a new
scene, a new sensory environment, is
conjured up.

159
© 1984 SCIENTIFIC AMERICAN, INC

",.. ,< ':" -... ;;; �
" ',

.,�� .e« .)�;,..,
• \ �'OJ.

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

Computer Software
for Information Management

Enormous volumes of stored data are of use only if information can be

retrieved quickly in an understandable form. Software for the purpose

must reflect the structure of the data base and of the storage medium

A
anyone with a cluttered office
knows, having a large quantity
of information on hand does not

guarantee ready access to any particu
lar piece of information. In the past two
decades there has been a rapid increase
in the capacity of electronic machines to
store information and an eq ually rapid
decrease in the cost of storage. In gener
al the development of software for orga
nizing and retrieving the electronical
ly stored data has not kept pace. Those
who are writing programs for informa
tion management are in the position of
having to catch up with the capacities of
the computing machinery.

What principles are guiding the effort?
One principle is that the best form of
organization depends on the content of
the information and on how the infor
mation is to be used. For example, pro
grams that maintain a list of names have
been written for many purposes; they
vary considerably according to what
information is associated with each
name and how the names are retrieved.
A commercial system called Soundex is
employed to identify airline passengers
with reservations for a particular flight.
Soundex stores the names phonetical
ly, which reduces the number of tran
scription errors and allows a name to
be found even if the exact spelling is
not known. The Chemical Abstracts
Service maintains programs for deter
mining whether a particular substance
has already been identified, a task that

by Michael Lesk

in a formal sense is similar to the one
done by Soundex. The systems are not
phonetic; furthermore, they record con
siderable information about chemical
structure and nomenclature. Informa
tion specific to one domain of knowl
edge can improve the efficiency of a pro
gram in accomplishing one job, but the
program then becomes less suitable for
other purposes. Programs designed for
a chemicals data base would be a poor
choice for listing airline passengers.

Another consideration is the physical
structure of the storage medium. Mag
netic disks for storing data became com
mon in the late 1970's. On a disk data
are recorded in subunits called blocks,
and access is most efficient if the logi
cal divisions of the data approximate the
boundaries of the blocks. Thus software
aimed at managing large quantities of
information is constrained on the one
hand by the structure of the machinery
and on the other hand by the content
of the information. The effort to design
software that more fully exploits the
capacities of current machines is large
ly defined by the need to accommodate
these two fundamental constraints.

A
small group of related items in an

electronic data-storage system is
generally referred to as a record. For
example, in a file describing the stock
on hand in a supermarket each record
might include the type of product, the
general category of goods of which it is

SHORTEST ROUTES TO THE PLAZA HOTEL from Wall Street were calculated by a com

puter program, which thereupon drew the map of the southern part of Manhattan Island shown

on the opposite page. One route, shown in white, minimizes travel time and the other, shown

in orange, minimizes distance. Because of the pattern of one-way streets in lower Manhattan,
each route begins with a change of direction. The route that minimizes time passes along West
Street to Tenth Avenue, which is followed uptown. Stored information about the average trav

el time on each street enables the program to specify the route that takes the minimum time.
The route that minimizes distance begins on West Street, then passes uptown along Sixth Av
enue. Software for storing and processing the information in the map was formulated by the

author and his co-workers. The program for identifying the routes that minimize time and
distance was written by one of those co-workers, Jane Elliott of AT&T Bell Laboratories.

a part, the number of the aisle where
the prod uct is to be found and the price.
Each item in the record, such as the type
of prod uct, is referred to as a field. The
record is retrieved from the electronic
file by means of a key: a label that can
consist of a field, a part of a field or a
combination of several fields.

Some types of fields are employed as
keys more frequently than others. It is
probable that in the supermarket data
base the aisle number would serve as a
key but the price would not; hence the
user could easily find all the products
that are for sale in aisle 3 but could not
easily find all the products that cost 49
cents. Other information, such as the
name of the wholesaler that supplied
the product, the shelf life of the prod
uct and the quantity of stock on hand
might or might not be keyed. The soft
ware employed to manage the informa
tion should make it easy to search for
the record that includes a particular val
ue of the key.

It should be noted that the key need
not be taken directly from the record.
In formulating a directory-assistance
system for AT&T Bell Laboratories I
transformed nicknames in the storage
record into their formal equivalents in
the key. Thus "Chuck" in the record
became "Charles" in the key. The trans
formation, however, was specific to
the domain of telephone listings: in a
geographic data base Billings, Mont.,
clearly would not be transformed into
Williamings.

The varying relations among records,
fields and keys serve to define the three
main ways of organizing electronic rec
ords: the hierarchical, the network and
the relational. The hierarchical system
is so named because of the ordering of
the fields in the record. In each group of
records one field is designated the mas
ter field and the other fields are subordi
nate to it. Groups of records are ar
ranged in a serial order resembling the
rungs of a ladder and data can be re-

163
© 1984 SCIENTIFIC AMERICAN, INC

trieved only by traversing the levels ac
cording to a path defined by the succes
sion of master fields.

Hierarchical data bases have beeJ1 em
ployed since the beginning of the JTIod
ern period of machine computation in
the 1940's and examples of their oper
ation could be chosen from many fields.
As a simplified example, consider the
supermarket data base discussed above.
The first level of organization in such a
body of information could include a ta
ble giving the aisle numbers and the
general category of goods available in
each aisle. The category of goods serves
as the master field. Only by retrieving
the table of aisles and their contents and
then selecting a category, such as prod
uce, can the tables at the next level
be reached.

The second level of the hierarchy
might include tables that list the specific
products available in an aisle. The tables
farther down might include the price
of each product, the wholesale supplier
and the product's shelf life. Only by tra
versing several levels of the hierarchy
in sequence can information about a
particular article, such as its price, be
retrieved. Unless additional indexes are
constructed within the file it is costly in
terms of computer resources to ask
questions that deviate from the hierar
chical path, such as inquiring about the
price directly.

The network model is somewhat
more flexible than the hierarchical one
because multiple connections can be
established between files. Such connec-

Aisle

1
2
3
4

2

Produce Cucumber Oairy Milk
Lettuce Yoghurt
Tomatoes Butter

3 II
Item Unit Price

Cucumber .49 each
Lettuce .79 per head
Tomatoes .59 per pound

tions enable the user to gain access to a
particular file without traversing the
entire hierarchy above that file. By this
means the subsidiary connections modi
fy the vertical structure of the data base
in a significant way. For example, in
the supermarket data base a connection
could be established between the list of
aisles and the table of prices, so that it
would be possible to find the price of an
article without first retrieving the inter
mediate table that identifies the prod
ucts for sale in the aisle.

T
he relational model, which was de
veloped by E. F. Codd of the Inter

national Business Machines Corpora
tion in about 1970, is currently the sub
ject of much interest because it promises
greater flexibility than the other types of
data bases provide. In both the hierar
chical form of organization and the net
work form some questions are answered
much more readily than others. More
over, which questions are difficult to
answer and which questions are easy
to answer is determined when the data
base is constructed. In many instances
there is no sound basis for determining
in advance what the most frequently
asked questions will be.

In the relational data base flexibility is
achieved by abolishing the hierarchy of
fields. All fields can be utilized as keys
to retrieve information. A record is not
thought of as a set of discrete entities
with one item being designated the mas
ter field; instead each record is con
ceived as a row in a two-dimensional

Contents

Produce
Oairy
Noodles
Fish

Noodles Linguini
Spaghetti
Torteliini

Fish Flounder
Swordfish
Codfish

HIERARCHICAL DATA BASE consists of tables that must be scanned in a predetermined
order to retrieve information. The illustration shows the steps that might be needed to find the

price of a product in a file storing data about the stock on hand in a supermarket. The first

table in the hierarchy identifies the aisles and the general category of goods available in each
aisle (1). The general category can be em ployed to retrieve a table on the next level that lists
the specific products on the shelves of the aisle (2). The third table includes the price of each

product (3). Such a form of organization would be convenient for the clerk who must put a

price on each article, because the method of access follows the clerk's path through the mar
ket. It would be less convenient, however, for directly answering shoppers'. inquiries about

prices. In the related form of organization called the network data base a subsidiary connection
could be established between table I and table 3. Such a connection between tables would re
duce the time that is needed to find the price, but it would also require additional storage space.

164

table and each field becomes a column
in the table. The entry

Aisle 2 Dairy Milk .69 quart

can be thought of as a relation between
the aisle field, the general-category field,
the product field and the price field. The
relation could be augmented with the
name of the wholesaler, the shelf life of
the product, the quantity of stock on
hand and other facts. Shorter relations
consisting of two fields can be obtained
from the full set of relations by choosing
the appropriate fields; the process is re
ferred to as projecting the relation. Thus
the price of any product can be retrieved
quickly, as could a table listing all the
prod ucts in one aisle.

The classification of data bases into
the hierarchical, network and relational
forms is commonly cited in discussions
of information management. The clas
sification scheme is not as useful as
it might appear, however, because the
structure of any data base can be sup
plemented with secondary indexes that
make it possible to answer efficiently
queries that do not follow the underly
ing organization. Furthermore, certain
problems are common to all three types
of data base. Consider the task of select
ing one record from a file made up
of many related records. The file could
consist of dictionary entries, the lines of
a telephone directory or other records,
but in all cases the problem is to retrieve
one record quickly and efficiently.

The case of picking out a single rec
ord depends critically on how the items
are arranged in the main memory of the
computer or on a secondary storage me
dium such as a magnetic disk. Several
techniques for arranging data can facili
tate subsequent retrieval; the techniques
can be employed with any of the three
types of data base.

For a small body of information it
may not be necessary to maintain any
particular arrangement. Lines can be
stored on a disk in an arbitrary se
quence; when an item must be retrieved,
a simple pattern-matching program
scans the lines seq uentially for the ap
pearance of particular combinations of
symbols. In the Unix operating system,
for example, a program named grep is
often employed in this way.

Suppose a list of telephone numbers,
including those of two seltzer delivery
companies, has been stored in a file
named fe/nos. In the Unix system the
command 'grep seltzer results in the
printing of the names and numbers of
the two companies that deliver seltzer.
In the fe/nos file the word "seltzer" was
entered before the name of the com
panies, but the key need not be at the
beginning of the line for the grep pro
gram to operate. The command grep
beverage < fe/nos results in the print
ing of the same two lines because the

© 1984 SCIENTIFIC AMERICAN, INC

word "beverage" is part of the name of
each company.

Maintaining a file of items that are not
in a predetermined order has several ad
vantages. There is the saving of time and
effort that would be needed to sort the
data when the file is set up. In addition
considerable flexibility is maintained
because it is not necessary to decide in
advance which items in the file will serve
as keys when the data are retrieved. If a
system user decides to find all the num
bers in the feinos file with the prefix
800, the command grep 800 < Ie/nos
works immediately, regardless of wheth
er or not such a request was anticipated
when the file was established. If the list
is not ordered, new data can be added
at the end of the file without rearrang
ing the previously stored items. Further
more, no space is required for storage
beyond the space that is taken up by
the individual entries. In more complex
storage systems some memory capacity
is taken up by information needed to
organize the data.

The unordered method of storage has
a critical drawback: retrieval is very
slow. Each line in the file must be
scanned separately and as a result
searching a file of 10,000 lines takes
100 times as long as searching a file of
100 lines. The algorithm employed by
the grep program corresponds to find
ing books in a library by starting at the
shelves nearest the entrance and exam
ining each book until the one wanted
is found.

To speed up the search process the file
can be sorted into serial order, such as
alphabetical order or numerical order.
Putting the items in serial order makes
it possible to retrieve an entry by the
techniq ue called binary search. The list
is divided in half and the program de
termines which half includes the item
sought. The process is then repeated un
til the item is found.

Suppose the file consists of the entries
in a dictionary and the definition of
"cat" is sought. A binary-search program
would first identify the middle item in
the dictionary, which turns out to be
"legality." By comparing the first letter
of "legality" with the first letter of "cat"
the program determines that "cat" is
in the first half of the file. The mid
point of the first half is "distort" and so
"cat" is in the first fourth of the diction
ary. After the next division, at "castiga
tor," the second portion rather than the
first must be searched. By continuing
through the sequence of midpoints, the
definition of "cat" is isolated.

Binary search is quicker than search
ing an unordered data set. Assume the
file to be searched includes n items. On
the average finding any one item by
searching through an unordered set re
quires n!2 operations. Binary search re
quires at most about log2n operations
to find a particular item (where log211 is

Product Aisle Category Price Unit

Butter 2 Dairy 1.99 pound

Codfish 4 Fish 2.09 pound

Cucumbers 1 Produce .49 each

Flounder 4 Fish 3.29 pound

Lettuce 1 Produce .79 head

Linguini 3 Noodles 1.29 pound

Milk 2 Dairy .69 quart

Spaghetti 3 Noodles 1.29 pound

Swordfish 4 Fish 4.49 pound

Tomatoes 1 Produce .59 pound

Tortellini 3 Noodles 3.49 pound

Yoghurt 2 Dairy .79 pint

2

Cucumbers .49 each

3

Cucumbers Aisle 1 Produce .49 each

Lettuce Aisle 1 Produce .79 head

Tomatoes Aisle 1 Produce .59 pound

IN THE RELATIONAL DATA BASE each entry is made up of a list of connected items; any
subset of the items in the full list can readily be retrieved. In a supermarket data base the items

might include the type of product, the aisle where the product can be found, the general catego
ry to which the product belongs and the price of the product (1). More specific relations, such
as the price of an item, can readily be derived from the complete set of relations (2). A table
showing the articles available in one aisle and their prices can also be constructed (3). The rela
tional data base is valuable when the most frequently asked questions are not known in advance.

the logarithm of 1/ to the base 2). The se
rial order has another advantage: When
an entry has been located, it is a simple
matter to find out about adjacent en
tries, such as the word after "cat" in
the dictionary.

Adding a new entry to a file set up for
I\. binary search, however, is a costly
process because the sorted order of the
file must be maintained. Since a new
item will on the average be inserted in
the middle of the list, half of the items in
the file must be moved each time a new
entry is added. The fact that entries can
be found only from the key on which the
file is sorted can also be a serious limita
tion. It is possible to duplicate the items
and store multiple files sorted accord
ing to different keys, but that consumes
much additional space.

Another techniq ue for retrieval from
a sorted file relies on subgroups of adja
cent data entries called buckets. The first
entry in each bucket is stored in a table
that serves as an index to the divisions of
the file. If II items are divided among V n
buckets, with each bucket holding V n
items, a linear scan of the bucket index
followed by a scan of the appropriate
bucket to isolate the needed entry takes
only slightly more than V/1 operations.
Although V n operations is not as good
as log2/l, particularly for a large file, it is
not unwieldy for a small file. Further
more, programs for bucket storage are
simple to write.

So far the best we have been able to do
in searching a file is log2n operations.

It is possible to improve on that figure
by means of the procedure known as
hashing. To understand the advantages
of hashing consider the possibility of as
signing a number to each entry in a file.
If the number could be computed quick
ly by means of a simple algorithm each
time an item is needed, the item could
be fetched directly from the file with
out searching.

For the entries of a dictionary such an
indexed array could be created in princi
ple by a straightforward method. Each
letter of the alphabet can be assigned a
number, so that the spelling of a word
designates a unique number that serves
as the word's address in memory. The
trouble with such a scheme is that the
memory space required is immense, and
it would remain almost entirely empty;
most combinations of letters, after all,
do not spell an English word. To look at
the problem another way, the difficulty
is that the first letters of English words
are not distributed evenly. For example,
words beginning with c. s or I are much
commoner than words beginning with k
or w. If 100 words were assigned to 100
numerical addresses on the basis of their
first letter, they would pile up in certain
slots instead of filling slots l through
100 in a smooth distribution.

The most convenient solution is to
formulate an algorithm that assigns a
"pseudorandom" number to each word.
The spelling of the word fully deter
mines the pseudorandom number, but
words spelled differently can gener
ate the same number. The algorithm

165
© 1984 SCIENTIFIC AMERICAN, INC

is based on a mathematical expression
called a hash function. In one possible
hash function each character in the al
phabet is assigned a numerical value
and the values for all the characters in a
word are summed to yield the pseudo
random number that serves as the ad
dress. If an effective hash function is
chosen, the entries are distributed fairly
smoothly thoughout the indexed array,
which is referred to as a hash table.

I
t is generally necessary to leave at

least one-fourth of the slots in the
hash table empty. Leaving some slots
empty reduces the frequency of cases in
which the same pseudorandom number
is assigned to more than one item. When
such a duplication, which is known as a
collision, takes place, an additional al
gorithm is invoked to pick a slot for the
second item. The algorithm might call

a

b

c

UNORDERED FILE

seltzer, excelsior beverage co. newark 242-0412

new york air, nyair 800-221-9300

usair 622-3201

seltzer, elliot beverage somerville 356-0273

united airlines (ua) 624-1500

imagen systems (laser printers) 496-7200

COMMAND: 'grep seltzer

OUTPUT:

seltzer, excelsior beverage co. newark 242-0412

seltzer, elliot beverage somerville 356-0273

COMMAND: grep beverage < te/nos

OUTPUT:

seltzer, excelsior beverage co. newark 242-0412

seltzer, elliot beverage somerville 356·0273

d

COMMAND: grep air < te/nos

OUTPUT:

new york air, nyair 800-221-9300

usair 622-3201

united air lines (ua) 624·1500

UNORDERED FILE is made up of entries
that are stored without being put in any partic
ular arrangement. The top panel shows such
a file: a small telephone directory designat
ed teillos (a). When the command grep in the
Unix operating system is given, each line in
the file is scanned in sequence and all the lines
that include a particular key, or combination
of symbols, are retrieved. The names of the
companies in the list that deliver seltzer can
be retrieved by means of the key seltzer, which
has been entered at the beginning of both en
tries (b). The same pair of entries can be re
trieved by means of the key beverage, which
is found in the names of both companies (c).
The names of the airline companies included
in the list can be found by means of the key air,
which is part of the name of each airline (d).

166

for the next slot in the hash table to be
filled; as an alternative a second hash
function could be computed. If the dis
tribution of entries is known, the tilble
can be kept more than three-fourths full,
but it is not common for the distribution
to be known.

It should be noted that when a body of
information is organized in a hash table,
the hash function is computed each time
an entry is sought. The hash functi(ln is
simple to compute, and when it has been
computed, the entry is retrieved without
additional searching. Hashing is there
fore a very fast method of retrieval.
Revising the file is also efficient since
the items are not stored in a serial order
that must be preserved by moving many
items each time an entry is made.

The technique of simple hashing has a
drawback, however, that makes it un
satisfactory for many applications. Be
cause of the problem of collisions, the
approximate number of entries must be
known in advance so that a hash table of
the appropriate size can be constructed.
If many new items arrive unexpectedly,
it may be necessary to recompute all the
hash functions. In practice it is often not
possible to predict the size of a set of
data, and so it is inconvenient to have
to choose the size of the hash table
in advance.

Unordered files, buckets, binary
search and hashing are all techniques
in use today, particularly in conjunc
tion with small data bases where ease
of programming is a more important
consideration than ultimate efficiency.
Two methods developed in recent years
are more commonly employed with
large data bases: extensible hashing
and B-trees.

Extensible hashing was devised to
avoid the need to specify the size of the
hash table in advance. A hash code long
er than necessary is computed and only
the part of the code needed to accom
modate the number of entries on hand is
utilized; the rest of the code forms a re
serve against an increase in the size of
the file. The details of extensible hashing
are beyond the scope of this article, but
the outcome of the method is to pre
serve the speed of hashing at a small cost
in additional storage.

In all the variants of hashing, file en
tries are stored in the arbitrary order
determined by the hash function. Any
sequential relations that might have ex
isted among items in the original data
set are lost in the storage process. For
example, if a dictionary is stored in a
hash table, words beginning with care
scattered at random through the array.
As a result, when a word has been re
trieved, it is not possible to obtain a
quick answer to questions about en
tries that were adjacent to it when the
words were in alphabetical order,

A B-tree does make it possible to effi
ciently answer questions about items

that were neighbors in the original se
quence. The B-tree is a mechanism for
implementing binary search in which
the repeated divisions of the file are in
corporated into the data structure in
stead of being calculated by the algo
rithm. The B-tree has the form of an
inverted tree: there are many categories
(leaves) at the bottom and only one cate
gory (the root) at the top. Each category,
or node, is made up of a set of keys for
data entries.

At the bottom level of the tree each
node includes a group of entries ar
ranged in order without omissions. At
the next level up each node includes one
key from each node of a subset of the
nodes at the bottom. The process of re
duction continues to the top of the tree,
where there is a single node. The tree is
traversed from top to bottom with the
keys in each node serving as pointers to
nodes one level down.

If a dictionary were stored as a B
tree, the first node might contain the
words "chromophore," "epicycle," "im
polite" and so on, which constitute a
set of dividing points for the alphabet.
"Chromophore," the first key, could
point to a node at the second level that
includes the words "alfalfa," "apocry
phal," "available," "binocular," "bully"
and "celery." It can readily be seen that
the second list includes dividing points
from the beginning of the alphabet to
the word "chromophore." Each item in
the second group points to a more fine
ly resolved list. At the bottom of the
tree the nodes point to the dictionary
entries themselves.

T
he B-tree has become popular for
several reasons. As noted above, a

B-tree makes it possible to answer ques
tions about the adjacent items when one
item has been retrieved. In addition B
tree storage is relatively fast: a search
requires roughly log2n operations and
adding or deleting entries also requires
roughly log2n operations.

One of the main reasons B-trees have
been so widely applied is related to the
physical structure of magnetic-disk stor
age. It is often assumed for the purpose
of �pproximation that each search in
a file takes about the same amount of
time. It is only in main memory, how
ever, that each search takes an unvary
ing period, and data bases large enough
to be of interest do not fit in main memo
ry. Large data bases are stored on disk,
where there are two types of search with
quite different retrieval times. The ran
dom-access time is the average time
needed to retrieve a record from an arbi
trary position on the disk. The sequen
tial-access time is the time needed to re
trieve the record following the one most
recently accessed. In a typical machine
the random-access time might be 30
times greater than the sequential-access
time. An efficient program therefore

© 1984 SCIENTIFIC AMERICAN, INC

maximizes the number of sequential
searches and minimizes the number of
random ones by retrieving relatively
large groups of data each time a search
is done. If the data are stored in a B-tree,
the size of the nodes at the base of the
tree can be adjusted to match the size of

a disk block. Hashing cannot readily ex
ploit the disk structure.

often necessary to combine several tech
niques to achieve the best operational
result, as is suggested by several exam
ples drawn from work I have done with
my colleagues. One experimental pro
gram we have devised gives weather
forecasts for any town in the U.S. If the

I
n the preceding discussion the meth

ods for storing and retrieving data
have been considered separately. In the
design of an actual system, however, it is

a

cat dog eel

LI_
g

_
ira

_
ff

_
e
-'-l_

g
_
o

_
a

_
t
-'-__ -'-__l1 I

iguana I koala

b

cat dog eel

J I giraffe I goat I I I
iguana I koala

C

I giraffe I goat

STRUCTURE OF B-TREE and strategies for adding items to the
tree are shown for a small file made up of the names and descriptions
of animals stored in alphabetical order. The B-tree is an ordered form
of data storage consisting of nodes, or small groups of keys. Each
node includes keys that divide the file or part of the file into frac
tions (a). The top node includes keys that function as dividing points
for the entire file. Each key in the top node points to a node on the
level below. The keys in each lower node fiU the gaps between the
keys in the upper node. For example, the gap between frog and rac
coon is filled by gerbil, horse, lion and okapi; the key frog in the top
node points to the lower node that includes them. To find the entry

rat snail

otter I panda I pigeon I

otter I panda I pigeon I

I
mouse I nut

hatch

lizard, the top node is scanned and it is found that lizard lies between
frog and raccoon. When the second node is scanned, it is found that
lizard lies between lion and okapi. Lion points to the node that be
gins with lizard. The key lizard points to the entry describing the or
ganism (not shown). Adding an item to a B-tree can be a simple job
or a complex one depending on the position of empty slots. To add
ocelot to the tree is straightforward: the entry is put in the empty slot
after nuthatch (b). If ocelot has been added, however, adding magpie
requires that the node beginning with lizard be divided into an upper
and a lower node (c). In that way the arrangement of pointers is pre
served: mouse and nuthatch fill the gap between magpie and ocelot.

167
© 1984 SCIENTIFIC AMERICAN, INC

user asks for the weather in a particu
lar town, the program finds the closest
place to the town where the weather
has been recorded and reports the most
recent observations. It then goes on to
locate the nearest weather forecasts and
reports them.

Presenting such weather information
entails the use of three data bases and
software for each one. The system relies
mainly on a National Weather Service
communications circuit that delivers six
megabytes of weather information per
day, including observations and fore
casts. The observations are made at air
ports, which are identified only by a
three-letter code; as a result two data
bases are needed in addition to the one
that holds the weather information it
self. The first supplementary data base,
a table that gives the latitude and lon
gitude of each airport, is drawn from
records maintained by the Federal Avi
ation Administration. The second, a ta
ble that gives the latitude and longitude
of each U.S. town, is drawn from Bu
reau of the Census records.

The town data are stored as a B
tree. The weather reports are stored in
a bucketed file where the U.S. is divid
ed into small sq uares of latitude and lon-

COMMAND: $ date

OUTPUT: Fri. May 4 12:55:48 EDT 1984

COMMAND: $ weather

elmira, ny

OUTPUT: Elmira, NY: (42.093 N, 76.807W)

gitude. When a set of weather observa
tions arrives, the airport code is convert
ed into a location by means of the B-tree
and the information is stored in the ap
propriate bucket. When a request for
weather information is made, the buck
et is searched for the closest airport. If
the data were in one-dimensional rather
than two-dimensional form, the entire
job could be done with B-trees, but B
trees do not accommodate two-dimen
sional data well. The weather service is
often used by my associates who are go
ing on trips and want to know the weath
er at their destination.

Another service we provide is a means
of selecting information from news sto
ries filed by the Associated Press. The
program is currently experimental and
has about 100 participants. Each day
about 200,000 words are stored in the
computer system. There are two main
modes of access to the information in
the news stories. In one mode the user
picks current stories from a "menu" dis
play; the stories are selected according
to a few words that serve as the title in a
�omputer-terminal display. About 40
people read a total of 840 stories per day
on the average by picking them from
the menu.

6.3 miles NW at the airport in Elmira, NY (CHEMUNG COUNTY) (11 :55 AM EDT):
temperature 55, humidity 96, weather overcast, visibility 15 miles

Next 48 hours at Rochester, NY (ROCHESTER-MONROE COUNTY)
To 8 PM EDT/5: high 62 low 41, prob. precip. to 8 AM 30% to 8 PM 10%
To 8 PM EDT/6: high 66 low 45, prob. precip. to 8 AM 40% to 8 PM 60%

Forecast For Western New York
National weather service buffalo ny
430 am edt fri may 4 1984
Rain .. Heavy in spots .. Becoming intermittent during the day from
west to east and ending tonight. Highs in the mid to upper 50's
today and lows tonight about 40. A mix of clouds and sunshine
Saturday. Highs 60 to 65.

WEATHER INFORMATION for Elmira, N.Y., is presented by a program devised by the an
thor. After checking the date the user asked for information about the weather in Elmira. The
program found the nearest point where the weather had been observed (the Elmira airport)
and reported current observations. It then found the nearest weather forecasts. The forecast
for Rochester was compiled mechanically; the one for Buffalo was compiled by human beings.
The weather-information program, which can report the weather for any town in the U.S., re
lies mainly on National Weather Service observations that are made at airports. Hence two
data bases are required in addition to the one that records the weather information itself: a
table giving the latitude and longitude of each airport and a table giving the latitude and longi
tude of each town. When a request is made, the program identifies the latitude and longitude of
the town, finds the nearest airports and reports forecasts and observations from the airports.

168

In the second mode of access readers
are able to retrieve stories by means of a
profile consisting of particular words,
phrases or syntactical operations. Some
one who wants to read about Mount Ev
erest can ask for all the Associated Press
stories in which the word "Everest" ap
pears. Queries based on phrases such as
"space shuttle" or on features such 'as
the inclusion of "telephone" and "regu
lation" in the same sentence can also be
answered. About 50 people maintain
such standing requests and some 550
stories per day are sent out because they
match a particular profile.

T
he systems I have described so far
are all designed to store and retrieve

information in the form of numbers
or words, but it is also possible to proc
ess large quantities of information de
rived from graphic images. Consider
the problem of storing a street map in
a computer file and then employing the
file to answer questions that would or
dinarily be answered by consulting the
map. The information in a street map
can be reduced to two main types of
data: the location of nodes and the loca
tion of edges. A node is a point where
two streets intersect; an edge is the seg
ment of a street that connects two nodes.
The positions of nodes and edges could
be converted into digital form by de
vices called digitizing table.ts or scan
ners, but fortunately the conversion has
been done by the Census Bureau. Our
system for processing maps is based on
data obtained from the bureau.

How should the maps be stored? The
data are copious, and what is even worse
from the point of view of storage, they
are two-dimensional. The storage sys
tem must be able to accommodate both
these properties. Several storage meth
ods could do so, and to select one we
considered the queries that the system
should be able to answer efficiently.
Four types of query are significant:
finding the location of a building when
the street number, the street name and
the Zip Code are known; finding out
whether two streets intersect and, if
they do, locating the intersections; find
ing all the points that can be reached di
rectly from a given point, and finding
all the streets within a certain radius of
a given point.

Two techniques for storing data plot
ted in two dimensions are the connec
tion matrix and the k-d tree. In the con
nection matrix the only information that
is stored is the list of all pairs of nodes
that are linked by an edge. Such a file
does not include enough information to
support the map system because it is es
sential for the system to include street
names and the locations of the nodes.
The street names must be entered so that
the program can determine when the
route passes from one street to anoth-

•

© 1984 SCIENTIFIC AMERICAN, INC

THE PORTABLE.
For years business people had to choose

between the power of a desktop computer and the
limited capabilities of the first portables. That
problem was solved when Hewlett·Packard intro
duced The Portable.

The Portable is designed with more total
memory than most leading desktop personal
computers ... 656K in fact. That includes 272K
of user memory. So, The Portable's built-in
business software can work with enormous
amounts of data.

1-2-3'" from Lotus!" America's most popular
spreadsheet, file management and business
graphics program, is permanently built into The
Portable. So is Hewlett-Packard's word processing
program, MemoMaker. Just press the key and
you're ready to work.

The Portable even has a built-in modem and
easy-to-use telecommunications software to send

or receive data using a staildard telephone jack.
If you use a Hewlett-Packard Touchscreen

PC, IBM® PC, XT or an IBM compatible youll
be glad to know that your desktop and The
Portable can talk to each other with the simple
addition of the Hewlett-Packard Portable
Desktop Link.

The Portable's rechargeable battery gives
you 16 hours of continuous usage on every charge.

Finally, you can work comfortably on a full
size keyboard and an easy-to-read 16-line by 80-
column screen. And it all folds shut to tum The
Portable into a simple nine-pound box.

The Portable. A small miracle ... perhaps.
But then consider where it came from.

See The Portable and the entire family of
personal computers, software and peripherals at
your authorized Hewlett-Packard dealer. Call
(800) FOR-HPPC for the dealer nearest you.

PG02412 236 A

Setting You Free
Fh HEWLETT
a! PACKARD

IBM is a registered trademark of International Business Machines Corporation. 1·2·3 and Lotus are trademarks of Lotus Development Corporation.

© 1984 SCIENTIFIC AMERICAN, INC

Your Key To
Microcomputer Software!

More
software
for more

comp'Dters
... anil more.

Whatever your software needs, all
you need to know is Westico. We
have hundreds of business and
professional software programs
in formats to fit more than 120
microcomputers, including IBM
PC, MS DOS and CP/M-compatible
systems. Our large inventory means
you get the software you want,
when you want it. Plus, our after
sales service is designed to keep
you smiling. Westico helps you get
the most from your microcomputer.

Find out more with our new
directory. Detailed descriptions of
all our programs help you select
the correct software to fit your needs.
Start getting more with Westico .

• - Order Your Copy Today - •

o Rush me the brand new Westico
software directory.

Name ____________________ _

Firm ___________ _

Address __________ __

City ___ State __ Zip __

Mail to:

\VrSIICO The Soft_re Express Service""
25 Van Zant Street • Norwalk, CT 06855.

(203) 853-6880 • Telex 64-3788 •
' . . �;:��9: w.:;t:, :.:;8;7". ___ ...

170

er. The locations of the nodes must be
entered so that a left turn can be distin
guished from a right turn and also so
that a physical version of the map can
be drawn.

The k-d tree is a variant of the B-tree
that can accommodate data in more
than one dimension. In the k-d tree the
descent from one level to the next-lower
level corresponds not only to a progres
sively finer selection of data but also to
a change of dimension. At each step the
data are divided along the largest di
mension. Thus in storing a digitized map
of Chile the first division would be along
the north-south axis, whereas in a map
of Tennessee the first division would be
along the east-west axis.

The k-d tree is an efficient means of
storing two-dimensional data because
breaking up the information along its
largest dimension reduces the number
of decisions that must be made to re
trieve an item. The main problem in
storing maps, however, is not to reduce
the number of decisions in each retrieval
but to minimize the number of disk
blocks that must be examined. Like the
connection matrix, the k-d tree cannot
store street names with the streets and
therefore the names must be supplied
from a separate file .

DOW JONES
820

INDUSTRIAL

TIME AVERAGE 818

10:30 814.12

11 :00 813.55

11 :30 814.12 816

NOON 816.59

12:30 816.69
814

1:00 817.73

1:30 818.21

2:00 814.12 812

2:30 810.50

3:00 810.12

3:30 812.02 810

CLOSE 810.41

808
10AM 11 AM

To speed the disk-retrieval operations
a "patched file" was constructed that
comprises two subfiles, with each subfile
holding a different kind of information.
One file is the master list of edges, drawn
from Census Bureau data and from
a table of extra information for each
street. The Census Bureau data give the
location of each edge and its name;
the additional table designates one-way
streets and limited-access highways and
gives information about speed limits
and average travel speed.

I
n the master segments file, as in the

original Census Bureau data, each
street is divided into segments short
enough so that a segment intersects oth
er segments only at the ends and also
short enough so that the segment can be
approximated by a straight line. A seg
ment corresponds to a single record in
the data base. Such a form of organiza
tion implies that for most streets each
block requires a separate record. The
records are sorted in alphabetical order
according to street name.

Each record includes a field that indi
cates whether the segment is an ordinary
street, a limited-access highway, an ac
cess ramp or another map feature such
as a railroad, a river or a boundary line.

NOON 1PM 2 PM 3PM 4PM

COMPUTER 'The market crept upward early in the session yesterday, but stumbled shortly before trading
ended. Stock prices turned in a mixed showing, with the market posting a small loss in
moderate trading."

WALL STREET
JOURNAL

"The stock market finished with mixed results after the attempt to push its rebound into a
fourth session faltered in cont�nued active trading."

SOFTWARE FOR THE STOCK MARKET can convey the resnlts of a day's trading in num
bers, visual images or words. The Dow Jones Industrial Average is available in machine-read
able form; the panel at the top left shows the average at half-hour intervals on June 23, 1982.
The panel at the top right shows the output of a simple program that converts the numerical
information into a graph of the day's average. A more complex program devised by Karen
Kukich of Carnegie-Mellon University gives an English-language summary of the progress of
the average through the day. The bottom panel compares a computer-generated summary and
the summary of the same day's trading that was published in The Wall Street Journal. The
stock-market program does not include information about trading on previous days; hence the
summary cannot include generalizations about trends lasting for more than one day. The text
generator is specialized for the task at hand. For example, it never generates the future tense.

© 1984 SCIENTIFIC AMERICAN, INC

For streets the record also includes the
house numbers on each side of the seg
ment, information about travel speed,
the locations of the endpoints and the
Zip Code on each side of the segment.
By means of a binary search through
the master file it is a simple matter to
retrieve the location of any street ad
dress and list the intersections of any
two streets. Thus the master file alone
can answer the first two types of query.

The second file is a group of segments
organized according to a patched for
mat in which the area covered by the
map is divided into squares 10,000 feet
on a side. To draw a map that includes
all the segments in a particular area the
program scans the list of patches se
quentially and then scans the relevant
patches in the same way. A segment that
appears in only one patch is stored once,
but a segment that appears in more than
one patch is stored in all the patches
where it has an endpoint. The patched
file is entirely derived from the mas
ter list. When changes are made, they
are entered into the master list only;
the patched file is then regenerated au
tomatically.

When techniques for organizing and
storing the information from the maps
had been selected, the problem of pro
viding an interface between the user and
the system had to be solved. Most of the
available computer interfaces are inferi
or to a printed map. On many printed
road maps the ratio of the width of the
smallest printed character to the width
of the map is about one to 1,000. Even
on a high-quality computer terminal the
ratio of the width of the smallest let
ter to the width of the screen is general
ly only about one to 125. Furthermore,
most computer devices can print only
horizontally; a few can also print verti
cally but almost none can print at inter
mediate angles. Because of these limita
tions many street names must be omit
ted from the maps that are produced
from the digitized information.

T
o determine which labels should be
omitted the program utilizes infor

mation about how big the labels are and
also about which streets are important.
It is assumed that the longer a street
is, the more important it is for routing
purposes; the assumption works well in
practice. Information about the relative
importance of streets is also employed
to excerpt the maps so that large areas
can be represented without excessive
detail and to plot routes that traverse
only large thoroughfares. For rapid
processing it is convenient to assume
that each street follows a straight path
between the intersections that survive
the excerpting.

The system we have constructed can
efficiently answer all four types of query
given above. When the data base is com-

VISION
David Marr, Late of the Massachusetts Institute of Technology
397 pages, 155 illustrations

-----------A------------

MILESTONE IN THE HISTORY
OF THE SUBJECT"

I n VISION, David Marr
presents an entirely new way

of looking at sight. T he author
theorizes that one can understand
what seeing is and how it works
by comprehending the underlying
information-processing tasks ini
tiated by the eye. VISION is an
amplifICation of the landmark
computational theory developed
by Marr at M.I.T.

"Even if no one of Marr's detailed
hypotheses ultimately survives,
which is unlikely, the questions he
raises can no longer be ignored, and
the methodology he proposes seems
to be the only one that has any hope
of illuminating the bewilfjering cir
cuitry of the central nervous
system."

-H. C. Longuet-Higgins, Science·

To order, send check or money order to:

ISBN 0-7167-1567-8; paper $21.95
II W. H. Freeman and Company, 4419 West 1980 South

Salt Lake City, Utah 84104

17 1
© 1984 SCIENTIFIC AMERICAN, INC

172

bined with a program written by Jane
Elliott of AT&T Bell Laboratories, it is
possible to find the shortest route be
tween two points on the map in terms of
time or distance. Most of the map proc
essing utilizes the patched-file structure,
which is analogous to the bucketed
file employed for one-dimensional data.
Th� patched file . is somewhat slower
than the B-tree but it exploits the disk
structure better than the B-tree does.
The list of patches for a single map gen
erally fits in one disk block; hence each
retrieval can be done quickly. More
over, the patched structure is easy to un
derstand, to use and to update.

F
ew standard routines exist for proc

essing two-dimensional data, but by
combining several techniques the map
problem can be solved. Many other in
triguing examples of data-base manage
ment could be cited as a result of the
proliferation of devices that generate
information in machine-readable form.
That increase, however, has not been
matched by the development of soft
ware to provide access to the informa
tion. In the next few years more efficient
and more imaginative software for in
formation management will undoubted
ly be developed. Although the results of
the process cannot be predicted, it is
probable that such development will be
guided by the principles set forth in the
introduction to this article: the need to
tailor each program to the content of the
information and to how the information
will be employed and the need to fully
exploit the structure of the machinery in
which the software operates.

GEOGRAPHIC DATA BASE stored in digi
tal form generates maps with varions levels
of detail. Each panel shows the same area: a
sqnare fonr miles on a side centered on an in
tersection in Chatham, N.J. The map at the
top shows all the streets in the sqnare. The
map in the middle has been excerpted to show
only important streets. The map at the bottom
has been fnrther excerpted and also simplified
by assuming that each street follows a straight
path between the intersections shown. The ex
cerpting can considerably reduce the comput
er time that is needed for processing a map.
The full map requires 56 seconds of proc
essing on a Digital Equipment Corporation
VAX 1 1 1750 computer (a large minicomput
er). The excerpted map requires 34 seconds
and the excerpted, straight-line map requires
five seconds. The software for processing the
maps relies on a file that comprises two sub
files. The main file includes data in digital form
from the Bureau of the Census concerning the
location of nodes and edges. A node is an in
tersection and an edge is the portion of a street
that connects two nodes. The second file is a
"patched file" in which the map is divided into
small squares and the appearance of nodes
and edges in each square is recorded. The two
subfiles are employed together to excerpt the
maps and to answer questions about routes.

© 1984 SCIENTIFIC AMERICAN, INC

1 73
© 1984 SCIENTIFIC AMERICAN, INC

LV\..
Te:MP-

© 1984 SCIENTIFIC AMERICAN, INC

Computer Software
for Process Control

Software of this kind has the primary function of communicating
with and governing physical devices. A process-control computer
does not set its own pace but responds to events in the real world

C
omputer systems that monitor or

control processes in the real
world are rapidly growing in

number. They deal with such things as
air traffic control, the equivalent rout
ing and signal ing system for the rail
roads, the operation of nuclear power
plants, the distribution of electric pow
er, the telephone network, the autopilot
and other control systems of an aircraft,
the operation of elevators, the control
of robots and machine tools, the indoor
environment of build ings, production
l ines in manufacturing plants, the flight
of spacecraft and so on. One d istinctive
characteristic of a process-control com
puter is that its pr imary function is to
communicate with the physical world
rather than with a human operator
(although it may d isplay information
about the state of the process to the op
erator). Another feature is that a proc
ess-control computer cannot set its own
pace; it must respond on cue to events in
the world at large .

A typical system might be put to work
controlling a fractionating column that
distil ls light chemical components from
heavier ones, as in a petroleum refinery .
In this application the computer, d irect
ed by software, receives information on
the level and the rate of flow of the vari
ous fluid s and on temperatures and pres
sures in the column; it issues commands
to control these factors and thereby de
termines the quantity and quality of the
products. The control system might also
be programmed to minimize the use of
energy in the plant.

Whatever the application is , the l inks
between the computer and the process

by Alfred Z. Spector

are sensors and actuators. Typically a
sensor monitors analogue data, such as
changes in temperature, that must be
transformed into d igital data before
be ing presented to the computer. With
some types of sensor the software pe
riodically calls for information; with
other types it is the sensor that inter
rupts the software at irregular intervals
to present information. A program for
controlling a process is also likely to in
clude a t iming device-a clock-that can
be regarded as a sensor. An actuator
manipulates the real-world process ei
ther electrically or electromechanically.
In controlling temperature an actuator
might turn a fan on or off.

The l inks between the computer and
the human operators are input and out
put devices. A keyboard is the standard
input device. M odern computer systems
often have add itional means of input,
such as a light pen or a "mouse," where
by the operator can make choices by
pointing at a d isplay screen. The screen
itself is an output device, d isplaying
textual and graphic information on the
state of the process. Another form of
output is an alarm indicating that some
part of the process needs attention.

At the heart of a process-control com
n puter is a model of the real-world
process. The model has three compo
nents that I call the model state, the
state-update function and the pred ictor
function. The model state consists of
data g iving a complete description of
the re al-world process at each instant.
The state-upd ate function transforms
one model state into another based on

ELECTRIC POWER SYSTEMS are monitored by computer software, which displays the
state of the system at any given time on the computer screen. In the top photograph on the op
posite page the software is reporting the conditions in a generating plant with two steam gener
ators and one turbine. The bottom photograph shows the high-voltage transmission system of
the Iowa Electric Light and Power Company. By means of this display the operator at the com
pany's control center in Cedar Rapids can open and close circuit breakers to reroute power
among the substations named in the display. The program was installed by Aydin Controls.

information supplied by the sensors.
The predictor function, if it is given
an accurate model state, y ields a set of
computer commands that achieve some
desired condition in the process being
controlled. What the formal terms de
scribe is a system of feed back control:
the software receives data from the
sensors, implements the state-update
and pred ictor functions and issues com
mands to the actuators . The results of
those commands then influence further
data received from the sensors.

Separate from the model but also cru
cial to the operation of the system is a
strategic plan. It specifies the sequence
of states the controlled process should
pass through. For example, in a city traf
fic-control system the plan specifies the
state of the traffic lights as a function
of t ime and traffic flow. The plan may
be supplied by human operators or it
may be generated by the software from
a set of more abstract goals established
by the designers of the system.

A fairly s imple arrangement for con
trolling the supply of heat to a build
ing illustrates the structure of a process
control system. The hardware includes a
sensor to monitor the outdoor tempera
ture, sensors in several rooms to mon
itor indoor temperatures, a clock and
two actuators , which are switches for a
heat pump and a furnace . Assume the
software is g iven two goals: to main
tain a temperature that depends on the
t ime of day and to minimize energy
consumption.

The model state include s the inside
and outside temperatures and the t ime
of day. The most important part of
the state-update function calculates
a we ighted average of the data from
the various indoor-temperature sensors.
The predictor function utilizes the mod
e l state, together with information about
the heat loss of the build ing and the ther
mal output of the two heaters, to pre
dict when a heater should be started or
stopped. The strategy calls for a deter-

175
© 1984 SCIENTIFIC AMERICAN, INC

mination of whether the furnace or the
heat pump is most cost-effective at
a particular time; the determination
might well be based on the outdoor tem
perature and the cost of fuel.

One could extend the system by add
ing more sensors (say to monitor the
fuel levels), by taking into account other
aspects of the model state and by ar
ranging to give some notice of excep
tional conditions (such as a malfunc
tioning heater or an open window). The
fundamental nature of the system would
not be changed, however, by these en
hancements. It would still be based on a
model of the controlled process, and it
would still employ a predictor function
to reach new states.

Most process-control systems are
more complex than this example might
suggest. The main reason is the com
plexity of the internal model. Consider a
vehicular-control system, even an ele
mentary one that can sense only accel
eration. Just to maintain the correct ve
locity the state-update function must
do a mathematical integration for each
reading of the acceleration. If a cam
era were added to detect obstacles and
follow roadways, analyzing the view in
order to update the model state would
demand the most elaborate techniques
of artificial intelligence.

Complex procedures may also be

needed in carrying out predictor func
tions and in developing strategic plans.
The predictor function that calculates
the angles for a six-joint robot arm in
order to position and orient its hand
calls for substantial amounts of linear
algebra. Planning the sequence of inter
mediate states necessary for a robot arm
to move smoothly from one position to
another is even more difficult.

Computation and planning are tasks
that must be done in many com

puter applications, and process-control
software employs techniques to do them
that are common to other types of soft
ware. On the other hand, process-con
trol systems have requirements that dif
fer from th9se of other computer appli
cations. One requirement has to do with
speed. For a computer playing chess or
calculating a payroll precise timing is
seldom critical; higher speed would be
advantageous, but a result obtained af
ter a delay is still valid. A system con
trolling a jet aircraft, however, has to
make decisions quickly; it must act in
"real time."

Similarly, the chess-playing or pay
roll-calculating computer can do one
task at a time and can schedule its tasks
in whatever way is convenient. The air
craft-control system must meet multiple
demands as they are presented, care-

COMPUTER
SYSTEM

fully synchronizing its work on various
tasks. Reliability is also more important
in the aircraft, where the consequence of
a programming error could be a loss of
life and not merely the loss of a game or
a financial loss. In many cases the need
for speed, synchronization and reliabil
ity is complicated by the physical organ
ization of the system, in which com
puters, sensors and actuators may be
spatially separated and operating in a
harsh environment.

The problems of synchronization and
timing are suggested by the simple pro
gram fragment in the top illustration on
the opposite page. It is part of a program
for controlling the heating of a building,
and it takes the form of a loop: a se
quence of instructions that can be ex
ecuted repeatedly. The only timing re
quirement is that the procedures must
be carried out fast enough to allow for
a specified frequency of operation. If
there were multiple sensors to be sam
pled or actuators to be commanded,
however, the control flow through the
software would be far more complex.
Furthermore, if the system had to han
dle asynchronous interruptions from
sensors and to issue commands in re
sponse to such events, the software
could no longer be organized as a loop
or even as a set of loops but would need
to have some more complex topology.

FROM
ROOM

SENSORS

FROM
OUTDOORS

FURNACE

PROCESS-CONTROL SYSTEM for regUlating the supply of heat
to a building is shown schematically. The system consists of two heat
ers (a furnace and a heat pump), an array of sensors to monitor the
outdoor temperature and the temperature in the rooms of the build
ing, actuators to turn the heating units on and off, a computer and a
program given two goals: to maintain a temperature that depends on
the time of day and to minimize the consumption of energy at all
times. The program operates according to a three-part model of the

real-world situation. The model state includes the inside and outside
temperatures and the time of day; the state-update function calcu
lates a weighted average of the various temperatures and revises the
model state accordingly, and the predictor function takes into ac-.
count such matters as the state of the system and the rate of heat
loss from the building to predict when one of the heaters should be
turned on or off. The computer program is based on a strategy of us
ing only the more economical heater unless both heaters are needed.

176
© 1984 SCIENTIFIC AMERICAN, INC

Process-control software is usually
constructed as a collection of cooperat
ing but separate tasks. A task is defined
as an independent sequence of comput
er instructions that can call on data at
least partially segregated from the data
relating to other tasks. Multiple tasks
can be carried out on multiple proces
sors, with each processor executing a
single task. A commoner arrangement,
however, employs a multitasking op
erating system to schedule the execu
tion of many tasks on a single comput
er. Careful analysis is needed to ensure
the tasks receive service in a way that
meets the overall goals of the system.

One simple techniq ue sched ules tasks
in a round-robin way: each task gets a
turn during which it is executed to com
pletion. With this technique a task may
meet with severe delays if long tasks are
scheduled ahead of it. A second possibil
ity is a preemptive round-robin tech
nique, in which each task gets only a
short time to execute before the proces
sor turns to another one. If there is more
work for the first task to do, it gets
another period of execution on its next
turn. A third approach is priority-based
scheduling, in which tasks of higher pri
ority get longer or more frequent pe
riods of execution. A final important
approach is called deadline scheduling.
A deadline by which each task must be
completed is established, and the system
attempts to schedule the tasks so that
they all meet their goals.

A fragment of a simple multi task con
trol program is shown in the bottom il
lustration at the right. Two tasks are co
ordinated: Keyboard-Sensor-Read, with
a high priority, and Plan-Predict-Actu
ate, with a lower priority. The high-pri
ority task receives input asynchronously
(that is, at unpredictable intervals) from
a human operator and from sensors; the
other task periodically adjusts actuators
in response to recent inputs. If the low
priority task is executing when the key
board or a sensor reports that new data
are available, the operating system in
terrupts the task and allows it to resume
only after the data have been read. Al
most all process-control systems have
this multitask organization.

It is significant in this arrangement
that the Keyboard-Sensor-Read task
transfers data to the Plan-Predict-Actu
ate task by way of the model state. The
first task simply loads information from
the keyboard into the area of memory
where the model state is stored, an area
to which the second task also has access.
The sharing of memory in this way is
a powerful and efficient technique for
intertask communication. It is the stan
dard procedure for process-control ap
plications confined to a single computer.

On the other hand, communication
between tasks by means of shared

memory complicates multitasking and

FROM
SENSORS

Repeat sequentially n times per second
Beginning-ot-sequence

Sample-Sensors
Update-Model-State
Plan-Next-Desired-Process-State
Predict-How-To-Reach-Next-State
Issue-Commands-To-Actuators

End-ot-sequence

STATE-UPDATE
FUNCTION
USES SENSORS
TO UPDATE
MODEL STATE

MODEL STATE

PREDICTOR
FUNCTION
ISSUES
COMMANDS
TO ACTUATORS

TIME, INDOOR TEMPERATURE, OUTDOOR
TEMPERATURE AND OTHER DATA

TO
ACTUATORS

SOFTWARE STRUCTURE of tbe process-control scbeme for tbe beating system is suggested
by tbe program fragment in tbe upper part of tbis illustration. Tbe commands in boldface type
are key words in tbe programming language; tbe otber commands are calls on software proce

dures tbat are specific to tbe system being controlled. Tbe program bas tbe form of a loop: it
is a sequence of commands tbat can be executed repeatedly. Tbe lower part of tbe illustra
tion sbows tbe major components of tbe computer program for controlling tbe beating system.

Beginning-ot-task with priority 10 {Named Keyboard-Sensor-Readl
Wait-For-Report-From-Keyboard
Read-Keyboard
Read-Sensor
Update-MOdel-State

End-ot-task

Beginning-ot-task with priority 5 {Named Plan-Predict-Actuatel
Repeat sequentially 10 times per second
Beginning-ot-sequence

Plan-Next-Desired-Process-State
Predict-How-To-Reach-Next-State
Issue-Commands-To-Actuators

End-ot-sequence
End-ot-task

INPUT DEVICE

TASK: READ
KEYBOARD
AND SENSORS

TASK: PLAN,
PREDICT,
ACTUATE

MODEL STATE

SENSOR

MULTITASK CONTROL SYSTEM is based on a single program tbat attends to and coordi
nates several functions; in tbe example sbown bere it operates a remotely controlled aircraft. A
fragment of tbe program (top) includes two tasks; one task bas a bigb priority (color) and tbe
otber a lower priority (gray). Tbe bigb-priority task receives inputs at irregular intervals from
a buman operator, wbo works witb a keyboard, and from sensors on tbe aircraft. Tbe low
priority task periodically adjusts actuators tbat operate tbe aircraft's controls (bere a wing
flap). Tbe bigb-priority task cannot be interrupted. If tbe low-priority task is executing wben
inputs come from tbe keyboard or a sensor, it is interrupted by tbe program. Botb tasks bave
access to tbe representation of tbe model state in tbe computer's memory. Memory sbaring is
standard for intertask communication in process-control systems directed by one computer.

177
© 1984 SCIENTIFIC AMERICAN, INC

COMPUTER

ACQUIRE LOCK A �=:::j:=� ACQUIRE LOCK B

ACQUIRE LOCK B -----11--3>11 ACQUIRE LOCK A

PROBLEM OF DEADLOCK can arise in a program that employs the technique called locking
to synchronize the sharing of memory by multiple tasks. In this technique a task cannot gain
access to data in memory until it acquires a lock, meaning that it asks the operating system for
access and receives it. When the task no longer needs access, it releases the lock. Here deadlock
is shown in a two-task system. The task on the left is executing a sequence of instructions (rep
resented by dots) when it encounters a command to acquire lock A. It does so and continues
executing. Meanwhile the second task has followed instructions to acquire lock B. Now the first
task issues an instruction to acquire lock B; it cannot do so because the other task already has
that lock, and so the first task is suspended until the lock is made available. If the second task
now issues a request to acquire lock A, the system is deadlocked and neither task can execute.

Beginning-of-task with priority 10 {Clock}
Repeat sequentially 10 times per second
Beginning-of-sequence

Send-Message (Plan-Predict-Actuate-Task, T ime-Passed)
End-of-sequence

End-of-task

Beginning-of-task with priority 10 {Named Keyboard-Sensor-Read}
Wait-For-Report-From-Keyboard
Read-Keyboard
Read-Sensor
Send-Message (Plan-Predict-Actuate-Task, New-Data)

End-of-task

Beginning-of-task with priority 5 {Named Plan-Predict-Actuate}
Repeat sequentially 10 times per second
Beginning-of-sequence

Await-Message
If message is from T imer-Task then
Beginning of sequence

Predict-How-To-Reach-Next-State
Issue-Commands-To-Actuators

End-of-sequence
Else Update-Local-State-With-New-Data

End-of-sequence
End-of-task

TASK: READ
CLOCK,REPORT
TIME PASSED

TASK: READ
KEYBOARD OR
SENSOR AND
REPORT

CLOCK,

MESSAGE PASSING is an alternative to memory sharing for synchronizing the work of mul
tiple tasks in a process-control system. It is the only workable method when the system has sev
eral separate computers. Part of a message-passing program for controlling an airplane ap
pears at the top; the organization of the program is diagrammed below the program fragment.

178

leads to some interesting problems. One
problem is synchronization. Suppose in
the two-task program the low-priority
task is interrupted after it has read some
elements of the model state but before it
has read others. When the task resumes,
it reads the remaining values and calcu
lates a result determined by all the read
ings. During the interruption, however,
the model state may have been changed
by the other task, so that the computa
tion is based on a chimera of old and
new data. Suppose the interrupted task
was measuring a position in an x-y-z co
ordinate system and was interrupted af
ter it had read x but before it had read
y and z; it would base its calculation
on a position that never existed in the
real world.

Several techniques are available for
synchronizing access to shared memo
ry, but two simple ones are commonly
used. One technique depends on des
ignating segments of program code in
which a task cannot be interrupted;
the facilities for interrupting a task can
readily be disabled by the operating sys
tem in conjunction with the computer
hardware. Turning again to the two-task
example, the system might specify that
the Plan-Predict-Actuate task is to be
free of interruption while it is reading
the x, y and z coordinates. The other
major techniq ue is called locking. Be
fore a task can gain access to data it
must ask the operating system for the
right to do so. When the task has finished
with the data, it tells the operating sys
tem that the data are free for the use of
other tasks. The task is said to acquire a
lock before it can read data in shared
memory, and it must release the lock
when it has finished. By this mechanism
the operating system ensures that only
one task at a time has access to the data.

Although the synchronization of ac
cess to shared memory is conceptually
simple, it is a major source of bugs in
multitask programs. In part the reason is
that synchronization bugs are extreme
ly difficult to find; they may exhibit no
symptoms except in rare circumstances.
The computer malfunction that delayed
the first mission of the space shuttle
was a synchronization problem (a high
ly complex one) that would be likely to
arise only once every 65 times the sys
tem was started up.

Problems connected with the syn
chronization of shared memory can af
fect the reliability of a system in other
ways. What happens if a programming
error leads a task into an endless loop
while it is in a no-interruption period?
Unless great care has been taken in the
design of the system, other tasks may be
shut out entirely. A problem that can
arise with locks is that a collection of
tasks may form a cycle in which each
task is waiting for another task to release
a lock, with the result that none of the
tasks is executed. Such a deadlock can

© 1984 SCIENTIFIC AMERICAN, INC

SCIENCE/SCOPE

Artificial intelligence is the focus of a new advanced technology center at Hughes Aircraft Company.
The facility brings research and development efforts under one roof. Scientists and engineers will
work closely with universities throughout the country to develop software and equipment to build the
so-called expert systems. Studies will center on knowledge representation, symbolic reasoning and
inference, natural language processing, and knowledge acquisition and learning. Technology will be
developed for image understanding for missile targeting and geological surveys from space, smart
avionics to reduce pilot workload, self-controlled systems, simulation and training, fault diagnosis and
maintenance, and manufacturing resource allocation and planning.

The sights, sounds, motion, and urgency of combat await pilots who learn to fly the F/A-i8 Hornet
strike fighter in the first computerized simulators of their kind. A pilot wears full flying gear and sits
in an exact replica of an F/A-i8 cockpit located inside of a 40-foot-diameter sphere. High-resolution
pictures of earth, sky, and targets are projected onto the inner surface of the sphere and matched with
appropriate sounds and vibration. Pilots thus experience runway vibration, aircraft stalls, buffeting,
missile launches, cannon fire, dazzling aerial maneuvers, and enemy aircraft and missiles approaching
at supersonic speeds. The Hughes simulator will save the U. S. Nav y and Marine Corps millions of
dollars by providing combat training without costly flight operations.

Computers will be troubleshooting hybrid microcircuits used in new sophisticated missiles at Hughes.
Computer-aided troubleshooting (CATS) will cut troubleshooting time, improve effectiveness by
automatically locating faults, eliminate mistakes and wasted time, and simplify the technician's
decision-making. CATS also will be able to use past repair records as a key to speed up troubleshooting.
A typical case: An automatic bar-code reader identifies a failed part and data about the failed test is
retrieved from a main computer. A probe then automatically takes measurements at key internal circuit
nodes so the fault can be isolated. Next, the computer displays a schematic of the failed circuit area and
compares actual and ideal signal values. The technician then determines which component has most
likely failed and selects rework instructions accordingly.

Development times for semicustom very large-scale integrated (VLSI) circuits have been cut from
greater than one year to 20 weeks at an ultramodern computer-aided training and design center at the
Hughes facility in Newport Beach, California. Utilizing advanced design automation software, a
comprehensive library of pre designed logic functions (called Macros), and preprocessed wafers, the
new facility is helping engineers design chips with 2,000 to 8,000 gates and with as many as 180
pins. New 3-micron dual-layer metal HCMOS processes are applied to both standard cell products and
state-of-the-art gate arrays. Skilled design engineers and education specialists at the Newport Design
Center provide training and technical support for IC designers throughout the company.

Hughes Research Laboratories needs scientists for a spectrum of long-term sophisticated programs.
Major areas of investigation include: masked ion beam lithography, liquid-crystal materials and
applications, sub micron microelectronics, ion propulsion, computer architectures for image and signal
processors, gallium arsenide device and integrated circuit technology (analog and digital), and new
electronic materials. For immediate consideration, please send your resume to Professional Staffing,
Hughes Research Laboratories, Dept. S2, 3011 Malibu Canyon Road, Malibu, CA 90265. Equal
opportunity employer. U. S. citizenship required.

For more information write to: P.O. Box 11205, Marina det Rey, CA 90295

HUGHES
AIRCRAFT COMPANY

© 1984 SCIENTIFIC AMERICAN, INC

Make Way For Hayes'Please.
An advanced, easv-to-use data management

system for the IBM® PC and compatibles.

bility and customer support. your spreadsheet program. Please
Now these same standards have will even look up a name and com-
been applied to a new data pany for you, your Hayes Smart-

L--____________ ..,.-...J management system that isgo- modem* will dial the phone number,
Want to get your paperwork out of ing to instandy change the way you and you're ready to talk!
a clumsy file cabinet and onto your do business! 'Iaking this same sales database,
PC's screen, where you can manage Say you're looking for an effident you might also want to define spedal
it better? Frustrated with data base way to maintain fields for a custom
software that's either too limited or sales data. Please "Make it snapp� please!" Output Plan.
too difficult to use? Hayes offers you leads you every step Need a report fast; You and �ith a ��fined
a simple word of kindness. of the way in creat- Please can put together a Quick field for COM-

Please�M A powerful. yet easy-to-use, ing a sales database List in a matter of seconds. MISSIONS DUE:'
system for organizing and managing that might include - please can automa-
your information. please is fle:xiole names, addresses, dates and figures. tically compute each salesman's com-
enough to store any data you enter, These categories are called "fields" in missions, and print them out in a
and it'll return data to you in exactly database lingo, and they're the very report of your own design. All this
the form you need. Please does heart of your database structure. and more, just for saying "please:'
more. Want last month's total in a par- And if you ever change your mind
�t does "The menu, Please?" ticular region? Press a few keys and and want to change the structure of
It all M l' 11 . it'SJourS! A few more keystrokes hOur database, please feel free. Step-
s: enus 1st a your options II kn h . . h h laster: and tell you exactly which an you' ow w o's moving pro- y-step mstructions s ow you ow.
And it's keys to press for every duct. and what's your biggest seller: You have the same fle:xioility with
sure to please feature. please will supply you with labels any database you and Please aesign.
please! L--:--__ --:-_-:-__ ---' for a mailing to selected customers. It You can store up to 16 million records

That's to be expected. As the can send customer information to and 200 custom Output Plans for each
telecomputing leader, Hayes built its · your word processor for a promotional database! More than you're likely
reputation on quality design, relia- letter. And it can receive data from ever to require. But isn't it nice

Please is a trademark of Hayes Microcomputer Products, Inc, • Smaronodem 300. Smaronodem 1200 and Smaronodem 1200B are trademarks of Hayes Microcomputer Products. Inc.

© 1984 SCIENTIFIC AMERICAN, INC

"Put it here, please:' knowing Everything about Please is designed
Design a special screen all that to save you time and effort. So what
fonnat to position data storage could make data management even

in a particular place. power easier? please Application Templates,
'-r------------' is there? that's what!

Just in case you ever need it? To help you get up-and-running
Now you might think that a data immediately, we've developed a

management system that does all series of practical. pre-designed
this must be difficult to use. Right? templates. You'll appredate their
Rest assured. Please works hard so well-thought-out structure, and "fill-
you don't have to. An easy-to-follow in-the-blank" ease. Choose several!
sample disk shows you everything For business and personal use.
you need to know to Including Mailing
create your first data- "Merge these, please!" IJst, for storing
base. Three Please Combine data from one names and
menus show you database into another, with- addresses and pro-
which keys to press out changing your original. dudng mailing lists.
to access every fea- Contacts, for man-
ture. And whenever you need it aging facts and figures about your
please provides on-screen HELP sales contacts. Applicants, for follow-
messages, tailored to a spedfic task. ing applicants thioughout the inter-"
So you needn't waste time reading viewing process. Appointments, for
through a list of unrelated instructions maintaining your calendar and track-
on your screen. Or stop what you're ing all of your business expenses.
doing to consult a manual. In no time Household Records, a complete
at all, and with no assistance at all, home management system. And
you'll be a Plea.se database pro! more! Your dealer has details!

Buy Please nowl
Get a FREE Mail
ing List temjllate
from your dealet

Second FREE
template of your
chOICe, direct
from Hayesl

Help yourself.
pleasel And take
advantage of
these two valu
able offers. See
your dealer right
awayl

Hayes MicrocomI>uter Products, Inc.,
5923 Peachtree lnoustrial Blvd ..
Norcross. Georgia 30092. 404/441-1617.

IBM is a registered trademark of International Business Machines Corporation. ©1984 Hayes Microcomputer Products. Inc.

© 1984 SCIENTIFIC AMERICAN, INC

QUALITY PERSONAL PRINTERS.

Each gear finely honed. Each pendu
lum carefully balanced. Each timepiece
a combination of precision and function.
He was a craftsman, building a quality
product to stand the test of time.

Today, qkidata makes the most tech
nologically advanced dot matrix print
ers the same way. With quality, perfor
mance, and a healthy respect for value.

Function with affordability. All print
ers print. but an Okidata does it with
more performance and versatility than
any other. There are seven models to
choose from, priced at $349 to $2,595.

Affordabillty with flexlbillty. Oki
data offers three print modes, too. The
data processing mode lets you print up
to 350 characters per second. That's
five pages a minute. Another mode lets
you print emphasized or enhanced text
for more effective presentations, while
the correspondence mode prints letter

quality at up to 85 characters per sec
ond, with clarity that rivals daisywheel.
And an Okidata can print graphics and
charts, which a daisywheel can't. This
allows you to fully use the latest inte
grated software packages like Lotus
\-2_VM and SymphonyTM.

F1exlbillty with compatibility. Each
Okidata printer is fully compatible with
all popular software packages and per
sonal computers. Special interfaces
are available for IBM and Apple, in
cluding the Apple Macintosh.

Compatibility with reliability.
Here's where Okidata quality really
shows. With a warranty claim rate of
less than \ /2 of \ %. With printheads
that last well beyond 200,000,000 char
acters and come with a full year guaran
tee. With service available nationwide
through Xerox Service Centers.

Precision and performance. Quality

and value. That old English c10ckmaker
would have been very proud of us.

Call \-800-0KIDATA (609-235-2600
in New Jersey) for the name of the Au
thorized Okidata Dealer nearest you.

Technological Craftsmanship.

Lotus \-2-3 and Symphony are trademarks of Lotus
Development Corp.

© 1984 SCIENTIFIC AMERICAN, INC

appear in a system with as few as two
tasks and two locks.

Difficulties unrelated to synchroniza
tion are also possible in a shared-mem
ory system. Because the memory is
shared, tasks are not isolated from one
another, and it is difficult to limit the
effects of a failure. The faulty execu
tion can alter the model state and thcre
by disrupt the operation of many other
tasks. In a network of geographical
ly dispersed computers the sharing of
memory becomes awkward for still an-

COMPUTER
SYSTEM

other reason, having to do with the hard
ware rather than the software: it is sim
ply not feasible to build a memory to be
shared by several distant computers.

For these reasons among others some
process-control systems are organ

ized as a collection of tasks that do not
implicitly share the model state but in
stead explicitly exchange information
by transmitting messages. Each task
keeps track of those elements of the
model state it needs in its own, non-

BUS SYSTEM

COMPUTER
SYSTEM

COMPUTER
SYSTEM

shared, segment of memory. The oper
ating system provides facilities for send
ing and receiving messages.

For simple process-control applica
tions the message-passing arrangement
is more complex and usually less effi
cient than shared memory. Still, the ex
plicit flow of information between tasks
and the greater isolation of tasks offer
certain advantages. A message-passing
organization is the only feasible choice
when a process is being controlled by a
system of several cooperating comput-

GATEWAY

SENSORS,
ACTUATORS,
DISPLAYS,
INPUT DEVICES

RING SYSTEM

GATEWAY

COMPUTER
SYSTEM

I
I
I
I
I
I

'--�

GATEWAY

I
I
I
I
I
I
I

LONG·HAUL
COMPUTER
NETWORK

CENTRAL
COMPUTER
COMPLEX

DISTRIBUTED COMPUTER SYSTEM is a common arrangement
when the sensors and actuators of a process-control system are wide
ly scattered. The system shown encompasses three clusters of com
puters that are geographically dispersed. One cluster is made up of
three computers that communicate with one another by means of a

local-area network organized as a "bus" (a set of parallel straight
line conductors). Another cluster employs a ring-shaped network.
The third component of the system is a central computer that has the
functions of coordination, the collection of data and human input.
The three systems exchange messages over a long-distallce network.

183
© 1984 SCIENTIFIC AMERICAN, INC

ers witho ut shared memory . Notwith
stand ing the virtues of message passing,
a program can still become deadlocked
because tasks can be waiting to rece ive
me ssages from one another.

Systems made up of several comp ut
ers working in concert are increasingly
prevalent, not only for process control
but also for scientific calculation, data
processing and artificial intel l igence. In
some arrangements of this kind a n um
ber of processors share a common
memory; the sharing is possible, how
ever, only if the comp uters are physi
cally close. (Transmitting a signal one
kilometer takes several microseconds,
which is an intolerable delay for the
heavy traffic between a central proces
sor and its main memory.)

When the comp u ters are physically
separated , the process-control system is
organized as a collection of processors
with their own local memory; the proc
essors are connected by communication
channels to form a network. These d is
tri b u te d systems, as they are called, nec
essarily rely on message passing. The
distance between processors, sensors
and act uators d isting u ishes d ifferent
types of d istrib uted systems because of
the effect of d istance on bandwidth and
latency. Bandwidth is a meas ure of the
n umber of bits that can be transmitted
per second; latency is the delay between
the d ispatch and the receipt of informa-

tion. Shorter d istances make for higher
bandwidth and lower latency, thus al
lowing closer interaction between tasks
being exec uted on the comp uters.

A common reason for setting up a dis
trib uted system in process control is that
the sensors and actuators are themselves
geographically d istrib ute d . In s uch a sit
uation it is often possible to organize the
system so that most of the processing is
done near the relevant sensors and actu
ators and communication between com
p u ters i s minimized . An example is a
process-control system for a large facto
ry with many semia utonomou s comp ut
ers in different b uild ings. The systems
occasionally exchange messages for the
p urpose of plantwide coord ination and
sched ul ing, but mainly they operate in
dependently. The system in one b u il d ing
might independently control the manu
facture of a certain prod uct b u t wou l d
communicate with other systems t o
gather information about prod uction
q uotas or the s upply of raw materials.

Distr ib uted processing can also s im
p lify the design and installation of the
system (say by red ucing the amount of
cabling), and it encourages an organiza
tional str ucture in which the people re
sponsible for a process also have charge
of the associated comp uting tasks. Po
tentially higher performance is anoth
er maj or motivation for multicomp u ter
systems. In principle more comp uta-

tion can be done if many processors are
working simultaneously . A process-con
trol system organized as a set of tasks
that communicate by means of mes
sages is a natural application of s uch
parallel processing. A comp utationally
intensive p lanning task might be execut
e d on a high-speed processor that re
ceives data from tasks r unning on oth
er comp uters and passes strategic plans
back to them.

Perhaps the most important reason for
adopting d istr ib uted comp uting in a

process-control system is that it is a use
ful means of achieving reliability. When
the system is d ivided into s u b systems
that operate a u tonomo usly, a failure in
one machine sho uld not cause the entire
system to fail . The factory setup I de
scribed above offers an example: even if
one s ubsystem fails, the other s u bsys
tems can contin ue, at least until they r un
o u t of raw materials.

If contin ued operation of the entire
system is the o bjective, red undant proc
e ssing is a necessary but not a s ufficient
means to that end. The entire process
control system from sensors to actua
tors, not j ust the comp uter and its soft
ware, must go on working in spite of a
malfunction. A comp uter working cor
rectly but receiving incorrect data from
sensors and therefore iss u ing faulty
commands to actuators could do more

PROTECTION AGAINST FAILURE is more important in proc
ess-control systems than it is in many other computer applications.
One way to improve reliability is to duplicate key components of the
system. Here one computer is designated primary and the other sec
ondary. Each computer receives all the inputs, but only the primary

is connected to the actuators. The secondary merely does the compu
tations as if it were controlling the process. If the primary fails, con
trol of the actuators is switched to the secondary. The system also
has redundancy in the sensors, the actuators, the displays and the
input devices, since they must operate as reliably as the compnters.

184
© 1984 SCIENTIFIC AMERICAN, INC

damage than a comp uter that stopped
completely.

The h ighest goal in the q uest for reli
ability is continued operation complete
ly unaffected by fail ure s . The nat ure of
the compromises made when that goal
cannot be attained is s uggested by the
approach to reliability taken in the con
trol systems of the space shuttle. Be
cause of red undancy in the shuttle's pri
mary space borne computer system, a
single fail ure does not force changes in
the mission. A second fail ure does not
jeopard ize the crew or the vehicle, but
the shuttle is bro ught back to the earth
as soon as possible because further fail
ure s could be hazardous . The shuttle is
said to be "fail operational, fail safe . "

If an entire system cannot be k e p t r un
ning after a fail ure, it may still retain
partial function, a property given the
rather stately name of graceful degra
dation. For example, a system that can
no longer control a process a u tomati
cally might still accept keyboard com
mands from an operator, so that the
process could be controlled manually.
If even partial operation is not possi
ble, the control system sho uld at least
bring about an orderly shutdown of the
process in the event of a major failure.

Failures of software can occur in
three ways. First, the requirements of
the process-control system may be m is
state d , so that even if the software meets
its specifications exactly, it leads to erro
neo us operation. On the first mission of
the space shuttle insufficient knowle dge
of the vehicle's flight characteristics led
to an ascent trajectory that m ight not
have allowed an emergency land ing in
Spain as part of the plan for dealing with
crises. Second, the logical design under
lying the software or the programming
statements in which the design is em
bodied may not meet the specifications.
The flaw may be something as simple as
a typographical error. Third, a h uman
operator may err in using the software .

Protecting against fail ure is a key topic
in al l comp uter applications, but in

process control the high probability of
bugs in synchronization and timing and
the potentially greater cost of s uch b ugs
make the task of protecting against them
both more important and harder. Some
times formal analytical methods can be
bro ught to bear to prove that a pro
gram meets the req uirements stated for
it . In most cases, however, less formal
analytical methods must serve. A com
mon method is to have experts in re
q u irements and experts in program
ming j o intly study a spec ification of
req uirements and a program devised
to meet them.

Regardless of how thoro ughly a pro
gram is analyzed, it is still necessary to
test it . Analytical methods are gener
ally not powerful enough to catch all
the conceivable b ugs in software des ign

and in programming. F urthermore, no
amount of comparison of programs
with req uirements can ens ure that the
req uirements themselves are correct
and sufficient.

Sometimes the people who verify pro
grams are organized as a group separate
from the programmers, and they inde
pendently test the operation of the pro
gram. D uring the development of the
primary space borne operating system
of the shuttle the independent group of
program verifiers was about the same
size as the programming group. In an
effort to red uce the risk of programming
errors still further, two programming
groups are sometimes formed to inde
pendently devise software for the same
task. The ass umption is that at least one
version of the software will work.

Protection against errors by operators
calls for what is irreverently termed
id iot-proofing. Careful design of the
software can minimize the likelihood or
s uch errors. Input from the operator can
also be checked for plausibility, for ex
ample by having the program deter
mine whether n umerical values are in
the proper range . Another techni q ue is
to give the operator an opportunity to
rethink crucial actions. The program can
raise a q uestion s uch as "Did you mean
to hal t the process? "

An interesting property of software
I\. is that once a program has been
proved to operate correctly, i t will con
tinue to work indefinitely; software does
not " break down." In contrast, hard
ware that is reliable at one time may not
be rel iable later. Processors may stop
altogether or comp ute erroneo u s re
sults; memory and sensors may ret urn
incorrect val ues; communication lines
may garble information or lose it , and
act uators may stop working or become
inacc urate. A single component m ight
fail or an entire comp uter with its mem
ory and comm unication lines might be
d isabled, as in an airplane after a fire.
Even if the computing system itself is
flawless, it may still fail because of envi
ronmental effects s uch as power fluct ua
tions or excessive heat. I f a system is to
be reliable, therefore , it should tolerate
the faults that still arise in spite of all
e fforts to el iminate them. Red undancy
in many forms is the means of keeping
s uch fa ults from interfering with the sys
tem's p lanne d reliabil ity .

A certain amo unt of red undancy can
be b u ilt into the hardware . For example,
many comp uters store extra informa
tion with each item in memory so that
some storage errors can be corrected a u
tomatically. Some processors automati
cally retry an instr uct ion that has failed,
a design feature founded on the rea
sonable l ikel ihood that the effort will
s ucceed _the second time. M aj or logic
mod ule s-even entire processors-can
be repl icate d . The re s ults . obtained by

the units operating in parallel are com
pare d , and the result accepted is deter
mined by a majority vote. The techniq ue
is called n-replica mod ular red undancy.
When n is more than 3, the technique
y ields a correct value if there are no
more than (n - 1) / 2 failures . As long as
mod ules fail independently the reliabili
ty of the system increases as J1 increases.

Software techniq ues are also em
ployed to gain reliability. L i ke hard
ware, software can retry a proced ure af
ter a failure. In most comm unications
systems the software retransmits data
until it has rece ived an acknowledgment
that the d ata got thro ugh. Software can
also t urn to a red undant source after
one so urce has faile d . In a typical oper
ation the software would detect a mal
function in an act uator by noting incon
sistencies in data coming from a sensor;
commands would then be redirected
to another actuator.

In a m ul ticomp uter system similar
software proced ures can be carried out
on m ultiple processors to d iminish the
con seq uences of a processor failure.
The software for each processor can be
programmed independently to increase
the l ikelihood that at least one version of
the software is correct. If the system has
a utonomo us processors that are sepa
rate ly powered , spread over a d istance
and connected by red undant communi
cation channels, there is little chance
that the entire system can fail . With the
add ition of red undant sensors and actu
ators a system of this kind can provide
extremely high reliability.

One way of organizing a system with
extensive red undancy is to designate one
computer the primary, with the other
comp uters be ing considered secondary.
The primary comp uter receives data
from the sensors and commands the ac
t uators. The secondary comp uters may
also rece ive data from the sensors so
that they will have the correct model
state if one of them has to take over
from the primary, but they do not com
mand the actuators. The secondaries
check the primary comp uter periodical
ly, both implicitly by keeping watch on
the consistency of the data from the sen
sors and explicitly by sending messages
to the primary that ask it to perform
some test function. Both the primary
and the secondaries m ust filter -informa
tion from red undant sensors, and they
may have to vote on the read ings from
the sensors in order to ensure that the
comp utations are based on valid data. ·

Perhaps the most difficult part of this
techniq ue is reliably determining when a
primary comp uter has faile d . It is easy
to envision a sit uation in which a mal
functioning secondary could seize con
trol from a properly functioning pri
mary . Clearly it is necessary to have an
agreement among m ultiple secondaries
on the necessity for one of them to take
over from the primary. Whenever there

1 8 5
© 1984 SCIENTIFIC AMERICAN, INC

is eno ugh time, it is simpler for a human
operator' to make the decision.

An alternative way of organizing a
I\. m ulticomp uter system is based on
voting. The proced ure is similar to n
mod ular re d undancy except t h a t the
voting is done by software modules
rather than by hardware. The mod ules
perform calc ulations, exchange results
with one another and vote on the results.
Beca use independent processors r un at
slightly d ifferent speeds, a group of them
m ust wait untilthe last one has finished
a computation before they can vote.

A system somewhat like the one
described controls crit ical flight seg
ments on the space shuttle. The system
has four a utonomous processors. Each
processor commands a separate act ua
tor for each function, such as moving
airfoil s urfaces d uring fl ight in the at
mosphere. The voting is done hydrau-

SENSOR 1

COMMANDER

- - - - - - - ...,

l ically : three act uators can overpower
one act uator. A description o f hydraulic
act uators that fight against one another
may seem out of pl ace in a d isc ussion of
comp uter software, but it is q u ite ger
mane. The hydraulic voting scheme ex
ists because process-control software,
by its very nature, m ust d irec tly infl u
e n c e processes in t h e r e a l world . I t is
this d irect control that most d isting uish
es process-control systems fro m other
comp uter systems, which merely re port
the results of comp utations.

Some process-control systems are in
herently q u ite s imple . The heating-con
trol arrangement I have described is
an example. Other systems, s uch as the
ones that control the shuttle, jet aircraft
and telephone switches, are among the
most complex com p u ter systems ever
b u ilt . They demand advanced strate
gic planning, high performance, high
reliabil ity and precise t iming. Mee ting

� - -
I
I

POSITION A

SENSOR 2

I
I
I

COMMANDER

- - - - - - - -i
1- - -

POSITION B I

SENSOR 3

I
I
I
I

COMMANDER

- - - - - - - -i
\- - - -

POSITION B I
I
I
I
I
I
I
L _ _ _

those objectives cal ls for the use of tech
niq ues from the fields of software engi
neering, hardware architecture, systems
design, operating systems and artificial
intel l igence.

A simple system can be d esigned in a
matter of days. A ·complex one s uch as
the onboard system for the space shuttle
calls for years of effort by thousands of
workers: Perhaps the problem most in
need of sol ution is how to reduce the
time req uired to constr uct a complex
control system. I t is almost always pos
sible to devise hardware and software to
meet a process-control o bjective, but the
task can be formidably e xpensive. Al
though certain new software engineer
ing techniq ues and programming lan
g uages (Ada is one) will help somewhat,
the real need is for better methods of
specification and programming, easier
means of analysis and testing and better
organization of systems.

VOTED
SUBSYSTEM

VOTING ARRANGEMENT is often provided in process-control
systems to protect against failure. The scheme of hydraulic voting
shown here is employed on the space shuttle to set the position of the
rocket gimbal. The system has three sensors, four computers and four
hydraulic actuators. Only one computer issues commands for a read
ing from each sensor, but all the computers receive data from all the
sensors. The computers exchange enough information to ensure that

they agree on the data. If they do not agree, they discard the data.
Otherwise they independently compute the appropriate output by
means of identical algorithms. Each computer commands a separate
actuator; if the commands are in conflict, three actuators can over
power the fourth actuator, so that there is effectively a principle of
majority rule. If a component fails, a member of the crew can deal
with the problem, as is indicated by the lines labeled "Commander."

186
© 1984 SCIENTIFIC AMERICAN, INC

Were light on your feet.
Our casting material is up to one-th i rd
l ighter than plaster. It's three times stronger
and we hope you never need it.

But on most any injury req u i ring a cast.
you 'd f ind Scotchcast® Casting Tape more
comfortable than plaster and easier to
get around i n . It 's th i nner, so it fits u nder
cloth ing . I t also breathes. That reduces
itching, odor and helps you stay cooler i n
warm weather.

Al l the comforts of Scotchcast tape
were i nspired by a 3M employee who

asked for someth ing " l ess barbaric" than
his plaster cast.

Hearing the needs of the medical profes
sion and the patients it serves has hel ped
3M pioneer over 700 health care products.
We now make everyth i ng from stetho
scopes and pharmaceuticals to x-ray f i lm
that red uces the danger of rad iation.

And it a l l began by l istening.

3M hears you . . .

!For you r free brochure o n 3M 's health I
I care products plus al l other 3M products, I wnte: Dept. 010709/3M , P.O. Box 22002,

I I Robbi nsdale, M N 55422.

I Name I
I I
I Address I
I City State __ Zip __ I �r cal�l l -free: 1-800-336-4327.

_ _ �

3M
© 1984 SCIENTIFIC AMERICAN, INC

Computer Software
in Science and Mathematics

Computation offers a new means of describing and investigating
scientific and mathematical systems. Simulation by computer may
be the only way to predict how certain complicated systems evolve

Scientific laws give algorithms, or
procedures, for determining how
systems behave. The computer

program is a medium in which the algo
rithms can be expressed and applied.
Physical objects and mathematical
structures can be represented as num
bers and symbols in a computer, and a
program can be written to manipulate
them according to the algorithms. When
the computer program is executed, it
causes the numbers and symbols to be
modified in the way specified by the sci
entific laws. It thereby allows the conse
quences of the laws to be deduced.

Executing a computer program is
much like performing an experiment.
Unlike the physical objects in a conven
tional experiment, however, the objects
in a computer experiment are not bound
by the laws of nature. Instead they fol
low the laws embodied in the computer
program, which can be of any consistent
form. Computation thus extends the
realm of experimental science: it allows
experiments to be performeq in a hypo
thetical universe. Computation also ex
tends theoretical science. Scientific laws
have conventionally been constructed in
terms of a particular set of mathemati
cal functions and constructs, and they
have often been developed as much
for their mathematical simplicity as for
their capacity to model the salient fea
tures of a phenomenon. A scientific law
specified by an algorithm, however, can
have any consistent form. The study of
many complex systems, which have re
sisted analysis by traditional mathemat
ical methods, is consequently being
made possible through computer exper
iments and computer models. Compu
tation is emerging as a major new ap
proach to science, supplementing the
long-standing methodologies of theory
and experiment.

There are many scientific calcula
tions, of course, that can be done by con
ventional mathematical means, without
the aid of the computer. For example,

188

by Stephen Wolfram

given the equations that describe the
motion of electrons in an arbitrary mag
netic field, it is possible to derive a sim
ple mathematical formula that gives the
trajectory of an electron in a uniform
magnetic field (one whose strength is
the same at all positions). For more
complicated magnetic fields, however,
there is no such simple mathematical
formula. The equations of motion still
yield an algorithm from which the
trajectory of an electron can be deter
mined. In principle the trajectory could
be worked out by hand, but in prac
tice only a computer can go through the
large number of steps necessary to ob
tain accurate results.

A computer program that embodies
the laws of motion for an electron in a
magnetic field can be used to perform
computer experiments. Such experi
ments are more flexible than conven
tional laboratory experiments. For ex
ample, a laboratory experiment could
readily be devised to study the trajecto
ry of an electron moving under the influ
ence of the magnetic field in a television
tube. No laboratory experiment, how
ever, could reproduce the conditions en
countered by an electron moving in the
magnetic field surrounding a neutron
star. The computer program can be ap
plied in both cases.

The magnetic field under investiga-

tion is specified by a set of numbers
stored in a computer. The computer
program applies an algorithm that sim
ulates the motion of the electron by
changing the numbers representing its
position at successive times. Computers
are now fast enough for the simulations
to be carried out quickly, and so it is
practical to explore a large number
of cases. The investigator can interact
directly with the computer, modifying
various aspects of a phenomenon as new
results are obtained. The usual cycle of
the scientific method, in which hypothe
ses are formulated and then tested, can
be followed much faster with the aid of
the computer.

Computer experiments are not limit
ed to processes that occur in nature.

For example, a computer program can
describe the motion of magnetic mono
poles in magnetic fields, even though
magnetic monopoles have not been de
tected in physical experiments. More
over, the program can be modified to
embody various alternative laws for the
motion of magnetic monopoles. Once
again, when the program is executed,
the consequences of the hypothetical
laws can be determined. The comput
er thus enables the investigator to ex
periment with a range of hypothetical
natural laws.

COMPUTER SIMULATION has made it practical to consider many new kinds of models for
natural phenomena. Here the stages in the formation of a snowflake are generated by a com
puter program that embodies a model called a cellular automaton. According to the model, the
plane is divided into a lattice of small, regular hexagonal cells. Each cell is assigned the value 0,
which corresponds to water vapor (black), or the value 1, which corresponds to ice (color). Be
ginning with a single red cell in the center of the illustration, the simulated snowflake grows in
a series of steps. At each step the subsequent value of any cell on the boundary of the snow
flake depends on the total value of the six cells that surround it. If the total value is an odd num
ber, the cell becomes ice and takes on the value 1; otherwise the cell remains vapor and keeps
the value O. The successive layers of ice formed in this way are shown as a sequence of colors,
ranging from red to blue every time the number of layers doubles. The calculation required for
each cell is simple, but for the pattern shown more than 1 0,000 calculations were needed. The
only practical way to generate the pattern is by computer simulation. The illustration was made
with the aid of a program written by Norman H. Packard of the Institute for Advanced Study.

© 1984 SCIENTIFIC AMERICAN, INC

The computer can also be used to
study the properties of abstract math
ematical systems. Mathematical exper
iments carried out by computer can of
ten suggest conjectures that are sub
sequently established by conventional
mathematical proof. Consider a math
ematical system that can be introduced
to model the path of a beam of elec-

trons traveling through the magnetic
fields in a circular particle accelerator.
The transverse displacement of an elec
tron as it passes a point on one of its
revolutions around the accelerator ring
is given by some fraction x between 0
and 1. The value of the fraction corre
sponding to the electron's displacement
on the next revolution is then ax(1 - x),

where a is a number that can range be
tween 0 and 4. The formula gives an
algorithm from which the sequence of
values for the electron's displacement
can be worked out.

A few trials show how the properties
of the sequence depend on the value of
a. If a is equal to 2 and the initial value
of x is equal to .8, the next value of x,

© 1984 SCIENTIFIC AMERICAN, INC

PHYSICAL PROCESS ALGORITHMIC DESCRIPTION

COMPUTER E X PERIMENT (40 STEPS)

TRIAL 1 TRIAL2

� EXACT SOLUTION

l' >I:::::i jjJ « co o a:

u.
�--------------�--------------�Ooo TRIAL 100 a:J

Cl.

-15 -10 -5 0 5

POSITION

NUMERICAL APPROXIMATION

t >I:::::i jjJ « CO o
a:
Cl.

TIME 4

-15 -10 -5 0 5

POSITION

10 15

10 15

ALGEBRAIC APPROXIMATION (40 STEPS)

ORDER 0 Y4�"

' 1' «>-13t: a:J Cl.jjJ
-15 -10 -5 0 5 10 15

POSITION

• • • TIME 14

-15 -10

ORDER1

-15 -10 -5

MATHEMATICAL AND COMPUTATIONAL METHODS are
applied in various ways in the study of random walks. A random walk
is a model for such physical processes as the Brownian motion of a
small particle suspended in a liquid. The particle undergoes random
deflections as it is bombarded by the molecules in the liquid; its path
can thus be described as a sequence of steps, each taken in a random
direction. The most direct way to deduce the consequences of the
model is by a computer experiment. Many random walks are simulat
ed on a computer and their average properties are measured. The dia
gram shows a histogram in which the height of each bin records the
number of simulated random walks that were found to have reached
a particular range of positions after a certain time. As more trials are
included, the shape of the histogram approaches that of the exact dis
tribution of positions. For an ordinary random walk it is possible to
derive the exact distribution directly. A differential equation can be

190

UJ«
��
::::lI-
Z

-15 -10 -5 0 5 10 15
POSITION

.,. TIME 40

10 15 -15 -10 -5 0 5 15

POSITION POSITION

ORDER2 � (A2X') � 40" 2x40'

� , \

0 5 10 15 -15 -10 -5 5 10 15
POSITION POSITION

constructed for the distribution, and the equation is simple enough
for an exact solution to be given. For most differential equations,
however, no such exact solution can be obtained, and approximations
must be made. In numerical approximations the smooth variation of
quantities in the differential equation is approximated by a large
number of small increments. The results shown in the diagram were
obtained by a computer program in which the spatial and temporal
increments were small fractions of the lengths and times for individ
nal steps in the random walk. Algebraic approximations to the differ
ential equation are found as a series of algebraic terms. The diagram
shows the first three terms in such a series. The contribution of each
term is shown as a solid black line or curve. The line or curve is add
ed by superposition to the broken black line or curve that represents
the previous order in the approximation. The result of the superposi
tion is the current order in the approximation (solid colored curves).

© 1984 SCIENTIFIC AMERICAN, INC

which is given by ax(l - x), is equal to
. 32. If the formula is applied again, the
value of x obtained is .4352. After sev
eral iterations the sequence of values
for x converges to . 5. Indeed, when a
is small and x is any fraction between
o and 1, the sequence quickly settles
down to give the same value of x for
each revolution of the electron.

As a increases, however, a phenome
non called period doubling can be ob
served. When a reaches 3, the sequence
begins to alternate between two values
of x. As a continues to increase, first
four, then eight and finally, when it
reaches about 3.57, an entire range
of values for x appear. This behavior
could not readily be guessed from the
construction of the mathematical sys
tem, but it is immediately suggested by
the computer experiment. The detailed
properties of the system can then be es
tablished by a conventional proof.

The mathematical processes that can
be described by a computer program
are not limited to the operations and
functions of conventional mathematics.
For example, there is no conventional
mathematical notation for the function
that reverses the order of the digits in a
number. Nevertheless, it is possible to
define and apply the function in a com
puter program. The computer makes
it practical to introduce scientific and
mathematical laws that are intrinsical
ly algorithmic in nature. Consider the
chain of events set up when an electron
accelerated to a high energy is fired into
a block of lead. There is a certain proba
bility that the electron emits a photon of
a particular energy. If a photon is emit
ted, there is a certain probability that it
gives rise to a second electron and a pos
itron (the antiparticle of the electron).
Each member of the pair can in turn
emit more photons, so that a cascade of
particles is eventually generated. There
is no simple mathematical formula that
can describe even the elements of the
process. Nevertheless, an algorithm for
the process can be incorporated into a
computer program, and the outcome of
the process can be deduced by executing
the program. The algorithm serves as
the basic law that describes the process.

The mathematical basis of most con
ventional models of natural phe

nomena is the differential eq uation.
Such an equation gives relations be
tween certain quantities and their rates
of change. For example, a chemical re
action proceeds at a rate proportional to
the concentrations of the reacting chem
icals, and that relation can be expressed
by a differential equation. A solution to
the equation would give the concentra
tion of each reactant as a function of
time. In some simple cases it is possible
to find a complete solution to the equa
tion in terms of standard mathematical
functions. In most cases, however, no

such exact solution can be obtained, and
one must resort to approximation .

The commonest approximations are
numerical. Suppose one term of a differ
ential equation gives the instantaneous
rate of change of a quantity with time.
The term can be approximated by the
total change in the quantity over some
small interval and then substituted into
the differential equation. The resulting
equation is in effect an algorithm that
determines the approximate value of the
quantity at the end of an interval, given
its value at the beginning of the interval.
By applying the algorithm repeatedly
for successive intervals, the approxi
mate variation of the quantity with time
can be found. Smaller intervals yield
more accurate results. The calculation
required for each interval is quite sim
ple, but in most cases it must be repeat
ed many times to achieve an acceptable
level of accuracy. Such an approach is
practical only with a computer.

The numerical methods embodied
in computer programs have been em
ployed to find approximate solutions
to differential eq uations in a wide varie
ty of disciplines. In some cases the so
lutions have a simple form. In many
cases, however, the solutions show com
plicated, almost random behavior, even
though the differential equations from
which they arise are quite simple. For
such cases experimental mathematics
must be used.

In practical applications one often
finds not only that differential equations
are complicated but also that there are
many of them. For example, the theoret
ical models of nuclear explosions em
ployed in the design of weapons and the
study of supernovas involve hundreds
of differential equations that describe
the interactions of many isotopes. In
practice such models are always used
in the form of computer programs: only
a computer can follow the interrelations
among so many quantities.

The results of some numerical calcu
lations, such as the abundance of

helium in the universe, can be stated as
single numbers. In most cases, however,
one is concerned with the variation of
certain quantities as the parameters of
a calculation are changed. When the
number of parameters is only one or
two, the results can be displayed as a
graph. When there are more than two
parameters, however, the results often
can be stated succinctly only as a mathe
matical formula. Exact formulas usual
ly cannot be found, but it is often possi
ble to derive approximate formulas.
Such formulas are particularly conve
nient because, unlike graphs or tables
of numbers, they can be inserted direct
ly into other calculations.

A common form for an approximate
formula is a series of terms. Each term
includes a variable raised to some pow-

.,
I aUE:ala·�aMJm® offers \
• the best in self-instructional •
• foreign language courses using •
• audio cassettes - featuring •
• those used to train U.S. State •
• Dept. personnel in Spanish, •
• French, German, Portuguese, •
• Japanese, Greek, Hebrew, •
• Arabic, Chinese, Learn • • Italian, and f . .
• more. a orelgn.
= language on =
= your own!t��IOg=
• Call (203) 453-9794, or fill out •
• and send this ad to - •
• Audio-Forum' •
• Room 604. On-the-Green '" •
• Guilford CT 06437 •
I Name •
• •
• Address •
• • • City •
• State/Zip : • I am particularly interested in (check choice): • 0 Spanish 0 French 0 German 0 Polish •
• 0 Greek 0 RUSSian 0 Vietnamese •
.. 0 Bulgarian 0 Turkish 0 Hausa • .. 0 Other • �

191
© 1984 SCIENTIFIC AMERICAN, INC

er; the power is larger in each successive
term. When the value of the variable is
small, the terms in the series become
progressively smaller; thus for small
values of x the sum of the first few terms
in an infinite series such as 1 - x
+ x2 - x$ + ' " gives an accurate ap
proximation to the sum of the entire
series, which is 11(1 + x). The first few
terms in a series are usually easy to eval
uate, but the complexity of the terms in
creases rapidly thereafter. In order to
evaluate terms that include large pow
ers of x the computer becomes essential.

In principle computer programs can
operate with any well-defined mathe
matical construct. In practice, however,
the kinds of construct that can be used
in a particular program are largely de
termined by the computer language in
which the program is written. N umeri
cal methods require only a limited set of
mathematical constructs, and the pro
grams that embody such methods can
be written in general-purpose computer
languages such as c, FORTRAN or BASIC.
The derivation and manipulation of for
mulas require operations on higher-lev
el mathematical constructs such as alge
braic expressions, for which new com
puter languages are needed. Among the
languages of this kind now in use is the
SMP language that I have developed.

SMP is a language for manipulating
symbols. It operates not only with num
bers but also with symbolic expressions
that can represent mathematical formu-

PHYSICAL PROCESS

COMPUTER EXPERIMENT

TRIAL 1

las. For example, in SMP the algebraic
expression 2x - 3y + 5x - y would be
simplified to the form 7x - 4y. This
transformation is a general one, valid
for any possible numerical values of x
and y. The standard operations of al
gebra and mathematical analysis are
among the fundamental instructions in
SMP [see illustration on page 196].

The SMP language also incl udes opera
tions that allow higher-level mathemat
ical constructs to be defined and ma
nipulated, much as they are in ordi
nary mathematical work. Real numbers
(which include all rational and irratio
nal values) as well as complex numbers
(which have both a real and an imagi
nary part) are fundamental in SMP. The
mathematical constructs known as qua
tern ions, which are generalizations of
the complex numbers, are not funda
mental. They can nonetheless be defined
in SMP, and rules can be specified for
their addition and mUltiplication. In this
way the mathematical knowledge of SMP
can be extended.

Some of the advantages of a language
such as SMP can be compared to the ad
vantages of using a calculator instead of
a table of logarithms. By now the wide
spread availability of electronic calcula
tors and computers has made such ta
bles obsolete: it is far more convenient
to call on an algorithm in a computer to
obtain a logarithm than it is to look up
the result in a table. Similarly, with a
language such as SMP it has become pos-

ALGORITHMIC DESCRIPTION

TRIAL2

r---------------�--------------__1� �
TRIAL 100 llj :::; ��

::Jf-zts
-15 15

POSITION

COMPUTATIONAL METHODS alone are used in the study of self-avoiding random walks.
Self-avoiding random walks, which arise as models for physical processes such as the folding
of polymer molecnles, differ from ordinary random walks in that each step mnst avoid all pre
vious steps. The complication makes it impossible to construct a simple differential equation
that describes the average properties of the walk. Conventional 'mathematical approaches are
thus ineffective. Properties of the self-avoiding random walk are found by direct simulation.

192

sible to make the entire range of mathe
matical knowledge available in algorith
mic form. For example, the calculation
of integrals, conventionally done with
the aid of a book of tables, can increas
ingly be left to a computer. The comput
er not only carries out the final calcula
tions quickly and without error but also
automates the process of finding the rel
evant formulas and methods.

In SMP an expanding collection of defi
nitions is being assembled in order to
provide for a wide variety of mathemat
ical calculations. One can now find in
SMP the definition of variance in statis
tics, and one can immediately apply the
definition to calculate the variance in a
particular case. Such definitions enable
programs written in the SMP language to
call on increasingly sophisticated math
ematical knowledge.

Differential equations give adequate
models for the overall properties of

physical processes such as chemical re
actions. They describe, for example, the
changes in the total concentration of
molecules; they do not, however, ac
count for the motions of individual mol
ecules. These motions can be modeled
as random walks: the path of each mole
cule is like the path that might be taken
by a person in a milling crowd. In the
simplest version of the model the mole
cule is assumed to travel in a straight
line until it collides with another mole
cule; it then recoils in a random direc
tion. All the straight-line steps are as
sumed to be of equal length. It turns out
that if a large number of molecules are
following random walks, the average
change in the concentration of mole
cules with time can in fact be described
by a differential equation called the dif
fusion equation.

There are many physical processes,
however, for which no such average de
scription seems possible. In such cases
differential equations are not available
and one must resort to direct simulation.
The motions of many individual mole
cules or components must be followed
explicitly; the overall behavior of the
system is estimated by finding the aver
age properties of the results. The only
feasible way to carry out such simula
tions is by computer experiment: essen
tially no analysis of the systems for
which analysis is necessary could be
made without the computer.

The self-avoiding random walk is an
example of a process that can apparent
ly be studied only by direct simulation.
It can be described by a simple algo
rithm that is similar to the ordinary ran
dom walk. It differs in that the succes
sive steps in the self-avoiding random.
walk must not cross the path taken by
any previous steps. The folding of long
molecules such as DNA can be mod
eled as a self-avoiding random walk.

The introd uction of the single con-

© 1984 SCIENTIFIC AMERICAN, INC

Who does a 12-Iear-old turn to
when his daas on drugs?

What happens to a
youngster with problems,
when the parents who
should help have problems
of their own?_

Like drugs or alcoholism.
Or emotional crises

that threaten a family's very
existence.

It's hard to deal with
painful situations like this at
any age. But especially when
you're underage.

And speaking practically,
these family problems have
a way of becoming business
problems.

In economic terms, call us, our Program people
workers crippled by drug or hear them out. Then we
alcohol addiction cost U.s. refer them to somebody near-
industry and society over 135 by who can help.
bIllion dollars a year. It's all done in strict con-

That's why we at ITT fidence, without anybody
created the Employee Assist- knowing but the employees
ance Program. To try and give themselves.
constructive help to people A number of our people
who need it. have turned to this ITT pro-

We maintain telephone gram since it began. And
hotlines around the world - most are still with us, produc-
24 hours a day, 7 days tive and happy members of
a week. our corporate family.

When employees or But more important,
members of their families in happy members of their own
participating ITT companies families.

Thebestideas arethe Imm
ideas that help people. .L.L

For details, write: Director-lTT Employee Assistance Program, Personnel Dept., 320 Park Ave., NY, NY 10022. Or call 212-940-2550.
01984 In Corporo!ltlon. 320 Park Avenue, New York, NY 10022

193
© 1984 SCIENTIFIC AMERICAN, INC

straint makes the self-avoiding random
walk much more complicated than the
ordinary random walk. Indeed, there is
no simple average description, analo
gous to the diffusion equation, that is
known for the self-avoiding random
walk. In order to investigate its prop-

0
0
0
0
0

o
o
o
o
o
o
o
o

o
o
o

9
o
o
o
o

o
o
o

Z 0 i= iii 0 Cl.

1

z o i= iii o Cl.

1

erties it seems one has no choice but
to carry out a direct computer experi
ment. The procedure is to generate a
large number of sample random walks,
choosing a random direction at each
step. The properties of all the walks are
then averaged. Such a procedure is an

a
<f-

C

<f-

e f
<f-

<f-

0 0
MASS ------7

MASS ------7

MASS ------7

CHAOTIC BEHAVIOR is seen in many natural systems. A familiar example is the dripping
faucet, described by a mathematical model formulated in terms of a differential equation by
Robert Shaw of the Institute for Advanced Study. When the rate at which water flows through
the faucet is very low, drops of equal size are formed at regular intervals (left). The model im
plies that if the position of the top of each drop that forms (arrows) is plotted against the mass
of the drop, a simple closed curve called a limit cycle is obtained (right). The evolution of the
system is represented by a point that traces the curve with time. If the flow is increased, the
behavior of the system suddenly becomes more complicated. A phenomenon known as period
doubling occurs, and pairs of drops, often of different sizes, are formed in each cycle. If the
flow is further increased, there is a sequence of additional period doublings. Finally, just be
fore the water flowing from the faucet becomes continuous an irregular stream of drops is
produced. The drops have an entire range of sizes, and the intervals between the formation of
consecntive drops appear to be random. The behavior of the system is then described by an ir
regular curve called a strange or chaotic attractor. The form of the curve is implied by the differ
ential equation, but in practice it can be found only by numerical-approximation techniques.

194

example of the Monte Carlo method, so
called because its application depends
on the element of chance.

Several examples have been given of
systems whose construction is quite

simple but whose behavior is extremely
complicated. The study of such systems
is leading to a new field called complex
systems theory, in which the computa
tional method plays a central role. The
archetypal example is fluid turbulence,
which develops, for example, when wa
ter flows rapidly around an obstruction.
The set of differential eq uations satisfied
by the fluid can easily be stated. Nev
ertheless, the patterns of fluid flow to
which the equations give rise have large
ly defied mathematical analysis or de
scription. In practice the patterns are
found either through observation of the
actual physical system or, as far as pos
sible, through computer experiment.

It is suspected there is a set of mathe
matical mechanisms common to many
systems that give rise to complicated
behavior. The mechanisms can best be
studied in systems whose construction is
as simple as possible. Such studies have
recently been done for a class of mathe
matical systems known as cellular au
tomata. A cellular automaton is made
up of many identical components; each
component evolves according to a sim
ple set of rules. Taken together, how
ever, the components generate behavior
of essentially arbitrary complexity.

The components of a cellular automa
ton are mathematical "cells," arranged
in one dimension at a seq uence of eq ual
ly spaced points along a line or in two
dimensions on a regular grid of squares
or hexagons. Each cell carries a value
chosen from a small set of possibilities,
often just 0 and 1. The val ues of all
the cells in the cell ular automaton are
simultaneously updated at each "tick"
of a clock according to a definite rule.
The rule specifies the new value of a cell,
given its previous value and the previ
ous values of its nearest neighbors or
some other nearby set of cells.

Consider a one-d imensional cell ular
automaton in which each cell can have
the value 0 or 1. Even in such a simple
case the overall behavior of the cellular
automaton can be quite complex; the
most effective way to investigate the be
havior is by computer experiment. Most
of the properties of cellular automata
have in fact been conjectured on the ba
sis of patterns generated in computer ex
periments. In some cases they have later
been established by conventional math
ematical arguments.

Cellular automata can serve as explic
it models for a wide variety of physical
processes. Suppose ice is represented on
a two-dimensional hexagonal grid by
cells with the value 1 and water vapor is
represented by cells with the value O.
A cellular-automaton rule can then be

© 1984 SCIENTIFIC AMERICAN, INC

PHYSICIAN . . ·

LET (M E = aDX§COTEST'�
THE PACE-SETTING COMPUTER CASE SIMULATION SERIES FROM

SCIENTIFIC AMERICAN I1£DICIN£

.0 INSTANT SCORING AND CRITIQUE OF YOUR TEST RESPONSES

Load the 5W' disk into your computer and the simulation of a clinical encounter begins to unfold in real time.
At the touch of a key; you can interview the "patient" and obtain a detailed history, perform diagnostic proce
dures, carry out the therapeutic regimen you've selected and instantly receive details on the "patient's" pro
gress. At the moment you complete the test, while the details of the case are still fresh in your mind, the
computer generates your score and a full critique of your answers.

20 RE-USE THE PROBLEM TO TRY OUT AL TERNATE THERAPEUTIC PATHWAYS

Unlike a paper CME program or a revieyv course, DISCOTESpM is truly a continuing education tool that you or
a colleague can use again and again, whether you immediately want to strengthen your understanding and
improve your score, or months later, review patient management techniques.

30 ECONOMICAL AND FLEXIBLE WAY TO EARN VALUABLE CME CREDITS

Accredited by the Stanford University School of M edicine, the program provides eight tests per year (two per
disk) worth up to 32 Category 1 or prescribed credits.* You complete the tests when you choose, without
sacrificing valuable patient-care time. And, you can save the time and expense of review courses.

1..0 AN ENJOYABLE, USER-FRIENDLY PROGRAM

DISCOTEST 's interactive, user-friendly software makes it easy and enjoyable to earn CME credits on your
personal computer. Available on 5 W' floppy disks, DISCOTEST'M can be run on an IBM PC® or Apple® lIe or II +
(or compatible models); it requires a minimum of 64K RAM , a single disk drive, and an 80-column screen.

SO IF .0, 20, 30,1..0 = YOUR NEEDS, GO TO bO

bO HERE'S HOW IT WORKS
Your first year's subscription includes four disks, containing two patient management problems each; a hand
some binder to store your disks; and a printed user's manual. giving an introduction to DISCOTEST TM, step-by
step operating instructions, and answers to common questions. Disks are sent on a quarterly schedule. In
addition, we will send you a bonus review disk, with a sample test similar to those you will be taking for credit.

DISCOTESpM costs a modest $148, or less than $5 per credit. T he software is backed by a money-back guaran
tee, with free replacement of defective disks. Take this opportunity to subscribe to DISCOTEST'M and combine
the advantages of high-caliber CME instruction with the immediate interaction of the computer.

70 END

1- - ----- ----- - --- - - ----- --- - - --- --- -- - - - -7;-1
I SCIENTIFIC MEDICINE I
I AMERICAN 415 MADISON AVENUE, NEW YORK, N.Y. 10017 I
I 0 Yes, please enroll me in DISCOTESTTM at a price of $148 DISCOTEST™ will be compatible with several personal I
I per year. My one-year subscription includes: computer operating systems. Please indicate which one of I
I • A bonus review disk the following personal computers you would use or with I
I . Four disks containing two CME tests each which your system is compatible. I

• A comprehensive user's manual 0 IBM PC with DOS 2.0, or compatible I I
I

• A handsome binder for the disks and manual 0 Apple IIe with Apple DOS 3.3, or compatible I
• 8 certification cards (one per test) to record and submit 0 Apple II + with Apple DOS 3.3, or compatible

I my computer-generated code for CME credit Name
I

I . A total of up to 32 Category 1 or prescribed credits Address I
I 0 Check enclosed" 0 Bill me 0 MasterCard 0 VISA City State Zip I
I Account No. Exp. Date Medical Specialty I 'Please add applicable sales lax if resident of California, Il linois, Michigan, Mas sachu-
I selts, or New York. Al l payments mus t be in U.S. dol l ar s. Signature t
L __________ _________________ _____________ �
;���������

i
:s
a
:�Oc:t����'ifo�OEd��!!?���rMa�;f:lsf���h�iPhyl��i�_:��;�����:��rv���o:t�h� �:��:�aendM��i�:�eA�����?�������id���tla���

i
����\��a ����d:�������f:���\��O:'

This program h as been reviewed and is acceptable for 32 prescribed hour s by the American Academy of Family Physicians.
Apple II + and Apple IIe are registered trademarks of Apple Computer, Inc.

195 © 1984 SCIENTIFIC AMERICAN, INC© 1984 SCIENTIFIC AMERICAN, INC

INPUT
6+17

6/7+8/9

2x-3x+l

Ex[{x-l) (x+l)]

Ex[{x-aY'2 {x+2aY'5]

Fac[x"2 -1]

Fac[x"6 -6x"4 + 4x"3 + 9x"2 -12x+ 4]

Sol [x"2 -3x+ 1 =O,x]

Sol [{x+ 3a y= 4,y-15x= 6b).{x,Yl]

Ps[{1 + x"3) E"x,x,0,6]

t:x-2a
t"2-2t+l

[[2]:6x+l
[[3]:4-x
a 1[2]+b 1[3]+c 1[1]

I

1[1]:7
I

1"2-8

l[p]:5x
I (p"2]:6x
I

I [$x]:$x"2
I

1[P] + 1[2] + I[a]

g[$x_ = Natp[$x]]:$x g[$x-l]
g[l]:l
9

g[5]

Abs[3]
Abs[-3]
Abs[-x]

Abs[$x $$x] : Abs[$x] Abs[$$x]

Abs[$x"($n _ = Nalp[$n])]:Abs[$x]"$n

Abs[a b"2 c]

Graph[Sin[E"x],x, -3,3]

OUTPUT
23

110/63

l-x

-1+x2

8a x6+21a2 x"+ 10a3 x4-40a4 x"- 48a5 X2
+ 16a6 x+32a7+x7

(-l+x) (1+x)

{-1 +X)4 (2 + x)'

3_5'12 3+51'2 {x->-2-' x->-2-1

{x 4 18a b y-> 60 + 6b I -> t + 45a
-

1 + 45a' 1 + 45a 1 + 45a

1 + x+ x\ 7x3 + 25)[' + 61x5 + 121x"
2 6 24 120 720

1+4a-2x+(-2a+x)2

a {l+6x)+b (4-x)+c 1[1]

{[2]:1 + 6x,[3]:4 -xl

{7,1+6x,4-xl

{41, -8+{1 +6X)2, -8+{4-x),1

{[P2]:6x,[p]:5x,[l]:7,[2]:1 + 6x,[3]:4 -xl

{[P2]:6x,[p]:5x,[l]: 7,[2]:1 + 6x,[3]:4 -x,[$x]:$x"l

1 + 11x+a2

{[l]:l,[$x-= Nalp[$x]]:$x g[$x-l]l

120

3
3
Abs[x]

Abs[a] AbS[b]2 Abs[c]

� D �
-

- 3

��O -VVV

COMMENT
Evaluate a numerical expression.

Evaluate a numerical expression with exact
fractions.

Simplify an algebraic expression.

Expand algebraic expressions made up of prod-
ucts of terms. The notation x"y stands for x raised
to the power of y. A space between two non-
numerical expressions stands for multiplication.

Factor algebraic expressions.

Solve an equation for the variable x.

Solve a pair of simultaneous equations for the
variables x and y.

Find a power-series approximation for the expres-
sion e'(1 + X)3 for x close to 0, keeping terms up
to order x".
Assign the value x- 2a to the symbol t; simplify
the expression t2-2t+ 1 for this value.

Assign the value 6x+ 110 f[2] and the value 4 -x
to f[3]; evaluate an expression involving f[1], f[2]
and f[3], where f[1] is not yet specified.

Print the object f, which is a list whose elements
are indexed by the numbers shown in the
brackets.

Assign the value 7 to f[1] ; print the object f, which
is now given as a vector, or ordered list of
elements.

Find the square and then subtract 8 from each
element of the vector f; the result is a new vector.

Assign values for elements of f that have non-
numerical indexes; print the object f.

Assign a value for f[$x], where $x is any expres-
sion; the general definition is placed at the end of
the list f and is used only when none of the pre-
ceding special cases apply. Print the object f.

Evaluate the expression f[p] + f[2] + f[a]; the
general definition for f[$x] is applied in order to
evaluate f[a].

Define the factorial function g [x] for natural num-
bers x, where g[N] is equal to 1 x 2 x ... x N. The
definition is given by a recursive formula in which
g[x] is specified in terms of g[$x-1] . The expres-
sion $x_ = Natp[$x] indicates that $x must be a
natural, or positive whole, number.

Evaluate g[5], the factorial of 5 .

Find the absolute values of -3, 3 and - x.

Define the absolute value of the product of two
arbitrary expressions $x and $$x to be the prod-
uct of their absolute values.

Define the absolute value of the arbitrary expres-
sion $x raised to the natural-number power $n to
be the absolute value of $x to the power $n.

Find the absolute value of the product a x b2 x c
according to the standard rules of algebra and the
definitions given for the absolute-value function.

Plot a graph of the function sin(e') for values of x
from -3t03.

MATHEMATICAL CALCULATIONS are carried out by a com
puter in this example of a dialogue in the SMP computer language de
veloped by the author. The computer manipulates algebraic formulas
and other symbolic constructs as well as numbers. The commands in

the language include all the operations of standard mathematics. The
last few panels show how new operations can be defined. Properties
of the absolute-value function are defined and then are applied by
the computer to simplify any expression that includes the function.

196
© 1984 SCIENTIFIC AMERICAN, INC

used to simulate the successive stages in
the freezing of a snowflake. The rule
states that once a cell is frozen it does
not thaw. Cells exposed at the edge of
the growing pattern freeze unless they
have so many ice neighbors that they
cannot dissipate enough heat to freeze.
Snowflakes grown in a computer experi
ment from a single frozen cell according
to this rule show intricate treelike pat
terns, which bear a close resemblance
to real snowflakes. A set of differential
eq uations can also describe the growth
of snowflakes, but the much simpler
model given by the cellular automaton
seems to preserve the essence of the
process by which complex patterns are
created. Similar models appear to work
for biological systems: intricate patterns
of growth and pigmentation may be ac
counted for by the simple algorithms
that generate cellular automata.

Simulation by computer is the only
method now used for investigating

many of the systems discussed so far. It
is natural to ask whether simulation, as a
matter of principle, is the most efficient
possible procedure or whether there is a
mathematical formula that could lead
more directly to the results. In order to
address the question the correspondence
between physical and computational
processes must be studied more closely.

It is presumably true that any physical
process can be described by an algo
rithm, and so any physical process can
be represented as a computational proc
ess. One must determine how compli
cated the latter process is. In cellular
automata the correspondence between
physical and computational processes is
particularly clear. A cellular automaton
can be regarded as a model of a physical
system, but it can also be regarded as
a computational system closely analo
gous to an ordinary digital computer.
The sequence of initial cell values in a
cellular automaton can be understood
as abstract data or information, much
like the sequence of binary digits in the
memory of a digital computer. During
the evolution of a cellular automaton
the information is processed: the values
of the cells are modified according to
definite rules. Similarly, the digits stored
in the memory of the digital computer
are modified by rules built into the cen
tral processing unit of the computer.

The evolution of a cellular automaton
from some initial configuration may
thus be viewed as a computation that
processes the information carried by the
configuration. For cellular automata ex
hibiting simple behavior the computa
tion is a simple one. For example, it
may serve only to pick out sequences of
three consecutive cells whose initial val
ues are equal to 1. On the other hand,
the evolution of cellular automata that
show complicated behavior may corre
spond to a complicated computation.

It is always possible to determine the
outcome of a given number of steps in
the evolution of a cellular automaton
by explicitly simulating each step. The
problem is whether or not there can be a
more efficient procedure. Can there be a
short cut to step-by-step simulation, an
algorithm that finds the outcome after
many steps in the evolution of a cellular
automaton without effectively tracing
through each step? Such an algorithm
could be executed by a computer, and it
would predict the evolution of a cellular
automaton without explicitly simulat
ing it. The basis of its operation would
be that the computer could carry out
a more sophisticated computation than
the cellular automaton could and so

0--70 2

- . •

2 ---7 1

achieve the same result in fewer steps. It
would be as if the cellular automaton
were to calculate 7 times 18 by explicitly
finding the sum of seven 18's, while the
computer found the same product ac
cording to the standard method for mul
tiplication. Such a short cut is available
only if the computer is able to carry out
a calculation that is intrinsically more
sophisticated than the calculation em
bodied in the evollJtion of the cellular
automaton.

One can define a certain class of prob
lems called computable problems that
can be solved in a finite time by fol
lowing definite algorithms. A simple
computer such as an adding machine
can solve only a small subset of these.

b, 20 1 1 2 0

CODE NUMBER 12011203

STEP 1

..
STEP 2

STEP 3

STEP 4

STEPS

� �
CELLULAR AUTOMATA are simple models that appear to capture the essential features of
a wide variety of natural systems. A one-dimensional cellular automaton is made up of a line
of cells, shown in the diagram as colored squares. Each cell can take on a number of possi
ble values, represented by different colors. The cellular automaton evolves in a series of steps,
shown as a sequence of rows of squares progressing down the page. At each step the values of
all the cells are updated according to a fixed rule. In the case illustrated the rule specifies the
new value of a cell in terms of the sum of its previous value and the previous values of its im
mediate neigbbors. Such rules are conveniently specified by code numbers defined as shown in
the diagram; the subscript 3 is given because each cell can take on one of three possible values.

197
© 1984 SCIENTIFIC AMERICAN, INC

RULE

EXPERIMENTAL MATHEMATICS is an exploratory technique made possible largely
through the use of computers. Any set of mathematical rules can be applied repeatedly by a
computer and their consequences explored in an experimental fashion. For example, in order
to study a pattern generated by the cellular automaton defined by the rule shown, one begins
by explicitly simulating on a computer many steps in the evolution of the cellular automaton.
Inspection of .the pattern obtained then leads to the conjecture that it is fractal, or self-similar,
in the sense that parts of it, when enlarged, have the same overall form as the whole. The con
jecture, once made, is comparatively easy to prove by conventional mathematical techniques.
The proof can be based on the fact that the initial conditions for growth from certain cells
in the pattern are the same as the conditions for growth from the very first cell. There are
an increasing number of mathematical results that were discovered in computer experiments.
Some of them have subsequently been reproduced by conventional mathematical arguments.

198

problems. There exist universal, or gen
eral-purpose, computers, however, that
can solve any computable problem. A
real digital computer is essentially such
a universal machine. The instructions
that can be executed by the central proc
essing unit of the computer are rich
enough to serve as the elements of a
computer program that can embody any
algorithm. A number of systems in addi
tion to the digital computer have been
shown to be capable of universal com
putation. Several cellular automata are
among them: for example, universal
computation has been proved for a sim
ple two-dimensional cellular automaton
with a 0 or a 1 in each cell. It is strongly
suspected that several one-dimension
al cellular automata are also universal
computers. The simplest candidates
have three possible values at each cell
and rules of evolution that take account
only of the nearest-neighbor cells.

Cellular automata that are capable of
universal computation can mimic

the behavior of any possible computer;
since any physical process can be repre
sented as a computational process, they
can mimic the action of any possible
physical system as well. If there were an
algorithm that could work out the be
havior of these cellular automata faster
than the automata themselves evolve,
the algorithm would allow any compu
tation to be speeded up. Because this
conclusion would lead to a logical con
tradiction, it follows there can be no
general short cut that predicts the evo
lution of an arbitrary cellular automa
ton. The calculation corresponding to
the evolution is irreducible: its outcome
can be found effectively only by simu
lating the evolution explicitly. Thus di
rect simulation is indeed the most effi
cient method for determining the be
havior of some cellular automata. There
is no way to predict their evolution; one
must simply watch it happen.

It is not yet known how widespread
the phenomenon of computational irre
d ucibility is among cell ular automata
or among physical systems in general.
Nevertheless, it is clear that the ele
ments of a system need not be very com
plicated for the overall evolution of the
system to be computationally irreduci
ble. It may be that computational irre
ducibility is almost always present when
the behavior of a system appears com
plicated or chaotic. General mathemati
cal formulas that describe the overall
behavior of such systems are not known,
and it is possible no such formulas can
ever be found. In that case, explicit sim
ulation in a computer experiment is the
only available method of investigation.

Much of physical science has tradi
tionally focused on the study of com
putationally reducible phenomena, for
which simple overall descriptions can be
given. In real physical systems, however;

© 1984 SCIENTIFIC AMERICAN, INC

,---

221 33 1 0, 420041 0, . = 0

331 240, 20243 1 0, . ,= 1

. = 2
1 1 00400, 2231 000, . = 3

1 3 1 2 1 0, 321 1 31 0, 0 = 4
-

, ,�'�. � ;':'1',
!�:I ' . , �:1; '� �1I � ;':'1

,!''i ·�-·I
.--:: -� ,� ·'-:l

, • ., ' • • 1 . 1I e · · 1

·--:: ·�1I;� ·�. ·� ·"-:1 . "� �1
J � • • ,

� � -:-. . ..-: '
.. � .. ., • • , 11 . ,

� -..-:. . � -,., -:: -..-: \ 11 r:: -..-:'
.• ' ''-t, • I, . ' ,

-: -� .r:: -� � ----=, � ."-:'
..a ., .• • , .• ,,', • • ,

(� .�. -.r:: -"-:1 , � -'-:1, :-- -� . � -..-:' 11 '� -� " �. -..-:' . '� -'-:l
,..-'-... . 111

� � � �

.. -' - � , �·r ... �«. ,.,'i � �: ;-.. .,: - . ' . . - . ..
. • � , d - , l "

. l ..

. � . l
.':! .'!.
� :! , l '-it .'z) . � . f. .:! .:l .,1. . l .L .� .t.
.,l . . . l

.,t- . .! . - . l . -! . l
� 1 . ..

,. - .: -...... i .' '-
.. �� -� ,- · f , I: ' .. ,it 'I :"l. :,l ��:� }j ;'l "l II /j :'� : l : l :, :t : f :'1 ' 1

. l : f : f . ,
� l. : .! -: t � . f : l ; j : I . f : < : < , : < ..

: ! ! . l , : t
. l � t l

: l : l I . . . 1 I ! . 1 , . - I

:{. ...'
.'" , . .,.
,/"
{-.�
�l 4� !/I'
j�
.:� ,.'{ J, ., . ' � :,
,'<
.. �
:/
<� 'f!

COMPLEX BEHAVIOR can develop even in systems with simple components. The eight cellular
automata shown in the photographs are made up of lines of cells that take on one of five possible
values. The value of each cell is determined by a simple rule based on the values of its neighbors on
the previous line. Each pattern is generated by the rule whose code number is given in the key
(see illustration on page 197). The patterns in the upper four photographs are grown from a sin
gle colored cell. Even in this case the patterns generated can be complex, and they sometimes ap
pear quite random. The complex patterns formed in such physical processes as the ftow of a tur
bulent ftuid may well arise from the same m echanism. Complex patterns generated by cellular
automata can also serve as a source of effectively random numbers, and they can be applied to en
crypt messages by converting a text into an apparently random form. The patterns in the lower
four photographs begin with disordered states. Even though the values of the cells in these initial
states are chosen at random, the evolution of the cellular automata gives rise to structures of four
basic classes. In the two classes shown in the third row of photographs the long-term behavior of
the cellular automata is comparatively simple; in the two classes shown in the bottom row it can
be highly complex. The behavior of many natural systems may well conform to this classification.

199 © 1984 SCIENTIFIC AMERICAN, INC© 1984 SCIENTIFIC AMERICAN, INC

200

computational reducibility may well be
the exception rather than the rule. Fluid
turbulence is probably one of many ex
amples of computational irreducibility.
In biological systems computational ir
reducibility may be even more wide
spread: it may turn out that the form of a
biological organism can be determined
from its genetic code essentially only by
following each step in its development.
When computational irreducibility is
present, one must adopt a methodology
that depends heavily on computation.

One of the consequences of computa
tional irred ucibility is that there

are questions that can be asked about
the ultimate behavior of a system but
.that cannot be answered in full generali
ty by any finite mathematical or compu
tational process. Such questions must
therefore be considered undecidable.
An example of such a question is wheth
er a particular pattern ever dies out in
the evolution of a cellular automaton. It
is straightforward to answer the ques
tion for some definite number of steps,
say 1,000: one need only simulate 1,000
steps in the evolution of the cellular au
tomaton. In order to determine the an
swer for any number of steps, however,
one must simulate the evolution of the
cellular automaton for a potentially infi
nite number of steps. If the cellular au
tomaton is computationally irreducible,
there is no effective alternative to such
direct simulation.

The upshot is that no calculation of
any fixed length can be guaranteed to
determine whether a pattern will ulti
mately die out. It may be possible to tell
the fate of a particular pattern after
tracing only a few steps in its evolution,
but there is no general way to tell in
advance how many steps will be re-

UNDECIDABLE PROBLEMS can arise in
the mathematical analysis of models of physi
cal systems. For example, consider the prob
lem of determining whether a pattern gener
ated by the evolution of a cellular automaton
will ever die out, so that all the cells become
black. The patterns generated by the cellular
automaton shown above are so complicated
that the only possible general approach to the
solution of the problem is to explicitly simu
late the evolution of the cellular automaton.
The pattern obtained from the initial state
shown at the left is found to die out after just
16 steps. The initial state in the center yields
a pattern that takes 1,016 steps to die out. The
initial state at the right gives rise to a pattern
whose fate remains unclear even after a sim
ulation carried out over many thousands of
steps. In general no finite simulation of a fixed
number of steps can be guaranteed to deter
mine the ultimate behavior of the cellular au

tomaton. Hence the problem of whether or
not a particular pattern ultimately dies out, or
halts, is said to be formally undecidable. The
cellular automaton shown here follows a rule
specified by the code number 331 1 1 003204,

© 1984 SCIENTIFIC AMERICAN, INC

Try to find software that
solves your problem.

Or call BOEING.
Acquiring mainframe and micro
software that best fits your needs isn't
easy. Today's software landscape
seems unending. So to obtain software
that actually achieves your specific
objectives, you need programs with
proven problem-solving capabilities.
Like software from Boeing.

Every software package from Boeing
Computer Services is backed by Boeing
expertise and experience. That's why
both users and data processing
professionals appreciate our solutions to
a myriad of computing needs. Executives
in many industries depend on our
fmancial modeling and decision support
software for accurate, up-to-the-minute
pictures of business activity and for
reliable forecasts. Production managers
turn to Boeing for on-line manufacturing
software that can keep track of all
elements in the production cycle . . .

even in exacting make-to-order plants.
Engineers increase their productivity
with dynamic analysis and simulation
using Boeing software. Boeing
computer-based instruction software
and courseware is central to the
education and training programs of
many companies, large and small. It is
used cross-company and cross-discipline.

One of the newest relational data base
management systems on the scene
comes from Boeing. Its cost is low; its
function is extensive. It runs on IBM,
CDC, DEC V AX, Data General and
Prime computers, and interfaces with
a micro version.

For more information about Boeing
software solutions, call (206) 763-5000.
Or write BOEING COMPUTER
SERVICES, MI S 7K- l l , P.O. Box
24346, Seattle, WA 98 124. Ask about
our "TRY IT" evaluations.

For information about Boeing's other
integrated information services -includ
ing enhanced remote computing, distrib
uted processing, network services, office
automation, consulting, and education
and training - call toll free
1-800-447-4700. Or write BOEING
mMPUIERSERVlCES, M/S CV-26-18C,
7980 Gallows Court, Vienna, VA 22180.

© 1984 SCIENTIFIC AMERICAN, INC

Casio's solar-powered scientif ic cal
culators put space-age technology
easily within you r reach .

O u r FX-91 0 i s the logical
choice for students and engineers
al ike. At only $24.95, it gives you
algebraic logic, 48 functions and an
8-digit + 2-digit exponent display
in a size that wil l fit as easily in you r
pocket as its price wi l l suit your
pocketbook.

At the same time, our credit
card-size FX-90 ($29. 95) has
members of the scientific commu
nity f l ipping-over its 49-function
f l ip-open keyboard . Made possible

by Casio's innovative sheet key
technology, this handy feature
makes compl icated scientif ic equa
tions easier to solve because the
major function keys are displayed
oversize on their own keyboard .

Plank's constant and atomic mass.
It also makes computer math calcu
lations and conversions in binary,
octal and hex equally easy to use.

Casio has more space-age
instruments at down-to-earth
prices than there is space for here.
However your Casio dealer wi l l
gladly let you get your hands on
technology that , unti l now, only the
future held .

Like our FX-90, our FX-450
($34.95) has a 1 0 + 2-digit LCD
display and a keyboard with touch
sensitive keys . But the keys are
double size and the n umber of
functions increases to 68. Most im
portantly, it lets you calculate with CAS I 0 the speed of l ight-and eight other
commonly used physical Wh · I ®
constants , i ncluding ere mlrac es never cease

Casio, Inc. Consumer Products Division: 1 5 Gardner Road, Fairfield , N.J. 07006 New Jersey (201) 575-7400 , Los Angeles (21 3) 803-341 1 .

© 1984 SCIENTIFIC AMERICAN, INC

q uired. The ultimate form of a pattern is
the result of an infinite number of steps,
corresponding to an infinite computa
tion; unless the evolution of the pat
tern is computationally reducible, its
consequences cannot be reproduced by
any finite computational or mathemat
ical process.

The possibility of undecidable ques
tions in mathematical models for physi
cal systems can be viewed as a manifes
tation of Godel's theorem on undecida
bility in mathematics, which was proved
by Kurt Godel in 1931. The theorem
states that in all but the simplest mathe
matical systems there may be proposi
tions that cannot be proved or disproved
by any finite mathematical or logical
process. The proof of a given proposi
tion may call for an indefinitely large
number of logical steps. Even proposi
tions that can be stated succinctly can
require an arbitrarily long proof. In
practice there are many simple mathe
matical theorems for which the only
known proofs are very long. In addition
the cases that must be examined to
prove or refute conjectures are often
quite complicated. In number theory,
for example, there are many cases in
which the smallest number having some
special property is extremely large; the
number can often be found only by test
ing each whole number in turn. Such
phenomena are making the computer
an essential tool in many mathematical
investigations.

Computational irreducibility implies
many fundamental limitations on

the scope of theories for 'physical sys
tems. It may be possible to model a sys
tem at many levels, from simulating
the motions of individual molecules to
solving differential equations for over
all properties. Computational irreduc
ibility implies there is a highest level
at which abstract models can be made;
above that level results can be found
only by explicit simulation.

When the level " of description be
comes computationally irreducible, un
decidable questions also begin to ap
pear. Such questions must be avoided in
the formulation of a theory, much as the
simultaneous measurement of the posi
tion and velocity of an electron-impos
sible according to the uncertainty prin
ciple-is avoided in quantum mechan
ics. Even if such questions are eliminat-'
ed, there is still the practical difficulty
of answering questions that in principle '
can be answered. The degree of difficul
ty depends strongly on the nature of the
objects involved in the simulation. If the
only way to predict the weather were to
simulate the motions of every molecule
in the atmosphere, no practical calcula
tions could be carried out. Nevertheless,
the relevant features of the weather can
probably be studied by considering the
interactions of large volumes of the

COMPUTATIONAL IRREDUCIBILITY is a phenomenon that seems to arise in many

physical and mathematical systems. The behavior of any system can be found by explicit simu
lation of the steps in its evolution. When the system is simple enough, however, it is always pos
sible to find a short cut to the procedure: once the initial state of the system is given, its state at
any subsequent step can be found directly from a mathematical formula. For the system shown
schematically at the left, the formula merely requires that one" find the remainder when the
number of steps in the evolution is divided by 2. Such a system is said to be computationally
reducible. For a system such as the one shown schematically "at the 'right, however, the behavior
is so complicated thaUn general no short-cut description of the evolution can be given. Such a
system is computationally irreducible, and its evolution can effectively be determined only by
the explicit simulation of each step. It seems likely that many physical and mathematical sys
tems for which no simple description is now known are in fact computationally irreducible. Ex
periment, either physical or computational, is effectively' the only way to study such systems.

atmosphere, and so useful simulations
should be possible.

The efficiency with which a computa
tionally irreducible system can be simu
lated depends on the computational so
phistication of each step in its evolution.
The steps in the evolution of the sys
tem can be simulated by instructions
in a computer program. The fewer the
instructions needed to reproduce each
step, the more efficient the simulation.
Higher-level descriptions of physical
systems typically call for more sophisti
cated steps, much as single instructions
in higher-level computer languages cor
respond to many instructions in lower
level ones. One " time step in the nu
merical approximation of a differential
equation that describes a jet of gas re
quires a computation more sophisticat
ed than the one needed to follow a colli
sion between two molecules in the gas.
On the other hand, each step in the high
er-level description given by a differen
tial equation accounts for an immense
number of steps in the lower-level de
scription of molecular collisions. The
resulting gain in efficiency more than
makes up for the fact that the individual
steps are more sophisticated.
, In general the efficiency of a simu
lation increases with higher levels of
description, until the operations need
ed for the higher-level description are
matched with the operations carried out
directly by the computer doing the sim
ulation. It is most efficient for the com
puter to be as close an analogue to the
system being simulated as possible.

There is one major difference between
most existing computers and physical
systems or models of them: computers
process information serially, whereas

physical systems process information in
parallel. In a physical system modeled
by a cellular automaton the values of all
the cells are updated together at each
time step. In a standard computer pro
gram, however, the simulation of the
cellular automaton is carried out by a
loop that updates the value of each cell
in turn. In such a case it is straightfor
ward to write a computer program that
performs a fundamentally parallel proc
ess with a serial algorithm. There is a
well-established framework in which al
gorithms for the serial processing of in
formation can be described. Many phys
ical systems, however, seem to require
descriptions that are essentially parallel
in nature. A general framework for par
allel processing does not yet exist, but
when it is developed, more effective
high-level descriptions of physical phe
nomena should become possible.

The introduction of the computer in
science is comparatively recent. Al

ready, however, computation is estab
lishing a new approach to many prob
lems. It is making possible the study of
phenomena far more complex than the
ones that could previously be consid
ered, and it is changing the direction
and emphasis of many fields of science.
Perhaps most significant, it is introduc
ing a new way of thinking iri science. Sci
entific laws are now being viewed as al
gorithms. Many of them are studied
in computer experiments. Physical sys
tems are viewed as .computational sys
tems, processing information much the
way computers do. New aspects of. nat
ural"ppenomena have been· made acces
sible to investigation. A new paradigm
has been born.

203 © 1984 SCIENTIFIC AMERICAN, INC© 1984 SCIENTIFIC AMERICAN, INC

Computer Software
for Intelligent Systems

The key to intelligent problem solving lies in reducing the random

search for solutions. To do so intelligent computer programs must

tap the same underlying {{sources of power" as human beings do

On your way to San Francisco one
summer evening you come to an
intersection in Nebraska. The

road continues straight ahead. To your
left the crossroad trails off through the
cornfields; shielding your eyes from the
sun, you see it doing the same to the
right. Having no map, you might decide
to pick one of the three roads at random
and turn, say, to the left. Soon you
would reach another intersection, and
then another, and would be forced to
make a series of random choices; at
some point you would hit a dead end
and would have to return to the preced
ing intersection and strike out on a dif
ferent route. If you were both long-lived
and extremely lucky, you might eventu
ally reach San Francisco, but the odds
against -it would probably be on the or
der of 1030 to one. Because you know
something about the world, however,
you are not forced to pick a random
path throl,lgh the countryside, and at the
first intersection you take a right.

Most problems, including many far
more interesting than this one, can be
cast in the same form: as the search for a
path from some initial state to a desired
final state. Most interesting problems
also share the characteristic that they
are too complex to be solved by random
search, because the number of choices
increases exponentially as one proceeds
from the first intersection, or decision
point. The classic example of this is
chess, in which the number of possible
board positions has been estimated at
10120. A good player, however, red uces
the problem of choosing his next move
to manageable proportions by consider
ing only 100 or so positions, correspond
ing to the most promising lines of attack.
Therein, as I see it, lies the essence of
intelligence: finding ways to solve other
wise intractable problems by limiting
the search for solutions.

For about 30 years a small communi
ty of investigators has been trying, with
varying degrees of success, to program

204

by Douglas B. Lenat

computers to be intelligent problem
solvers. By the mid-1970's, after two
decades of humblingly slow progress,
workers in the new field of artificial
intelligence had come to a fundamen
tal conclusion about intelligent behav
ior in general: it requires a tremendous
amount of knowledge, which people
often take for granted but which must
be spoon-fed to a computer. Standing
at the Nebraska intersection, a human
traveler would know that San Francisco
lies to the west of Nebraska, that in the
evening the sun is in the western sky and
that by heading toward the sun one
would be heading in the right general
direction. He would thus not have to try
the other two possible paths .

. Moreover, the relative simplicity of
this problem is not representative of
other everyday tasks that people com
plete without a second thought. Under
standing even the easiest passages in
common English, for example, requires
a knowledge of the context, the speaker
and the world at large that is far beyond
the capabilities of present-day computer
programs. The central role of knowl
edge in intelligence explains why the
most successful programs so far have
been "expert systems," which operate in
highly specialized domains, such as the
diagnosis of meningitis, and game-play
ing programs. In contrast, early efforts
to design a "general problem solver" as
sumed that the core of intelligence lay in

a reasoning ability that could be applied
across all domains. These efforts proved
less fruitful and for the most part have
now been abandoned.

In attacking a complex problem peo
ple draw on various methods-I call
them sources of power-of using their
knowledge of the world's regularities to
constrain the search for a solution. They
may invoke mathematical theorems or
less formal ·rules of thumb; they may
break up the problem into more tracta
ble subproblems, or they may reason by
analogy to problems that have already
been solved. To the extent that comput
er programs already exhibit intelligence
it is because they draw on some of these
same sources of power. The future of
artificial intelligence lies in finding ways
to tap those sources that have only be
gun to be exploited.

Many programs written in the first
two decades of artificial-intelli

gence research depended heavily on for
mal reasoning methods. When a task is
well defined in a highly constrained do
main, such methods can provide power
ful ways of prl,lning or even eliminating
the search tree. For example, no one
need ever again waste time searching for
a way to trisect an angle or seeking the
best method of calculating the motion
of a projectile, because well-established
theorems and algorithms have settled
those questions once and for all.

INTELLIGENT PROGRAM is seen running on a machine that displays varions aspects of its

operation in different windows. The program, called EURISKO, was written by the anthor and his

colleagnes and has been applied to a nnmber of topics, including those named in the small win

dow near the bottom of the display; here it is engaged in designing a fleet of ships to compete

in'Traveller T.C.S., a war game. The program's knowledge base includes the complex rnles of

the game as well as general heuristics to gnide it in its search for ever better designs. EUR1SKO

has just finished simulating a battle in which "sidel" decisively defeated "side2," and the cur

rent heuristic has directed it to learn from the results of the battle by analyzing the differences

between the two fleets to determine the cause of sidel's victory. Because the main difference

is that side! has only one type of ship, EURISKO hypothesizes that it is desirable to minimize the

number of ship types and suggests an experiment to test the hypothesis. In competition EURIS

KO'S fleet, made up predominantly of small, fast ships, defeated the fleets of human players.

© 1984 SCIENTIFIC AMERICAN, INC

Beginning task 459-110:
Analyze the DifferenceBetween
side1 and side2 in the recent
TravellerFleetBattleGame played,
looking for Caui e.

The main difference is that
side1 has ships of one type,
while side2 has ships of nine
types. 4 other hypotheses.

1 is more likely to be special
than 9. So consider': If
designing a fleet for TFBG,
minimize the types of ship.

Experiment: reduce side2's
number of ships, and increase
side1's number of ship types.

(IF the �ut"t'etlt task was to find an Applic of a
6ame, THEN tr\' to Ie am from the results)

'" '" '" CONDITIONS '" '" '"
If Po tentially Relevant : (P I a yin 9 (a 6 a me))
IfFinishedWorkingOnTask: (a 6smePlaying)
IfResultsSatisfied: (a 0 e cis i I' e Viet 0 r\')

"''''''' ACTIONS "'''''''
ThenCompute: (Oifferetl�eBetweetl sidel side2)
ThenPrintToUser: (6ueSsed the csuses in the recetlt --

)
ThenAddToAgenda: (AnSI\'Ze the differences for CSUS€!)

'" '" '" DESCRIPTIONS '" '" '"
IsA: (Heuristi� Op An\'thing MUltiValuedOp Abstt'a�tOp)
Worth: 5 � 2
Abbrev: (It's wotth fitlding out Wh\' one --)

TOPICS

(RunMOre Tra'JelierFleetBattle)
7 Reasons

(A n a Iyz e Batt I e321)
7 Reasons

(Analyze Battle31S)
2 Reasorls

(Mutate ShipType37 fln�rease Agility))

7 Reasons
(Analyze Battle811i)

S Reasons

IiSO
ToPlay: (Plal'T r:�l'elierF leetB:attle)
Rules: (T ra I' e II e R u I e s

RulesOfF airPlsy)
IsA: (6ame Anything T'IIoPerson6sme

Fsir6sme Wsr6sme FleetBattie
Oice6ame)

Adding a task to the Agenda,
to Analyze the diffe.rences

arId

• tI:ul1,More -TravelierFleetBattle

Priority: 373
IsA: (T s s k S i fil lJ I at i 0 nT s s k

6smeTaSk)
ConceptToWorkOn:

T rs I' e II e rF I e et B att Ie
AspectToWorkOn: P.IS�I
CreditTo: (HelJfistic3S

Heuristic13 TheUser)
PastHistory: ((Rurt112 TaH: 1203

C re at e d (S h i pTy P e 3 0 ::; rd pT y P e 31
1; 10 oth-ers))) Arity: 1

InitiaIW�rth: � 0 0
lastRunOn: PI ayT ral'ellerF leet Battle
ThenAddT oAgendaRecord: (75 Ii 0 • Ii)
ThenPrintToUserRecord: (1i7 21i . 21)

lu,.,eralltl;ecord: (351537 . 21)
ThenComputeF ailedRecord: (501 . 1)
ThenComputeRecord: (31 � 97 2 . 1 5)

ElemMa thematics
Heuristics

Representa tion
OilS pills

Programming
::::::::::::::::G4im�::::::::::::::::

NReasons: 7
Reasons: ((Bec:ause it is a

I'aluable concept) (Because the
user is interested in it) (
Because in the past it led to
useful flew --) (Because there
is not much else interesting to
do --)) 1:i .. ·n .. ·rOl,1I7010W".OI'<;: (P rot 00 p)

FocusTask: (FocuSOnHlil)

......................... .
DevicePhysics

Plumbing
Plane T essella tion

Plus �
properties w�li';h :are rIot slot n:ames:

(II Res s 0 rls P s st H i st 0 ry

© 1984 SCIENTIFIC AMERICAN, INC

One of the most popular formal meth
ods has been logical deduction by means
of a proof technique called resolution,
which proves by refutation. To apply
resolution one must first convert the
statement to be proved into the logical
formalism of predicate calculus. The

statement is then negated, and the nega
tion is "resolved" with a series of ax
ioms: statements known to be true for
the particular problem area. If the infer
ences drawn by combining the negation
with the axioms yield a contradiction,
the negation must be false and the orig-

inal statement therefore must be true.
In 1964 J. A. Robinson showed that

the resolution method is "complete": in
every case it will eventually generate a
contradiction if the original theorem is
true. (If the theorem is false, the series of
inferences produced by resolution is not

"DID MARCUS HATE CAESAR?"

1 MAN(MARCUS)
2 POMPEIAN(MARCUS)
3 - POMPEIAN(X,) V ROMAN(X,)
4 RULER(CAESAR)
5 -ROMAN(X,)VLOYALTO(X,.CAESAR) V HATE(X,.CAESAR)
6 - MAN(X3)V-RULER(Y,)V-TRYASSASSINATE(X3.Y,)V-LOYALTO(X3.Y,)
7 TEYASSASSINATE(MARCUS.CAESAR)
8 -STEALWIFE(Y,.X,) V HATE(X,.Y,)

9 -WIFE(Z,.X5)V-AlIVE(X5)V- MARRY(Y3.Z,)V STEALWIFE(Y3.X5)

10 WIFE(LUCRETIA.MARCLJS)

11 AlIVE(MARCUS)

-HATE(MARCUS.CAESAR) 5

1 Marcus was a man.
2 Marcus was a Pompeian.
3 All Pompeians were Romans.
4 Caesar was a ruler.
5 All Romans were either loyal to Caesar or hated him.

. 6 People only try to assassinate rolers they are not loyal to.
7 Marcus tried to assassinate Caesar.
8 A person hates someone who steals his wife.

9 If the wife of a man who is alive marriAs a second man.

then the second man stole the first miln·s wife

10 LucrAtia WilS Milrcus·s wife

11 Marcus was alive

V = OR

- = NOT

�CUSlX'

-ROMAN(MARCUS)

3 V LOYALTO(MARCUS.CAESAR)

�CUSiX

-POMPEIAN(MARCUS)
V LOYALTO(MARCUS.CAESAR) 2

�
6 LOYALTO(MARCCS.CAESAR)

� �ARCUS/X3 � CAESARIY,

-MAN(MARCUS)V -RULER(CAESAR)
V -TRYASSASSINATE(MARCUS.CAESAR)

�
-RULER(CAESAR)

4�TE(MARCUS' CAESARI

-TRYASSASSINATE(MARCUS.CAESAR) 7

�
D

RESOLUTION, a proof technique of formal logic, can be used to
deduce answers to questions, but it is prohibitively time-consuming
when the problem is complex. Resolution proves by refutation: a hy
pothesis is shown to be valid by showing that its negation, when it is
compared with axioms, or statements known to be true, leads to a
contradiction. First the negated hypothesis and the axioms are con
verted into logical notation: clauses consisting of a disjunction of
terms called literals. The set of axioms is then searched for one in
cluding a literal that, after appropriate substitutions have been made
for variables, contradicts a literal in the negated hypothesis. When
the two statements are "resolved," the contradictory literals cancel.
This procedure is subsequently repeated with the resulting statement;

206

-HATE(MARCUS.CAESAR) 8

� �CUS/X. � �;ESARIY,

9 -STEALWIFE(CAESAR.MARCUS)

MARCU� ./
CAESAR/Y; �

-WIFE(Z"MARCUS)
V-AlIVE(MARCUS)
V-MARRY(CAESAR.Z,) 11

�
-WIFE(Z"MARCUS)

10 V-MARRY(CAESAR.Z,) �CRETINZ'

-MARRY(CAESAR.LUCRETIA)

eventually, if the original hypothesis was valid, the process termi
nates in an unadorned contradiction. In the example shown the hy
pothesis is "Marcus hated Caesar." In the idealized case in which lit
tle is known about the world (left), only one axiom (5) includes a
literal contradicting the negation of the hypothesis, and a computer
program can quickly complete a ptoof. When more information is
available (colored axioms), including a different cause of hatred (8),
the program may choose the wrong axiom and proceed to a dead end
at which no contradiction has been generated (right). In a real-world
problem the number of possible choices is an exponential function of
the number of axioms, which is very large, and finding a solution by
blind search is infeasible. The example was provided by Elaine Rich.

© 1984 SCIENTIFIC AMERICAN, INC

guaranteed to end.) Robinson's work
touched off a decade-long surge of ac
tivity in applying resolution and other
closely related formal methods to au
tomatic theorem proving. It turns out
that computer programs are capable of
proving statements of moderate difficul
ty and that the resolution method can
also be adapted to programs whose pur
pose is to answer questions rather than
to prove theorems. The great flaw of the
resolution method is that it is subject
to "combinatorial explosion": the num
ber of resolutions the program must at
tempt increases exponentially with the
complexity of the problem. Programs
that successfully apply resolution to
small test cases have consistently failed
to "scale up" to more interesting real
world problems.

The same difficulty plagues software
based on a different logical technique
called structural induction. Such pro
grams are given a large amount of data
on the objects in a particular domain
and told to construct a decision tree
for discriminating between objects. The
problem with structural induction algo
rithms, however, is that they incorpo
rate no information enabling them to
decide which variables are important or
to deal with noisy data or exceptional
cases. If the number of objects and asso
ciated features in a domain is large, the
decision tree generated by the program
becomes unwieldy.

For formal reasoning to work as the
sole source of power in a program, the
problem must be small. One application
of a formal method that may prove
fruitful in the near future is in the simu
lation of qualitative physical reasoning.
John Seely Brown and Johan de Kleer
of the Xerox Palo Alto Research Cen
ter have written a program that models
changes in a pressure-regulating valve
by means of qualitative equations. If the
program is told, say, that the pressure on
the left side of the valve has increased,
the equations are changed accordingly
and the program predicts the pressure
change on the other side of the valve and
the eventual equilibrium state of the sys
tem. This is a very simple example, but a
similar approach is being used in the
analysis and design of electrical circuits.

Most interesting problems, however,
cannot be solved by relying on formal
reasoning alone. The power of logical
methods lies in their representation of
the world in symbols that can be manip
ulated in well-understood ways (such as
resolution) to produce inferences. That
power is also their greatest weakness:
many types of knowledge, including the
uncertain and incomplete knowledge
characteristic of most real-world prob
lems, do not lend themselves to repre
sentation through precise logical for
malisms. Programs that draw exclusive
ly on logic are capturing only part of
the understanding an intelligent person

43 MILLION CANDIDATES

CHEMICAL TOPOLOGY

15 MILLION CANDIDATES

MASS SPECTROMETRY

1.3 MILLION CANDIDATES

CHEMICAL HEURISTICS

1.1 MILLION CANDIDATES

NUCLEAR MAGNETIC RESONANCE

H H H H H H H H H H H H H H H H H H \JJ
I I I J I I I I I 1 J I I I I I I I / 'H

H�-C���-C-C-C�-C-C-C-C-C-C-C-C-C-N
I I I I I I I I I I I I I I I I I I '- /H

HHHHHHHHHHHHHHHHHH p,
H H

N,N - DIMETHYL -n- OCTADECYL
MONOAMINE

EXPERT SYSTEMS exploit knowledge of a specialized domain to constrain tlie search for
solutions. DENDRAL, the first expert system and one of the most successful, relies on the syner
gistic interaction of four types of knowledge to narrow the field of candidate structures for a
particular organic molecule. If only the molecular formula C2oH43N is known, 43 million
configurations of the atoms are possible mathematically. Knowledge of basic chemical topolo
gy, such as the fact that a carbon atom has four bonds, reduces the number of candidates to 15
million. The molecule's fragmentation pattern in a mass spectrometer, along with heuristic
knowledge of what structures are most stable and thus most plausible, further limits the search.
Finally, nuclear-magnetic-resonance data enable DENDRAL to identify the correct structure.

would bring to bear in attempting to
solve a difficult problem.

Today there are dozens of large pro
grams at work on difficult technical

problems in fields as diverse as medi
cal diagnosis, the planning of genetic ex
periments, geologic prospecting and au
tomotive design. The primary source
of power in these expert systems is in
formal reasoning based on extensive
knowledge painstakingly culled from
human experts. In most of the programs
the knowledge is encoded in the form of
hundreds of if-then rules of thumb, or
heuristics. The rules constrain search by
guiding the program's attention toward
the most likely solutions. Moreover
and this distinguishes the heuristically
guided programs from those relying on
more formal methods-expert systems
are able to explain all their inferences in
terms a human being will accept. The
explanation can be provided because
decisions are based on rules taught by
human experts rather than on the ab
stract rules of formal logic.

Consider MYCIN, a program devel
oped by Edward H. Shortliffe of Stan-

ford University to diagnose bacterial
blood infections. The problem it faces is
to determine which of many possible or
ganisms might be responsible for a par
ticular infection and to recommend a
course of treatment on the basis of its
diagnosis. To accomplish this MYCIN

draws on a knowledge base of 500 heu
ristic rules, of which the following is a
typical example: "If (1) the stain of the
organism is gram-positive and (2) the
morphology of the organism is coccus
and (3) the growth conformation of the
organism is clumps, then there is sugges
tive evidence (.7) that the identity of
the organism is staphylococcus." As the
program operates it converses with the
user, asking for additional information
on the patient that will allow it to apply
different rules, and sometimes suggest
ing laboratory tests. At any time the user
may ask MYCIN to justify a question or
an inference by referring to the rule it is
invoking. The program has shown itself
capable of performing on a par with hu
man practitioners.

In addition to heuristic reasoning, ex
pert systems tap other sources of power,
some of which are such staples of com-

207 © 1984 SCIENTIFIC AMERICAN, INC

mon sense that people rarely think of
them consciously. Many programs, for
instance, are able to focus their search
by virtue of being oriented toward more
or less specific goals. Again MYCIN is a
good example. Starting with general in
formation on the patient, MYCIN reasons
backward from its goal of finding the
identity of the disease-causing organ-

ism, asking questions to ferret out the
specific symptoms that might substanti
ate a diagnosis. Having determined, say,
that "the stain of the organism is gram
positive," MYCIN would without further
search inquire about the morphology
of the infecting organism, in the course
of deciding whether the bacteria might
be staphylococci. Such goal-directed-

ness does not mean a program has had
its decision sequence "wired in," as is
sometimes suggested by those who ar
gue that expert systems do not really
show intelligence; programs such as MY

CIN are actually adaptable to situations
unforeseen by the programmer, who
does not strictly predetermine the use a
program will make of its knowledge.

SOUND
SEGMENTS

WAVEFORM

ARE ANY BY FEIGENBAUM

BLACKBOARD provides a way to organize a large amount of knowl
edge in an intelligent program. The information is stored in indepen
dent modules, each of which monitors only a small region of the black
board and is activated only when entries are posted in that region by
another module. The modular design helps to solve the problem of
deciding which part of the knowledge base to apply at a given mo
ment. In the example shown, adapted from a speech-understanding
system developed by Raj Reddy, Lee D. Erman and their colleagues,
the horizontal axis represents time, starting at the beginning of an ut-

208

: .

FELDMAN ?

• • •

terance, and the vertical axis represents the level of abstraction, start
ing with the sound waves and proceeding to the complete sentence.
The third dimension indicates the level of certainty associated with
each hypothesis posted on the blackboard; the most plausible of the
many hypotheses possible at each time and at each level of abstrac
tion are near the front of the cube. The blackboard allows knowledge
modules at different levels to interact; for instance, once the program

infers from pitch that the sentence is a question, that information
guides the formation of hypotheses at the word or the phrase level.

© 1984 SCIENTIFIC AMERICAN, INC

Another powerful strategy exploited
by intelligent human beings, including
software designers, is to break up a com
plex problem into more tractable sub
problems: it is the strategy of divide and
conquer. A group at Carnegie-Mellon
University has built four related pro
grams, each of which is guided by heu
ristics to rediscover well-known physi
cal and chemical laws. The programs
are enabling the group to make progress
toward understanding and mechanizing
different aspects of scientific theory for
mation; eventually the workers will knit
these solutions together into a single
model of the entire process.

In a relatively narrow sense the di
vide-and-conquer approach is implic
it in intelligent software itself. Goal
directed programs divide the search
into more or less independent subgoals
(nodes in the search tree). At a higher
level, heuristically driven systems dis
tinguish the problem itself from the
meta-problem: the difficulty of deciding
at any given moment which of hundreds
of different rules should be "firing." The
meta-problem is solved separately by an
often complex process-sometimes re
quiring its own heuristics-of matching
the search state with the preconditions,
or "if " part, of an if-then rule.

Formal methods, although they are
not the engine of inference, can also be
helpful in managing an expert system.
Some systems, for example, rely on logi
cal or statistical procedures in deciding
when it is no longer cost-effective to
continue a search. Furthermore, since
the if-then heuristics in an expert system
generally do not express relations that
are always true, each rule may have
a confidence rating associated with it
(".7" in the abovl< example from MY

CIN). The ratings linked to each step in
a sequence of inferences are combined
to produce a confidence measure for
the final conclusion. This is done using
Bayes' law or some other formal pro
cedure of probability theory.

Each rule in an expert system may be
simple, and sometimes there may be lit
tle or no organization among rules. Still
the set as a whole is capable of per
forming difficult technical tasks with
an expert's level of competence. This
is a form of synergy, the whole being
greater than the sum of its parts. Syn
ergy is so pervasive that it is taken for
granted, but almost all expert systems
rely on it as a source of power.

One of the most successful intelligent
programs was also the first expert

system to be developed: DENDRAL, writ
ten by Edward A. Feigenbaum and his
colleagues at Stanford in the late 1960's.
Along with its successor, GENOA, it is
now in use in organic-chemistry labora
tories throughout the world. DENDRAL

deduces the structure of organic mole-

cules from mass spectra, nuclear-mag
netic-resonance data and other kinds
of information.

Like MYCIN, DENDRAL is essentially di
agnostic. A different type of expert sys
tem altogether is one that seeks to dis
cover new information, or to rediscover
from basic principles information al
ready known. An example of such a pro
gram is EURISKO, which I developed with
my students at Stanford. After giving it
a relatively small amount of basic infor
mation on a subject, we have turned EU

RISKO loose in domains as diverse as set
theory, a war game, computer program
ming and the cleanup of chemical spills.

EURISKO is guided in its search, which
consists of synthesizing, analyzing and
evaluating new concepts, by hundreds
of fairly general heuristics. One of these
is "look at extreme cases." This heuris
tic led EURISKO, while it was pondering
the function "divisors of " in set theory,
to consider numbers that have only a
few divisors. In doing so it rediscovered
prime numbers, which are numbers with
only two divisors, as well as the fact
that any number can be factored into a
unique set of primes. The same simple
heuristic also proved invaluable when
EURISKO and I entered the national war
game Traveller T.C.S., in which the ob
ject is to design a fleet that will defeat
one's opponents in battles waged under
a large set of rigid rules. After consider
ing the rules EURISKO produced a fleet
consisting almost entirely of small, swift
attack vessels rather like PT boats and
including one ship so fast and so tiny
that it was virtually indestructible. Hu
man Traveller players scoffed at this
strategy and fielded more conventional
fleets with a balance of ship sizes; EU

RISKO won.
Another widely applicable heuristic is

"coalesce," which leads the program to
consider what happens to a function of
two variables x and y when the variables
are assigned the same value. After EU

RISKO had already derived the functions
of addition and mUltiplication from set
theory, the coalesce rule prompted it to
discover doubling (x plus x) and squar
ing (x times x). Applying "coalesce" to
Traveller, EURISKO developed a novel
strategy: it directed a disabled ship to
fire on and sink itself. Because the
game's stylized rules defined overall
fleet agility in terms of the slowest ves
sel, this was a reasonable method of in
creasing the fleet's power. Finally, in
studying computer programming EURIS

KO considered the function "x calls y,"

where x is a program element that acti
vates y, another element. The coalesce
heuristic led EURISKO to define the im
portant notion of recursive program
ming elements, or components of a piece
of software that call themselves.

"Coalesce" and "look at extreme cas
es" are examples of heuristics that guide

a discovery program to define new con
cepts. If the program's mission is taken
to be the search for interesting ideas, it
must also have a second type of heuris
tic to help it decide which of the many
concepts it generates are significant.
Concept-synthesis rules steer search at
the outset; evaluation heuristics channel
the search along worthwhile paths once
it has begun. EURISKO includes rules
of the form "If all members of a set un
expectedly satisfy some rare property,
then increase the 'interestingness' rating
of that set and of the heuristics that led
to its definition." Another rule directs
the program, when it is deciding which
of two very similar concepts to study, to
pick the one that requires less computer
time or questioning of the user.

From using heuristics to discover (or
rediscover) new concepts or facts it

is a short theoretical step to using them
to discover new heuristics. The latter
endeavor relates to what has long been
a central goal of artificial-intelligence
research: writing programs that learn
from.experience. In recent years a num
ber of workers have in fact developed
programs that draw general rules from
their experience in solving individual
problems. The generalization process is
controlled by meta-heuristics.

The success of DENDRAL prompted
its authors to write a new program,
META-DENDRAL, whichformulatesgener
al rules of mass spectrometry based on
observations of how particular com
pounds are fragmented in the spectrom
eter. An example of a meta-heuristic in
this case is the simple statement that the
features of a molecule that are most im
portant in determining its fragmentation
pattern are those near the break points.
Applying this heuristic, META-DENDRAL

might formulate a rule to the effect that
organic molecules tend to break where
carbon and oxygen atoms are linked by
single bonds. The new heuristic would
then be helpful in deducing the structure
of unknown molecules from their mass
spectra. Similarly, Thomas M. Mitchell
and Paul E. Utgoff of Rutgers Universi
ty have written a program called LEX2

that derives problem-solving heuristics
in integral calculus from its experience
in computing particular integrals.

Designing more proficient learning
programs depends in part on finding
ways to tap a source of power at the
heart of human intelligence: the ability
to understand and reason by analogy. A
little introspection and an attentive ear
are all it takes to realize that people
draw on analogy constantly in explain
ing and understanding concepts and in
finding new ones. This source of power
is only beginning to be exploited by in
telligent software, but it will doubtless
be the focus of future research.

I do not mean to suggest that no prog-

209

© 1984 SCIENTIFIC AMERICAN, INC

,

BMDPC STATISTICAL $OFTWARE
CONFIDENCE AND CONVENIENCE

© 1984 SCIENTIFIC AMERICAN, INC

ress has been made so far. Twenty years
ago Thomas G. Evans of the Massachu
setts Institute of Technology wrote a
program capable of recognizing analo
gies between geometric figures, the kind
of ability required by certain problems
on I.Q. tests. Getting programs to find
conceptual analogies' is harder, and a
number of investigators are working on
this problem. Jaime G. Carbonell of
Carnegie-Mellon has a program that
recognizes the similarity between two
algorithms that are written in different
computer languages but have the same
purpose. EURISKO, on the other hand,
does not so much find analogies as use
low-level analogical reasoning. In work
ing on the design of integrated circuits,
for example, EURISKO stumbled on the
fact that symmetry is a desirable prop
erty for such chips, although it did not
understand why; when it was later in
structed to design fleets for the Traveller
game, EURISKO decided to make them
symmetrical and justified its decision by
referring to its earlier experience in de
signing circuits.

Compared with human capabilities,
however, this is extraordinarily meager.
The poor performance of computer pro
grams in finding and using analogies
may be attributable more to the nar
rowness of their knowledge than to the
inability of programmers to come up
with suitable algorithms. People have an
enormous store of concepts to draw on
as possible analogues: perhaps a million
distinct memories of objects, actions,
emotions, situations and so on. This rich
repertoire is not built into existing soft
ware, nor do programs have a chance to
accumulate a large set of experiences
from which to draw comparisons. Pro
grams that run for a long time before
they are.stopped and restarted typically
do not keep adequate records of their
search experience, and when they are
stopped, they lose all or most of the les
sons they learned. Even EURISKO, which
has run for weeks at a time and is restart
ed with most of its records intact, has
had a short mental life, with experiences
that are not nearly as varied as those of
a human infant.

The prescription for improving a pro
gram's analogical reasoning is therefore
the same as the one for raising the gener
al performance of intelligent software:
expand the knowledge base. Ideally an
entire encyclopedia would somehow be
stored in computer-accessible form, not
as a text but as a collection of thousands
of structured, multiply indexed units.
Preliminary work toward this goal by a
few investigators has revealed that it is .
even more elusive than it sounds: the
understanding of encyclopedia articles
itself req uires a large body of common
sense knowledge not yet shared by com
puter software.

On the one hand, computer programs

"FRED IS LIKE A BEAR"

NAME FRED NAME TYPICALBEAR

ISA MAN ISA BEAR

HOME 15 MAIN ST. HOME CAVE

SIZE LARGE < SIZE LARGE

GAIT LUMBERING < GAIT LUMBERING

EATS HONEY < EATS HONEY

AGE AGE 5

FINGERNAILSIZE LONG �--------- CLAWSIZE LONG

FRAMES are a way of representing knowledge of a particular concept; among their other ad
vantages, they can facilitate the drawing of analogies by an intelligent program. A frame con
sists of slots filled with attributes and associated values. If two objects have some of the same
attribute names, an analogy can be drawn simply by filling empty slots in one frame with ap
propriate attribute values from the other frame. Heuristics guide the program in determining
which values to transfer, leading it, for example, to consider extreme qualities' of the source
frame. When a slot in the source is absent in the target, the program may.sel.ecta similar slot.

will have to become a lot more knowl
edgeable before they will be able to
reason effectively by analogy. On the
other hand, to acquire knowledge in
such bulk it would seem that computers
must at least be able to "understand"
analogy when it is presented to them;
certainly that is one of the most power
ful learning techniques available to hu
man beings. The problem is thus of the
chicken-and-egg sort. Fortunately it is
easier for a computer, as it is for a per
son, to understand an analogy put be
fore it than to find one itself, and ongo
ing research gives some reason to hope
that the dilemma will not prove com
pletely intractable.

The key to getting a machine to un
derstand an analogy is to represent in
formation about the objects to be com
pared in a convenient way: for example,
as frames .consisting of sets of slots,
where each slot contains a value for a
particular attribute of an object. When
the computer is told that two objects are
analogous ("Fred is like a bear"), it can
then simply fill in empty slots in one
frame with values taken from the eq uiv
alent slots of the other. The hard part for
an ignorant program, of course, is decid
ing which values it should transfer. (In
which of his attributes is Fred like a
bear?) Such decisions can be guided by
heuristics. The. "look at extremes" rule,
for instance, is again useful; when an
analogy is apt, it is often because certain
unusual characteristics of the source ap
ply to the target as well.

The use of frames in mechanizing the
understanding of analogy illustrates

a general fact, namely that the repre
sentation of knowledge can itself be a
source of power in an intelligent system.
A piece of knowledge can be represent-
ed in many ways in software, and I do
not intend to go into them aU here. The
point is merely that each mode of repre
sentation makes it efficient to do certain
operations and inefficient to do others.

Drawing.·analogies, for 'example, might
entail a long and cumbersome search if
each attribute of each object were repre
sented in a program's knowledge base
as a separate statement in formal logic.
Choosing the right representation for a
given problem reduces search.

Human beings, though, go 'well be
yond a simple, one-time choice: we have
the ability to switch back and forth be
tween several forms of representation
words, symbols, pictures-and to look at
a problem from different perspectives as
we seek a solution.Such flexibility is dif·
ficult for software to emulate. In 1962
Herbert L. Gelernter designed a pro
gram that- solv.ed high school problems
in plane geometry; each problem was
represented both axiomatically and by
a diagram. The logical representation
enabled the program to construct for
mal proofs. The diagrams, on the other
hand, suggested methods of proof and
enabled the program to test conjectures;
for instance, it could recognize when
two line segments were parallel, when
two angles were equal or complementa
ry and so on. Although a coincidence of
this kind could be an artifact of a partic
ular diagram, the likelihood of such a
coincidence was so small that it made
the multiple-representation techniq ue
quite effective at eliminating search.

Unfortunately Gelernter's prescient
thoughts about multiple representation
have not yet been extended into other
domains, although recently a few inves
tigators have begun classifying forms
of representation and working on tech
niques that would enable a program to
convert from one form into another.
The diagrams in Gelernter's program,
however, were effective not only be
cause they were a different form of rep
resentation but also because they were
analogical: their pieces corresponded to
real entities, and distances between piec
es matched real distances, as on a road
map. That is an advantage a logical rep
resentation cannot offer, and a number

2 1 1
© 1984 SCIENTIFIC AMERICAN, INC

of workers are looking for ways to ex
ploit the potentially large power of ana
logical representation.

One line of this research deserves spe
cial mention. "Blackboards" are not a
way of representing individual pieces of
knowledge but of organizing the pieces
into a large program; a blackboard rep
resents the problem space itself. In
speech understanding, to which this ap
proach was first applied, the horizontal
axis of the board represents time, with
the beginning of a sentence at the left
and the end at the right. The vertical axis
measures the level of abstraction, which
increases from sound wave to syllable to
sentence as the program's understand
ing of an utterance progresses. Each if
then rule or set of rules in the program
monitors a particular part of the black
board and is triggered only when infor
mation is posted in that space; the black
board thus helps to solve the meta-prob
lem of deciding which rules should be
firing at a given moment. Moreover,
the knowledge modules, which operate

CONSISTENCY

independently, need not all be if-then
rules. A blackboard structure is there
fore a natural way of exploiting the syn
ergy among different types of knowl
edge in a single system.

Decently another source of power po
n. tentially available to intelligent sys
tems has become something of a buzz
word in artificial-intelligence circles:
parallelism. At present most computers
process information seq L1entially, one
operation at a time. Several groups,
however, including those working on
the Japanese "fifth generation" and
American "strategic computing objec
tive" projects, are designing machines
that will include on the order of a mil
lion processors operating in parallel.
The possibility that processing speeds
will increase by a factor of a million has
prompted some workers to forecast rev
olutionary improvements in the per
formance of intelligent software.

The improvements will undoubtedly
be significant. The rise in processing

PREDICTABILITY

CONTINUITY OVER SITUATIONS

REGULARITY
DECOMPOSABILITY

DENSITY OF SOLUTIONS

SHARING OF ATTRIBUTE NA MES

CONTINUITY OVER ATTRIBUTES

IMMENSITY

I
COMPLEX ITY

VARIETY

SPARSENESS OF SOLUTIONS

UNPREDICTABILITY

speed may bring within reach the so
lutions to some interesting problems,
such as getting a computer to under
stand speech as quickly as it is spoken;
it should also be enough to enable a
machine to beat the best human player
at chess. Yet before predicting miracles
from the fifth generation one should re
member that most hard problems have
search trees that grow exponentially.
Even a millionfold increase in com
puting power will not change the fact
that most problems cannot be solved by
brute force but only through the judi
cious application of knowledge to limit
the search.

A second reason for not treating par
allel processing as a panacea is more
subtle and is based on empirical evi
dence obtained by my colleagues and
me. When we had EURISKO simulate
the action of a progressively increasing
number of parallel processors working
simultaneously on tasks from its agen
da, we found that once fOLlr processors
had been simulated the rate at which

I
FORMAL METHODS

1

:1 HEURISTIC REASONING

I J FOCUS : 1

J
DIVIDE AND CONQUER

I

1
J PARALLELISM

I

I
.1 REPRESENTATION

I :::. ANALOGY
/

J SYNERGY 1

J I SERENDIPITY

"I
SOURCES OF POWER in problem solving are made meaningfnl
(gray lilies) and actually nsefnl or cost-effective (colored lilies) by cer
tain properties of the problem domain. For example, it is possible to
apply heuristic reasoning or the divide-and-conqner approach to a
problem if the problem is regnlar in the sense that it can be decom
posed into subproblems. It is cost-effective to do so, however, only if
the domain is complex and immense; if the domain is more limited

and regular, it may be better to apply a formal logical approach. Sim
ilarly, analogies can be drawn most readily in a domain (snch as med
ical diagnosis) in which objects (diseases) have many attribnte names
in common. Reasoning by analogy is cost-effective only when there
is a continnity of attribnte valnes (diseases with similar symptoms
and causes oli'ten require similar treatment) and when a problem has
few solutions (a set of symptoms is linked to only a few illnesses).

2 1 2 © 1984 SCIENTIFIC AMERICAN, INC

the program made significant discover
ies did not increase further. The reason
for this was that in completing its top
ranked task EURISKO usually discov
ered a new task it found more interest
ing than the rest of its original agen
da. Where good heuristics allow such
a "best first" search, parallel processing
may have diminishing returns.

There is a final source of power in
human problem solving that I should
like to mention, at the risk of sounding
tongue-in-cheek: serendipity. Although
one cannot count on luck to solve specif
ic problems, it is often reliable in the
statistical sense. For example, Wood
row W. Bledsoe of the University of
Texas at Austin has found it worthwhile
to include the following "fortuitous ac
cident" heuristic in his theorem-prov
ing program: "Whenever a new proposi
tion is deduced, regardless of whether it
solves the current subproblem, check to
see whether it solves any of the higher
level goals."

To a certain extent all empirical scien
tists rely on luck when they gather data
in the hope of finding some pattern. Em
pirical learning programs such as EURIS

KO, whose mission it is to seek new con
cepts and regularities, depend on seren
dipity in the same way. This open-ended
activity can be made less risky by confin
ing the search to a problem space in
which interesting findings are known to
be densely packed. The full exploitation
of serendipity, however, demands a will
ingness on the part of software design
ers and their sponsors to use programs
whose performance is far from guaran
teed. Although universities and corpo
rations routinely do this with human sci
entists, it may be many years before they
and program designers themselves lose
their reluctance to take such chances
with intelligent programs.

Each source of power I have described
is made meaningful and applicable

by certain properties of a problem do
main and cost-effective by others. The
two types of properties are rather like
necessary and sufficient conditions for
the application of a particular source of
power. Consider analogy: it is meaning
ful between two concepts only if they
share many of the same attribute names,
and it is useful or cost-effective if in ad
dition the concepts are actually similar
in some of their qualities, that is, if cer
tain of their attribute values are compa
rable. Most diseases, for example, have
attribute names in common-"cause,"
"symptoms," "treatment" and so on
and it is therefore possible to draw anal
ogies among them. It is useful to do so
because illnesses that have similar caus
es frequently turn out to require similar
treatments. In fact, medical students of
ten learn about new diseases by analogy
to ones they have already studied, and

medical-diagnosis programs may one
day do the same.

One property common to many inter
esting problem domains is that of being
immense. Immensity is usually regarded
as a hurdle to be overcome, but it pre
sents an opportunity to the problem
solver as well. If the search space is
large, pieces of it may be summarized
in the form of statistics, theorems or
heuristic rules. This opportunity does
not arise in the case of problems that
are not immense but are difficult in the
sense of being time-consuming; the test
ing of drugs for long-term side effects
is a good example.

When human beings are confronted
with a complex problem, they intuitive
ly draw on all appropriate sources of
power . Early artificial-intelligence pro
grams, in contrast, were seriously weak
ened by their reliance on a single ap
proach, usually some formal method.
Many software designers now recognize
the importaI)ce of exploiting the gamut
of human problem-solving techniques
as well as the synergy that arises when
different sources of power are allowed
to function together .

With the exception perhaps of syner
gy and serendipity, the sources of power
I have discussed are all methods of orga
nizing and applying knowledge to re
duce search. If the future of artificial
intelligence lies in making these human
tools available to machines, it depends
just as certainly on the ability of pro
grammers to provide their systems with
the right raw material: the huge knowl
edge base of facts and experience from
which human beings reason. To a cer
tain extent such knowledge can be incor
porated in a system "by hand," with the
programmer doing all the work. The
duplication by machines of many of
the most impressive human intellectual
feats will remain impractical, however,
until programs become more like hu
man beings in two fundamental ways:
in their ability· to accum ulate their own
experiences over a long mental lifetime
and in their ability to communicate with
and learn from one another.

Designing software that fits this de
scription is a tremendous challenge, but
I believe it will be accomplished some
day. Most existing programs were de
signed with a static environment in
mind. In areas where the state of the art
and therefore the problems are chang
ing rapidly-computer architecture, in
tegrated-circuit design and biotech
nology are examples-this property is
already revealing itself as a serious
drawback: programs working in these
problem areas quickly become obso
lete. The ability to adapt to a changing
environment demands intelligence. In
my view intelligence will increasingly
be perceived as a necessity rather than
a luxury in computer software.

PROOFWRITERTM
F o r t h e I B M , TI P C / XI's

and Com pati b l es

Word P rocessor,

Prog ram Ed itor,

and Spell ing Checker

For S c i ent i f ic a n d
M u l ti l i ng ua l A p p l i cat i o n s

Features:
• F u l l Screen Editor

• Fore i g n Lan g uage and
Scient i f ic Symbols eas i l y
entered and pr inted

• S i m p l e "cut and paste"
capab i l i t ies

• Easy to print expressi ons
s u c h as : X � A � A

• Equat ion Mode - J -

• Equat ion Macro Sto rage:
i n sert any stored equat ions
with 3 keystrokes

• M a i n l y what is seen on
screen is what is pr inted

• F i les eas i l y i n terfaced with
m a i n frame / m i n icomputers

• Mail M e rge

• Characters Generated o n
most matrix pr i nters

• Exten sive Footnote and
E n d n ote capa b i l i t ies

• View Scientif ic Sym bols with
Optiona l Character Proms.
Proms ava i l a b l e for Sc ience,
Math , Stati stics, Western
E u ropea n , G reek, Russ ian ,
Hebrew ($1 25)

• PROOFWRITER has most
f lex i b l e pr i nter i n terface
of any word p rocessor.
Com pati b l e with:
Matrix printers: Tosh iba, TI ,
Epson, IBM, C. Itoh, O k i d ata,
N EC, Gem i n i , P rowriter, I DS.
Impact printers: Diablo,
X E ROX, N EC, Brothers,
Q u me, and Daisywriter

PROOFWRITER $250
PROOFWRITER
INTERNATIONAL $300

with a l ternate keyboards
and 6 "dead" keys

. Try it with
Demo Disk Tutorial $5

2 d isk d rives / 2S6 KB

VISA or Me accepted

IMAGE PROCESSING SYSTEMS
6409 Appalachian Way

P.O. Box 501 6
Madison, Wisconsin 53705

U.S.A.

(608) 233·5033

. .

'"
»

+

F
(\J

•

2 1 3
© 1984 SCIENTIFIC AMERICAN, INC

PERSOMAL COMPUTING
MAKES GOOD
BUSINESS ·.SENSE.

ONE WAY. ·OR THE OTHER.

2 1 4

. Read this . . . i f you want to learn
more about persona l computers
before you buy one.

Read this . . . if you want to get
more out of the personal
computer you already own .

Turn to the c o m p u t i n g magaz i n e for b u s i ness peo
p le , not tec h n i c a l wizards _ Personal Computing_
M u st rea d i n g if you want to know more a bout
persona l com puters a n d what they can d o for

Turn to the c o m put i n g magazine for b u s i ness peo
p le that ' s a s much a user ' s g u i de a s i t i s a sou rce of
pr ice and product i nformat i o n . Personal Computing .
M u st rea d i ng if you want to f u l l y cap i ta l ize

you . . . before you c o m m i t to buy. on your comput i n g I nvestment .

Every month, Personal Computing w i l l expa n d your
understa n d i n g of today ' s most i n d i spensab le b u s i
n e s s too l . F r o m t h e bas i c s (How do y o u get
started?) . To the brea kthroughs (How good is the
M a c i ntosh?) . You ' l l hear i f i t ' s w i se to p l u n ge i nto
comput ing o r wa it (our advice get in now!) . You ' l l
see how people l i ke you are putt i n g persona l com
p u t i n g power to work for them i n the i r b u s i nesses.

Every month, you ' l l f ind out how you and your ma
c h i ne can become more product ive . Through exten
s ive a rt i c les o n software. How to eva l u ate it , how
to buy i t , how to use i t effect ive ly . I n s i g htfu l adv ice
on progra ms for a l l k i n d s of bus i ness a p p l i c a t i o n s .
D a t a B a s e M a n a g e m e n t . Spreadsheet . Word
process i n g . C o m m u n i c at i o n s . And much more.

You ' l l learn about al l the new hardware o n the mar
ket Whether i t ' s adv isab le to expand your system
or trade- u p to a new one. Get the lowdown on
porta b les . See how per i phera l s can add punch to
your presentat i o n s . Our monthly reviews make i t
eas ier to dec ide what ' s r ight for you .

You ' l l f i n d a n swers to your most i m portant q ues-
t ions . . . " How much of a system d o I rea l l y
n e e d . . . h o w much s h o u l d I s p e n d . . . w h a t w i l l i t
do . . . i s i t easy to learn?" And more. You ' l l e njoy our
month ly rev i ews of hardware a n d softwa re. F rom
PC to L i sa a n d everyt h i n g i n between . You ' l l get
essent ia l data o n c a pa b i l i t ies a n d pr i ces--for all
brands. So that when you ' re ready to buy, you ca n

You ' l l d i scover unexpected home uses . L i ke how to
use your system for home sec u r i ty, pay i n g b i l l s ,

educat i n g your c h i l d re n o r even s h o p p i n g by
buy s mart .

�:7.:7'7r.��,...W"'I_.. com puter . Personal Computing w i l l
See f o r yourse lf . P lease accept
the next i ssue of Personal
Computing w i t h our
c o m p l i ments . Ret u r n the
bound- i n card (or cou

save you t i me a n d money .

S e e for y o u r s e l f . P l e a s e a c c e p t t h e
n e x t i ssue of Personal Computing

with our c o m p l i ments .
Ret u r n the bound- i n card (or cou

pon) a n d reserve your c o m p l i mentary
copy p l u s a s u b s c r i p t i o n for 1 1

pon) a n d reserve your
c o m p l i mentary copy
p l u s a subscr ipt ion more i ssues .
for 1 1 more
I ssues . PLEASE ACCEPT A

COMPLIM ENTARY COPY.

� - ,
l PERSONAL P O Box 2 941

5AXA4 "

I COMPUTING Bou lder, CO 8032 2
Name I

I P lease send me my c o m p l i m entary I ssue of Personal Com- I puting. At the s a m e t i me, e n t e r my s u b s c r i p t i o n f o r 1 1 m ore Company Af f i l i a t ion ________ _

I i ssues , f o r a t o t a l of 1 2 . I u n d e r s t a n d that I w i l l be b i l le d a t I
I

t h e I n t roductory S u b s c r i p t i o n rate of o n l y $ 1 1 . 9 7 - a s a v i n g
I of $ 1 8 . 0 3 off t h e s i n g l e · c o p y cost of $ 3 0 . 00 a n d $ 6 . 0 3 off Street -------------

I the reg u l a r s u b sc r i p t i o n p r i c e . If I ' m not c o m p l et e l y sat i s f i e d I w i t h my c o m p l i mentary i s s u e , I w i l l w r i t e " c a n c e l " on t h e C i ty _____________ _

I b i l l a n d return i t , a n d t h a t w i l l e n d t h e m a t t e r . The c o m p l i · I \ mentary I s s u e is m i n e to keep .i n e i t h e r c a s e .. . Sta te
_

: i p I , Please a l low 4-6 weeks tor del ivery of your fi rst Issue. Your subscription may be tax deductlble_ ,
� - �

© 1984 SCIENTIFIC AMERICAN, INC

THE AMATEUR
SCIENTIST

Success in racquetball is enhanced by knowing
the physics of the collision of ball with wall

by J earl Walker

A four-wall game such as racquet.n. ball, squash or handball de-
mands of the player a great deal

of skill in judging angles and bounces.
The ball comes off the wall in a direction
determined by the physics of the colli
sion. An understanding of this physics
enables a player to predict the ricochet
of a ball approaching him and to cal
culate the ricochet he would like to
achieve in order to put the ball out of
the reach of his opponent. In discussing
these phenomena I shall call to my aid
some strange related tricks that can be
demonstrated with a highly elastic solid
ball sold in toy stores.

(The total kinetic energy is said to be
conserved.) Only an ideal ball and colli
sion follow this rule. In practice some
kinetic energy is lost by being converted
into other forms of energy. For exam
ple, some of it might end up in the vibra
tions of the ball. I shall ignore such los
ses and concentrate on the movements
of a totally elastic ball.

The collision of the ball with the floor
changes the perpendicular velocity in a
simple way: it reverses the direction but
leaves the magnitude and the associat
ed kinetic energy unaltered. The paral
lel velocity and the spin are altered in
more complicated ways. Still, the total
kinetic energy is unchanged. An elastic
collision might decrease the spin, but
the parallel velocity would then be in
creased just enough to keep the total ki-

netic energy constant. This requirement
of conserving the total kinetic energy is
a strong tool for predicting the rebound.

Another important point is that the
total angular momentum is conserved.
One contribution to the angular mo
mentum comes from the spin. This con
tribution is equal to the rate of spin mul
tiplied by the ball's moment of inertia.
The spin angular momentum is consid
ered to be negative if the spin is clock
wise and positive if it is counterclock
wise. The moment of inertia depends
on the mass of the ball and the way the
mass is distributed. For a solid ball of
uniform density the moment of inertia is
two-fifths of the product of the mass and
the square of the radius.

The other part of the angular momen
tum depends on how fast the ball is
moving parallel to the floor at the in
stant it touches the floor. This contribu
tion to the angular momentum is equal
to the product of the ball's mass, the
parallel velocity and the radius. If the
parallel velocity is toward the right, the
contribution is negative; toward the left
it is positive. The collision may change
the two contributions to angular mo
mentum in both magnitude and sign,
but the total angular momentum re
mains. In sum, regardless of how the
ball is thrown to the floor or how it
spins, the total kinetic energy and the
total angular momentum must remain
constant in an ideally elastic collision.

The easiest demonstration is to drop
the ball to the floor. If it has no spin
initially, it must bounce back to your

The toy ball is almost perfectly elas
tic: if you drop it, it bounces back nearly
all the way to your hand. (A perfectly
elastic ball would return to its initial
height.) The ball also has a rough sur
face, so that when I throw it along the
floor, it does not slip. Because of the
ball's elasticity and roughness, it can be
bounced in some surprising ways.

Front wall

When I throw the ball downward at an
angle, it bounces across the floor in a
repeated pattern of high, short hops and
low, long hops. If I put some spin on
the ball as I throw it, it bounces to the
left and right until it runs out of energy.
The most startling demonstration in
volves throwing the ball under a table.
A smooth ball would bounce between
the table and the floor until it reached
the far side of the table. A rough elastic
ball bounces back to the thrower.

To study how a ball collides with a
surface I first considered a uniformly
solid ball bouncing on a floor. Suppose
the ball approaches the floor moving to
the right and downward. It helps to de
scribe the velocity as being in two parts,
one part parallel to the floor and the
other part perpendicular. In addition
the ball can be spinning about its center.
A clockwise spin is a negative rotation
and a counterclockwise spin is positive.

The ball's kinetic energy is in three
parts, one part for each component of
the velocity and one for the spin. If the
ball is completely elastic, the collision
does not change the total kinetic energy.

Left ::>ide
wall

Boll rebounds poro\\e.1
to bock wall.

\

R.ight oide..
'/'Jol\

-i------------------

The troublesome Z shot ill racquetball

215
© 1984 SCIENTIFIC AMERICAN, INC

Behind every Smart Desk is a very smart decision-maker. Especially when
the desk is equipped with a new IBM 3270 Personal Computer/GX.

This 3270 P C lets you create charts, graphs, 3-D technical diagrams and
other high resolution graphics right in your office or lab. You can even view
engineering designs created on other IBM graphics systems.

The graphics are created by downloading data from your company's main
frame computer or by running stand -alone. So, in either case, the host is free to
go its way while you go yours. The results: faster response time and more cost
effective performance.

The 3270 PC/GX's 19-inch screen displays up to 16 colors. An optional
""mouse" makes for fast, easy creation of graphics. An optional writing tablet lets
your sketches appear right on the screen. There are even features that let you
enlarge important details.

And, because this new computer is an IBM 3270 PC, you get a lot more than
just pretty pictures. .

It can display up to four different host sessions concurrently and run a full
range of IBM Personal Computer applications. You also get two electronic note
pads on screen for keeping track of important information.

IBM also has available a 14-inch model of the 3270 PC with advanced color
graphics: the 3270 PC/G. Put yourself behind a 3270 PC/G or GX, and you'll r::------------- --------, §et the picture of how smart a IBM 9·84

DRM, Dept. 2Y3/428 mart Desk can be.
400 Parson 's Pond Dr. To receive literature, call Frankhn Lakes, NJ 07417

1800 IBM-2468. Ext. 428. o Please send me more information on the new IBM PC1G "
and GX. or send in this coupon. o Please have an IBM representative contact me.

Name _____________ _
<.:ompany ____________ _
TItle _____________ _
P�e� ____________ _
Address ____________ _
City Stat.. Zip __ _

L _____________________ �

The Smart Desk from IDM
© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

NO
PASSING �
ZONE ��

�
�

� '

Post-if
Notes

YELLOW IS A SIGN OF IMPORTANCE.
That's why people with important business messages use our Post-it'M Notes adhesive

note pads. Bright notes that stick virtuall y anywhere. To make sure your messages get
noticed. Call 1-800-328-1684 for a free sample. Then get more Post-it Notes from a nearby
stationer or retail store. And start getting the recognition you deserve.

Commercial Office Supply Division/3M

3NI
© 1984 SCIENTIFIC AMERICAN, INC

hand without spin 'because of the con
servation rules. The only kinetic energy
it has is associated with its perpendicu
lar velocity. Since that velocity is only
reversed by the collision, without any
change in magnitude, the kinetic energy
is unchanged. N one of it can be trans
ferred to the spin or to parallel velocity,
and so the ball must travel straight up
ward. This result also satisfies the re
quirement that. angular momentum be
conserved. Before the collision and after
it the ball's angular momentum is zero.

Suppose you put a clockwise spin on
the ball. The collision directs the ball
onto a new path. At the collision with
the floor the spin creates a friction force
toward the right, reversing the direction
of spin. Because of the friction force,
the ball also acquires a parallel velocity,
so that it bounces to the right. The en
ergy for the parallel velocity is taken
from the energy of the initial spin. .

Energy is also transferred when the
ball is thrown to the floor at an angle and
without spin. I had expe.cted the path'
after such a bounce to be just as.steep as
the initial path, but it is steeper because
the collision reduces the· parallel veleci
ty, converting-some of its kinetic ener
gy into spin eneI:gy. In terms of angu
lar momentum the collision reduces the
amount associated with the parallel
velocity and increases (from zero) the
amount associated with the spin. The to
tal kinetic energy and the total angular
momentum are conserved.

The steepness of the path after a colli
sion depends.ol} the initial steepness. and
the spin. When the initial spin is negative .
(clockwise), th'e final. steepness is less
than it is when the ball 'is thrown down·
without spin. A strong spin directs the
ball along a low path over the ft.oor.
When the initial spin is positive (coun
terclockwise)" the balLmay bounce for
ward in a steep path, upward. perpen
dicular to the floor "or 'even backward,
depending on the, stren-gth of·the initial
spin. The bounce is straight-up if the ball
initially has just the right amount of pos
itive spin. (The product of the spin and
the radi us of the ball must be eq ual to
three-fourths of the ball's initial parallel
velocity.) With more counterclockwise
spin the ball rebounds to the left: If the
spin is less than the' threshold amount,
equal to zero or negative (clockwise),
the rebound,is to the right.

The steepness of the rebound can be
understood' in terms of the friction
where the ball touches the floor. The
friction force is opposite to the direction
in which the surface of the ball is mov
ing. At the moment of contact the sur
face motion has two sources: parallel
velocity and spin. The, friction opposes
the sum of these two motions .. For ex
ample, if the ball is thrown down at
an angle and without spin, the surface
touching the floor is moving to the right.
The friction force acting orr the surface

(' opinle.s.s

The odd bounces of a rough. elastic ball

is toward the left, which reduces the par
allel velocity. The ball bounces toward
the right with less rightward velocity
than it had before the collision. Since the
amount of perpendrcular velocity is un
altered by the friction, the ball bounces
in a path steeper than the one it followed
in approaching the floor.

I also considered events in which the
ball makes several bounces on the floor.
Suppose the ball is thrown to the right
without spin. The first bounce reverses
the perpendicular velocity (so that the
ball goes upward), decreases the parallel
velocity and imparts a clockwise spin.
The ball rises to its maximum height
and falls'back to the floor. The surpris
ing feature is that this second bounce
restores the initial spin (which was zero)
and parallel velocity. The result is the
same regardless of. the initial values of
spin and' parallel velocity. If the ball
continues to bounce along the floor, its
initial values of spin and parallel veloci
ty are restored after every even number
of bounces.

The phenomenon was readily appar
ent in the'action of the elastic toy ball. I
painted the equator of the ball so that
I could monitor the spin. When I threw
the ball to the floor with no initial spin,
the first bounce was high and short, so

that the ball did not move very far hor
izontally before the next bounce. The
spin was clockwise. The second bounce
was low and long. The. ball had essen
tially no spin. Thereafter the ball repeat
ed the pattern of a high, short bounce
followed by a low, long one. Since the
ball was not totally elastic, each bounce
was less energetic than the preceding
one. A perfectly elastic ball would peri
odically resume its initial spin of zero
and its initial parallel velocity.

The interactions of spin and parallel
velocity account for the strange actions
of a,ball throwrr to the floor so that it
strikes the underside of a table. If the
ball is initially without spin, it bounces
from the floor on a steep path with a
rapid clockwise spin; when it hits the
table, it rebounds to the left with a coun
terclockwise spin. The second bounce
from the floor is also to the left with a
counterclockwise ·spin. The perpendic
ular velocity has been reversed three
times but is unchanged in amount. The
parallel velocity is now toward the left
and is almost unchanged in amount.
Hence the ball almost returns to. the
launch site.

Suppose the 'ball were smoother and
. less elastic. The first bounce would re

sult in a weak spin and the second (from

219
© 1984 SCIENTIFIC AMERICAN, INC

the underside of the table) would not be
to the left. The ball would continue to
travel to the right until it exhausted its
kinetic energy.

I next turned my attention to an ideal
ly elastic, hollow racquetball. Such a
ball should perform all the tricks of a
solid ball, although the spin values differ
because the hollow ball has a different
moment of inertia. If the ball is thrown
at an angle to the floor (toward the
right), it will hop straight up provided
the spin is counterclockwise and the
product of the spin and the ball's ra
dius is equal to one-fourth of the paral
lel velocity rather than three-fourths.

In racq uetball the serve comes off the
front wall of the court. The ball re
bounds to the opponent either directly
or by bouncing from the side walls. The
opponent must return the ball to the
front wall before it bounces twice on
the floor. Except on the serve, the ball
can also be bounced from the back wall
and the ceiling. I shall consider the shots
that are allowed after the serve.

A player can impart spin to the ball
with the racquet in only two ways: by
stroking forward and over the top of the
ball (achieving topspin) or forward and
along the bottom of the ball (achiev
ing backspin). The illustration at the
left on page 222 depicts the spins from

Weak

a view 0 the right s' / o

f the court.
Consider hit hard and low

toward the front wall with topspin. The
collision is similar to one I described for
a solid ball. The topspin (clockwise in
the illustration) creates an upward fric
tion force that directs the ball upward
and reverses the spin. When the ball re
turns to the floor, the counterolockwise
spin forces a low bounce toward the rear
of the court. The potential advantage of
such a shot is that your opponent may
not expect the high rebound from the
front wall or the low hop from the floor.

If you hit the ball hard and low
toward the front wall with backspin,
which is counterclockwise, it bounces
toward the floor with a clockwise spin. It
hits the floor close to the front wall and
rebounds steeply upward. The potential
advantage of this shot is that your oppo
nent may not be able to reach the ball
before it bounces from the floor a sec
ond time.

Usually my stroke gives the ball little
or no spin, but it ends up spinning as
soon as it bounces from a wall or from
the ceiling. Consider a ceiling shot,
which I often make to change the pace
of the game. My opponent must ad-

_just not only to the new path but also
to strange hop� off the floor. Suppose I
make the ball bounce from the front

. . . po.sltive-lnlholly :;,trong -spin positive -SPinG\ t Initioll)'
.spi n \e.5.s

� �) .)
•

lnitio\ :;,p'lnj
determi nes

. re-bound.

� In'ltially weak negative ::>pin
/ /!J .strong negati\lc spin

/ (no final spin)
•

How the boullce depellds 011 the illitial spill

Pcrpc.nd iCl.llar
vC:\ocity

Para \ I c.\
ve.locity

The two compOllellts of a ball's velocity

220

/;j . . /

How spill deflects a boullce

wall to the ceiling. It leaves the ceiling
with a clockwise spin. When it hits the
floor, its parallel velocity is sharply re
duced, making it bounce almost straight

up. My opponent, who is expecting a re
bound path resembling the path of the
approach to the floor, waits too far
back in the court.

If I make the ball bounce from the
ceiling to the front wall, it approaches
the floor with a counterclockwise spin.
The collision with the floor increases the
parallel velocity, sending the ball into a
low hop. Again my opponent misjudges
the rebound path and misses the ball.
Both ceiling shots are better jf I start
them from about midcourt. Then the
spin as the ball approaches the floor is
strong and the strange hop is enhanced.

Suppose the ball is bounced off the
front wall so that it moves toward the
left side of the'court. If you take an over
head view and ignore the curvature of
the path due to gravity, the arrangement
is similar to the one in which a solid ball
is thrown at an angle to the floor. The
collision reverses the perpendicular ve
locity (in this case the velocity perpen
dicular to the front wall), decreases the
p.arallel velocity (the velocity toward
the left side wall) and imparts a clock
wise spin. In the overhead view the final
path is steeper with respect to the front
wall than the initial path because of the
reduction in the parallel velocity. An
opponent can quickly learn how to deal
with this type of rebound in racquetball.

A more difficult shot to anticipate is
one that bounces from two walls. Con
sider an overhead view of a shot in
which the ball bounces from the front
wall and then from the left side wall.
The first bounce gives the ball a clock
wise spin and a velocity directed toward
the rear wall. Can you make the ball
rebound from the side wall in any direc
tion you choose or is the final angle of
rebound fixed? Can the final spin be
zero or any value of clockwise or coun
terclockwise rotation? To answer these
questions I employed some mathemat
ics published independently by Rich
ard L. Garwin of Columbia University
and George L. Strobel of the Univer
sity of Georgia.

Assume the ball is launched toward

the front wall with no spin and has

a small initial perpendicular velocity.

You can make such a shot if you are

near the front of the right side wall.

Then an ideally elastic racquetball re

bounds from the left side wall at an an

gle of about 12 degrees. If you are closer

to the center of the court, the initial

perpendicular velocity is larger and the

angle of the rebound from the left side

wall is smaller; the ball travels along

the wall to the rear of the court.
You can use this arrangement to ad

vantage. Suppose your opponent is near
the middle of the right wall. By bounc
ing the ball off the front wall and into the

© 1984 SCIENTIFIC AMERICAN, INC

A comprehensive
software approach to sYIl!bolic
mathematIcal computations.

Computer algebra, whereby a computer
manipulates symbolic mathematical
expressions, has always been some
thing people have thought about, but it
was never something people thought
would work for them.

Now there is a newly available soft
ware tool,one that can do not only rudi
mentary algebraic problems but also'
extremely complex analyses.

It has been under continual devel
opment since 1969 at M.I.T., the result

An engineer working for a major aero
space company needed to evaluate the
following integral dealing with turbu
lence and boundary layers:

I (k log(x) - 2x3 + 3x2 + b)4 dx

He had worked on this problem for
more than three weeks with pencil and
paper, always arriving at a different
result. He was never sure which of the
many results he had come upon was
correct.

copter blade motion studies, solid state
physics, maximum likelihood estima
tion, and atomic scattering cross sec
tion analysis. The range of use is
expanding every day.

MACSYMA'" currently operates on
Symbolics'3600\DEC's** VAX.**
series, TOPS 20* * and Honeywell
Multics** computer systems.

So if you're still solving problems
the old fashioned way with pencil and
paper, or trying to approximate results

Can your computer software evaluate this integral in closed form? Can you even find it in a table of integrals?

�rf(ax) erf(bx) dx = _ Va2 + b2 erf(x Va2 + b2) + J t abV;-
x erf(ax) erf(bx) + e-a2 x2 erf(bx) e-b2 x2 erf(ax) ---��+ aV;- bV;-

where erf(x)
MACSYMA solved this problem in seconds.

of research in the area of artificial
intelligence.

The program is called MACSYMA.'"
It's the most comprehensive

approach to symbolicmathematics.
The outgrowth of more than 100 man
years of development, it contains more
than 3 00,000 lines of code and is sup
ported by more than 500 pages of care
fully maintained documentation.

More important than any of that,
though, it's available today.

From Symbolics.

Symbolics presents MACSYMA'"
for computer algebra. *

In only a few minutes,you can use
MACSYMA'" to do meaningful work.

As an interactive tool, it can help you
explore problems in basic or advanced
mathematics, problems that you can't
begin to approach using pencil and
paper or any numerical software.

In-less than 10 seconds after entering
the problem in the computer, MACSYMA'"
gave him the correct answer, not in
numerical terms, but in symbolic terms
that gave him real insight into the physi
cal nature of the problem.

Applications for the real world.
Potential for new worlds.
MACSYMA'" has hundreds of practical,
real world, immediate applications. It
can simplify, factor or expand expres
sions, solve equations analytically or
numerically, differentiate, compute defi
nite and indefinite integrals, expand
functions in Taylor or Laurent series,
compute Laplace transforms, manipu
late matrices and tensors, plot functions
in 2 and 3 dimensions, generate FOR
TRAN output from MACSYMA'" expres
sions, provide most of the standard
numerical techniques, and much more ..

with numerical systems, make it your
business to find out about MACSYMA:"

We'll send you a complete literature
kit including an article published in
the December 1981 issue of Scientific
American, the solution to the integral
dealing with turbulence and boundary
layers, and a full capabilities brochure.
Simply clip the coupon below.

r-----------------l
I Symbolics Inc.. II Cambridge Center. SA 9 I
I Cambridge.MA02142 I
I Name I
I I
I Titte I
I I
I Company I
I I
I Address I
I City State Zip I
I I
I Telephone Ext I
I MACSYMA" is available 10 colleges and universities I
I at special rates. I
L _________________ J

For all its sophistication, however, a
novice with no prior programming
experience can use MACSYMA:" The
user doesn't have to learn a new lan
guage either. As a matter of fact, users
can interact with MACSYMA'" in an
almost conversational manner.

Right now, more than 1,000 scien
tists, engineers and mathematicians
throughout the world use MACSYMA'"
in a range of aplications as diverse as
acoustics, plasma physics,antenna the
ory, VLSI circuit design, control theory,
numerical analysis, fluid mechanics,
genetic studies, ship hull design, ballis
tic missile defense systems design,
underwater shock wave analysis, heli-

Macsym8
An example: Three weeks long-hand

vs.IO seconds processing time.

from syrnbolics • As titled in the December 1981 issueo! Scientific American.
-*DEC. VAX and Tops 20 are registered trademarks of Digital

Equipment Corporation.
Multics is a registered trademark of Honeywell�nc.
MACSYMA is a trademark of Symbolics, Inc.

221
© 1984 SCIENTIFIC AMERICAN, INC

Path fo, initial
top.spln <:.

Top,:,pin Back.spin
The energetics of topspill and backs pill

left side wall so that it travels along the
side wall to the back of the court, you
can make it almost impossible for him
to return the shot. Even if he is not far
from the final path of the ball, the re
bound off the side wall might at least
prove confusing.

When I tested my calculations with
a real racquetball, I found an approxi
mate agreement. The steepest angle of
rebound from the side wall was larger
than the 12 degrees I had predicted.
As I increased the initial perpendicu
lar velocity by moving from the right
wall toward center court, the angle of
rebound decreased until the ball almost
hugged the left wall on its way to the
rear of the court.

The discrepancy between the actual
and the predicted rebound off the side
wall arises from the inelastic collisions
of a real racquetball. If the ball hits a
wall squarely, it compresses uniformly,
storing its energy as elastic potential en
ergy. Only part of the energy is recon
verted into kinetic energy as the ball
pushes off from the wall, again taking
the shape of a sphere. A racquetball
might bounce back with 60 percent of its
energy in such a collision. The perpen
dicular velocity would then be about 80
percent of the initial value. (The change
in velocity is proportional to the square
root of the change in energy.)

A glancing collision is more difficult
to interpret because the compression
of the ball is not uniform and depends
on the angle of the collision. The loss of
kinetic energy and angular momentum
reduces both the spin and the parallel
velocity. (When the ball skims along the
wall or the floor in an extreme glancing
shot, you can hear the energy loss as
a high-pitched squeal as the ball skips
over the surface.) In my calculations I
chose to reduce the spin and the paral
lel velocity after a collision by .4. With
these reductions I found closer agree
ment between my predictions and the
actual rebounds.

I was also able to explain why a real

222

Sleep
rebound) InitioIIY�/ � spinlLss

Front wall

Initially
5p·lnless

f
Low
rebound /

Schemes for makillg use of the ceilillg

racquetball does not return to me when I
throw it under a table. The reductions in
energy and angular momentum in the
bounces from the floor and the under
side of the table trap the ball into bounc
ing almost vertically until it exhausts its
kinetic energy.

Is there a way to hit the ball to the
front wall so that it rebounds from a
side wall parallel to the front wall? With
such a shot you could win every game
because your opponent could not possi
bly get to the ball in time. As it turns out
such a shot is impossible. A rebound
from a side wall is always toward the
rear of the court.

Can a rebounding ball have any direc
tion of spin or even no spin? Yes, be
cause its final spin depends on the initial
ratio of perpendicular and parallel ve
locities. For a perfectly elastic racquet
ball a spin of zero results when the ratio
is 1 to 5. A smaller ratio yields a clock
wise spin (from an overhead view), a
larger ratio a counterclockwise spin.

The Z shot is a three-wall rebound
that is marvelous to watch. When it was
first introduced in the early 1970's, it
confounded even the most experienced
players. The ball is hit to the top left side
of the front wall, bounces to the left side
wall, crosses the court to the rear of the
right side wall and then rebounds par
allel to the back wall. An opponent will
need experience to anticipate the final
rebound, but even then the ball will be
difficult to return to the front wall. If
I hit the Z shot less than perfectly, the
ball might still be difficult to return if it
hits the floor and then the back wall.
My opponent must catch it near the
back wall before the ball makes its sec
ond bounce on the floor.

Initially I thought a perfect Z shot was
impossible. I doubted that the final re
bound could be made to move parallel
to the back wall. Armed with my mathe
matics l set out to follow the bounces.

I immediately met a problem. If the
ball is assumed to be perfectly elastic,
it rebounds ftom the left side wall at

such a small angle that it hits the back
wall instead of the right side wall. I fac
tored an extra-long court into my calcu
lation. I also ignored the curve result
ing from gravity and made the calcula
tion as though the ball remained in a
plane parallel to the floor.

To launch the Z shot a player stands
near the right wall at about midcourt.
The ball is hit to the top left side of the
front wall about three feet from the cor
ner and three feet from the ceiling. Since
such a shot makes the ball leave the left
side wall with a clockwise spin, its colli
sion with the right side wall creates a
friction force toward the front wall.

Consider the velocity and the spin of
the ball just before and just after the
collision with the right side wall. The
perpendicular velocity is reversed, di
recting the ball toward the opposite side

.wall. What happens to the spin and the
parallel velocity? The collision is similar
to one I considered earlier. The friction
during the collision opposes both the
spin and the parallel velocity, reducing
the parallel velocity and reversing the
spin. Under the proper conditions the
parallel velocity can be reduced to zero,
so that the ball's path is perpendicular
to the side wall. This is how a perfectly
executed Z shot makes the ball travel
parallel to the back wall.

When my calculations include the loss
of energy with each collision, my predic
tions are closer to the actual path of a Z
shot in a court of the proper dimensions.
The possibility of a final rebound paral
lel to the back wall is still present. My
calculations are flawed, however, since
the actual path has three dimensions.
My assumption of a flat trajectory sim
plifies the calculations because the axis
about which the ball spins is always kept
parallel to the wall. In the actual flight of
the ball the spin axis is often at an angle
with respect to the side walls.

The around-the-walls shot also hits
three walls. The ball is bounced from
the right side wall to the front wall and
then off the left side wall. The shot is

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

How our $2,000 CAD
frotn burning up

Until now, high-quality,
professional computer-aided
design could only be done on
expensive, large-scale mini or
mainframe computers.

But now there's AutoCAD:"
A full-function graphics pro
gram that turns your low-cost
personal computer into a full
fledged CAD workstation. So
that designing an AUTO
MATIC 50-350 GPM-class fire
nozzle has never been easier.
Or more cost-effective.

90% of mainframe CAD
at 5% of the price.
AutoCAD is designed

especially tq work on today's
most popular microcomputers
to fully automate the drawing
process. For just about any

Zoom in on a part
tofocus on the details

AutoCAD automatically
dimensions distances and angles

drawing job you
can think of.

With its exten
sive, push-button
editing facilities,
AutoCAD lets you
DRAW an object
(or any part of one);
ROTATE or SCALE
it; DRAG it; ZOOM
in and out on it;
STORE it away in
your own parts
library and call
it up whenever
you need it; FILL
an area; use an
unlimited num
ber of LAYERS;
even automat
ically DIMEN
SION distances
and angles in in. the right di-
any part of your 9 __ L����� rection. A HELP com-
drawing. t mand is always available

And, at only $2,000 for the to keep you on track. And
complete AutoCAD program, AutoCAD even lets you choose
you can have all this power in
a fully-configured, top-of-the
line desktop workstation for
less than $15,000.

You'll learn it
in two days.

The beauty of AutoCAD
is that you don't have to know
a about
Even you never
a keyboard, you'll pick it up in
a matter of days, and feel
comfortable inside a week.

Sound too good to be true?
A simple one-touch command
structure always points you

Would the Pantry be better where the
stove is? Use the MOVE command

from among a wide variety
of input devices to suit your
particular needs: including
pointing devices, mice and
easy-to-use electronic drawing

Architectural layout courtesy of Lansing Pugh, Architect Solar Panel Assembly plot courtesy of Future Technology, Inc.

© 1984 SCIENTIFIC AMERICAN, INC

software can keep you'
your design budget

(As well
as printers, plotters,

and microcomputers
from a growing number

of manufacturers.)

Circles, arrays and area
fills are easy with AutoCAD

boards,
skyscrapers,

and
everything
in between.

No matter
hat type of

drafting your
work involves-from electro
mechanical circuit layout to
structural schematics to archi
tectural design -Auto CAD
can give you a whole new
perspective on the draWing
process.

And on saving money.
Because whether you're in a
two-person shop or a two
billion dollar company, you'll
find that the AutoCAD system
pays for itself in just a few

Beyond that, your Auto
CAD software will run on
newer, and more powerful com
puters when they become
available-so that you can be
sure your investment in creat
ing drawings and training staff

Fire nozzle and nozzle designs provided
courtesy of TASK FORCE TIPS, Inc.

will never go up in smoke.

Fire off a letter.
There are currently over

7000 AutoCAD users world
wide. If you'd like more infor
mation, write or call your
nearest AutoCAD dealer. He or
she can provide you with all
the details, including literature,
specifications, and hands-on
demonstrations.

AutoCAD. For deSigners,
it's why the personal computer
was invented.

AUTOCAD
AUTODESK, INc.

2658 BRIDGEWAY
SAUSALITO, CA 94965

(415) 331-°356
'TELEX 756521 AUTOCAD UD

-. ':.--..

© 1984 SCIENTIFIC AMERICAN, INC

226

t1fyou are wondering why Berlin is the

(CENTER OF CRD/CRrl]
�----------�--�

in Germany, let us enlighten you:'
Economic Development

BERLIN
11 % of all people engaged in R + D in the Federal Republic of Germany

work in the City of Berlin. As a center for the conversion
of scientific knowledge into economic practice Berlin has the leadership

position, e. g. within thefield of CAD/CAM, laser and software.
By the way: The City of Berlin is the only location in the European Community,

where you get a bonus up to 14 % for Berlin products and serv,ices.
Ask for the free CAD/CAM leaflet or mark the code number.

Wolfe 1. Frankl, Berlin Economic Development Corp., 767 3 rd Ave., New York, N. Y.
10017 -2079, Tel. (i12) 980 1545.

�- Ci)fluclv
Uv 4984 · � Uv O/.Y Iuf/k

0/.Y9�fjJav.udtand
f!/JalcIv rkdt.?

$O/I/��caIt$Jtd at.
(649) 434=6465

© 1984 SCIENTIFIC AMERICAN, INC

designed to confuse an opponent, but if
the ball ends up at midcourt, he may
have an easy chance of returning it to
the front walL I wondered if there was
any way I could set up the around-the
walls shot to make the ball rebound·
from the left side wall parallel to the
front wall. Expecting the ball to come
to the rear of the court, my opponent
would surely be caught off. guard by
this strange rebound.

I tried the shot in many ways without
success. I wondered if the problem was
my lack of playing skill, and so I turned.
again to mathematics. My calculatrons
showed that such a rebound is possible
if the ball begins with much energy and
makes a small angle with. the right side
wall. If I had made the calculations ear- ,
lier, I could have saved myself many
futile swings of the racquet.

Many more shots can be.studied with
either a.solid ball or a' hollow racquet
ball. Perhaps there are some clever shots
that even the professional racquetball
players have,yet to discover. You may
be interested.in studying how a ball los
es energy in a glancing. collision with·
a wall. You may' also be interested in
following the flight .of a ball in three
dimensions, so that the spin axis is no
longer parallel to the walls. For this
purpose a computer simulation of rac
quetball would be helpful. Be careful if
you experiment with a solid, highly elas
tic ball in a racquetbaU court. I tried it
just once. The ball moved and rebound
ed so fast that all r could do was get out
of the way.

Left
side
wall

Front woll--./

Bock wall

'.
Initially
5pinlc55

The Z shot as it would be seell from overhead

SAVE BIG ON COMPUTER PRODUCTS
MODEMS

HAY.ES

I!l�c��§��,�· 300<. 200
........ 489

. . 425 .
. . 240

.. 90

IV300�L1i!" grean . . �.
amber
amber (for IBM] .

Color, ',i+ ���'�OAI:�j�:: .

Color IV 131·���:o.rc�o��� . �.

. . CALL

�: :::� I�UI:o
U
A�O

B ����t��_: . . : .1�
CB 5892 for TI-99/4Nor Commodore . .. 15

OUADRAM.
MICROFAZER.

DRMP-'S Par/Par 135
QRMSP-8 a.riP.,,'-. . .. 145 < GRMMSS-8 SerlSa" . 145
QAMPS·8 ... Pa,..JSar.145 . QUAOBOARO (10' IBM PC)

:: ���� £&4K
!
·:���·

i���:1led·l : : " : : =�g
OR 4084 84K memo in.talled 270
QR 8201 Qua color-' 200
QR a20a Qu.dc�ITA�t

l
��.d. kit] ... 200

QR 3000 fo' IBM . .475 g: �g�g �:� �:��b\ •......... : :��
AST

SAVE 31%-43%.
OFF MFR. BUGG. RETAIL PRICES ON-

PRIN'TERS'
EPSO�'O.KIDATA 0 DIABLO

SCM 0 DELTA o GEMINI oTTX

RADIX 0 COMPUTE-MATE
MANNESMANN .TALLY

CALL .FOR PRICES

/ . � , �' £# � ... ; - � .�
DISKETTES

10 -S����'OPI� ID�.�.tt�: I DD
W.b •• h 113.00 '16.00 '17.50
M ... U NA 20.00 26.00
Dy •• n NA 23.00 30.00

10 - 8" floppy di.k.tt ••
Dya.n NA 32.00 37.00

CALL FOR QUANTITY PRICING ON
10 OR MORE BOXES OF DISKETTES

HUGE DISCDUNTS all
RIBBDNS' DUST CDVERS
PAPER. POST CARDS· LABELS
for almost every mike and model

HEWl.ETT-PACKARD
CALCULATORS •

HP'11C· . .56 HP',15C 90
HP·12C � 90 HP-16C90

HP-41C . . 145 .. Hp·4.1CX, . . .•. 24S,
HP-41CV .. .168 HP-97 ... 560

an .oftware & ecce •• orie. too

PORTABLLCOMPUT£RS
HP-71B 399 HP-750�. .799 •• rie. 70 .oftwar. & peripheral.

di.count.d too
HP-2225B ThinkJet Printer (HPIL] . 375

-SHARP CALCULATORS
EL 5100.
EL 5500 T.
EL 512 T ..

-SHARP

. .43
.70
.28

_ HAND HELD COMPUTERS
pc 1250A.. . .. so
pc 1260. . CALL
pc 1261. CALL
pc 1500A� 160

PRINTERS DISCOUNTED TOO

CABLES - lNTERFACES ..
ecc ••• ori •• for Computer Print · GRAPPLER PLUS · ... 105

16K BUFFERED GRAPPLER .165
Apple Dumpling GX . .65 · Card co G . -;65
CBS609 10 ft. Par. Cabl. for IBM. � 25
CB5B22 '10 ft._38x36 Parall.l . . .32
CB5629 10 1t.·25.25 RS-232 _ 25

·'CBSB18. 6 � TI-H/44 ge':elfel cebl.25 · �����:R
ltcKa'i:E1RS8 mod, I"III-b���

�U�K""�K .One 6557 N Loneoln Aue, Ch,e&gO. IL 60645
.. fiiit.1 • I � 4 • (312] 631 7800 (312] 677 7660

I'-Sp�ake�;man----�\
� likq a l)ip(omatf@ :

What sort of people need to learn a This FSI Programmed Course comes in 1 1 foreign language as qll'ic�ly and effectively two volumes, each shipped in a handsome>
as possible? Foreign service personnel, litJrary binder, Order ei.theI, or save 1096 1 •' that's-who, by ordering both: .

Now you can learn to speak German 0 Volume I.- Programmed Introduction

I· with the sBme mBterials usedby the·U.S.. to German, 10'cassettes (13 hr.): and 1
State. Department -the Forei{jn Service 647 -po text, $125,'
Institute's Programmed Introduction to 0 Volume· II. Basic Course Continued, 8- I' 1 German. cassettes, (.8 hr.), and 179-p. telft, $·11 0, The FSI spent thousands of dollars and 1 1 many years developing these materials for (Conn. and N.Y. residents add.sales tax.)

. use by members of the United States TO ORDER BY PHONE, PLEASE CALL • diplomatic corps. Teday people in all walks TOLL-FREE NUMBER: 1-800-243-12.34. •
of life who need to learn to speak a foreign To order by mail, clip this ad and send With 1 1 language are turning to this outstanding· your name and address·, and a check or audio program. money order.-or charge to your credit The FSl's German Course is by far the ·card (VISA,· MasterCard, AmEx, Diners) by I 1 m06t effective way to learn German at your enclosing' card number, expiration date, own convenience and pace, It eonsists of a and your signature. . 1 1 series of cassettes, recorded by natiYe ' The Foreign Service Institute's German German speakers, and accompanying text- Course is unconditionally guaranteed. :fry • 1 book. You simply follow the spoken and it for three weeks. If you're not convinced . written instructionsl lis·tenrng and learning. it's the fastest,. easiest. most painless way 1 By the· end of the course you'lI find yourself to learn German, return' it and we'll refund. 1 learning'and speaking entirely.in German! every penny you paid. Order today! This course turns your cassenelllayer 1 1 into a ::teaching machine." With its unique 116 courses in 39 other languages also
"programmed'''learning method, you set available. Write ·us for free 1 your own pace-testing yourself, correcting cat

A
al

u
o

d
g

l
-"

O
_O

F
u

O
r
ru

1
m
2th year. f""'::;;;=�1- I· errors, reinforcing accurate responses,

Room 603 1 1 aUDIC.,:aAIJm® g�i���d���n06437 .
\ (203) 453-9794 I ____ Or Visil our New York sales oHlce. 145 E. 49th St., New York,·NY 1001712121 753·1783. �_

-- - - - - -- - - - �.- _.- ----
227

© 1984 SCIENTIFIC AMERICAN, INC

THE DOMINO CHAIN
REACTION SETS

Described in last issue's
"The'Amateur Scientist"

by Jearl Walker

Developed by
Professor Lorne A. Whitehead

Department of Physics
University of British Columbia

This se.t is a startling and memorable
demonstration of the chain reaction con
cept. It serves. as an analogy for such

I diverse phenomena 'as nuclear explo
, sions, electronic· amplification, popula

tion growth, and even the political
"domino theory." No classroom should
be without one! The largest domino in
the full set releases about 50 joules of
energy when it topples-an amplifica-

, tion factor of 2 billion.

Complete 13 piece set
Economy 10 piece set

$165.00'
$ 39.00'

* Plus Postage

Please send all orders to:

228

Ginsberg Scientific Company
Route 1, Box 104 AB

Macks Creek, MO 65786
(314) 363-5260

On the leading edge

of computer

communication potentials

• Professional Partner in
your Project Since 1972

• Research

• Training

• Project Coordination

• Courseware
Development

• Consultation

People's Computer
A Non Profit Corp.

2682 B.ishop Drive Suite 107
San Ramorl, CA 94583
415 833-8604

BIBLIOGRAPHY
Readers interested in further explana

tioll 0/ the subjects covered by the articles
in this issue may find the /ollowing lists 0/
publications help/ul.

COMPUTER RECREATIONS

PRINCIPLES OF NEURODYNAMICS: PER

. CEPTRONS AND THE THEORY OF BRAIN

MECHANISMS. Spartan Books, 1962
PERCEPTRONS: AN INTRODUCTION TO

COMPUTATIONAL GEOMETRY. Marvin
Minsky and Seymour Papert. The
MIT Press, 1969.

COMPUTER SOFTWARE

PSYCHOLOGY OF INVENTION IN THE

MATHEMATICAL FIELD. Jacques S.
Hadamard. Dover Publications, Inc.,
1945.

UNDERSTANDING MEDIA: THE EXTEN

SIONS OF MAN. Marshall McLuhan.
McGraw-Hili Book Company, 1964.

THE MYTHICAL MAN-MoNTH: ESSAYS ON

SOFTWARE ENGINEERING. Frederick
P. Brooks, Jr. Addison-Wesley Pub
lishing Company, Inc., 1974.

MATHEMATICS: THE Loss OF CERTAIN

TY. Morris Kline. Oxford University
Press, 1980.

THE FRACTAL GEOMETRY OF NATURE.

Benoit B. Mandelbrot. W. H. Free
man and Company, 1982.

THE ELEMENTS OF FRIENDLY SOFTWARE

DESIGN. Paul Heckel. Warner Books,
1984.

DAT A STRUCTURES

AND ALGORITHMS

AN AXIOMATIC BASIS FOR COMPUTER

PROGRAMMING. C. A. R. Hoare in
Communications 0/ the ACM, Vol.
12, No. 10, pages 576-583; October,
1969.

THE HUMBLE PROGRAMMER. Edsger W.
Dijkstra in Communications 0/ the
ACM, Vol. 15, No. 10, pages 859-866;
October, 1972 .

ALGORITHMS + DATA STRUCTURES =

PROGRAMS. Niklaus Wirth. Prentice
Hall Book Company, 1976.

PROGRAMMING LANGUAGES

FORTH: AN INTRODUCTION TO THE

FORTH LANGUAGE AND OPERATING

SYSTEM FOR BEGINNERS AND PROFES

SIONALS. Prentice�Hall, Inc., 1981.
HISTORY OF PROGRAMMING LANGUAGES.

Edited by Richard L. Wexelblat. Aca
demic Press, 1981.

THE IMPACT OF ABSTRACTION CONCERNS

ON MODERN PROGRAMMING LAN

GUAGES. Mary Shaw in Studies in Ada
Style, by Peter Shaw, Andy Hisgen,
Jonathan Rosenberg, Mary Shaw and

Mark Sherman. Springer-Verlag,
1981.

PROGRAMMING LANGUAGES: DESIGN &
IMPLEMENTATlON. Terrence W. Pratt.
Prentice-Hall, Inc., 1984.

OPERATING SYSTEMS

CONCURRENT EUCLID, THE UNIX SYS

TEM AND TUNIS. R. C. Holt. Addison
Wesley Publishing Company, Inc.,
1983.

OPERATING SYSTEM DESIGN: THE XINU

ApPROACH. Douglas Comer. Prentice
Hall, Inc., 1984.

THE UNIX PROGRAMMING ENVIRON

MENT. Brian W. Kernighan and Rob
Pike. Prentice-Hall, Inc., 1984.

COMPUTER SOFTWARE

FOR WORKING

WITH LANGUAGE

UNDERSTANDING NATURAL LANGUAGE.

Terry Winograd. Academic Press,
1972.

METAPHORS WE LIVE By. George Lakoff
and Mark Johnson. University of
Chicago Press, 1981.

NATURAL LANGUAGE PROCESSING. Har
ry Tennant. Petrocelli Books, Inc.,
1981.

THE MENTAL REPRESENTATION OF

GRAMMATICAL RELATIONS. Edited by
Joan Bresnan. The MIT Press, 1982.

LANGUAGE AS A COGNITIVE PROCESS.

Terry Winograd. Addison-Wesley
Publishing Company, Inc., 1983.

TEX BOOK. Donald E. Knuth. Addison
Wesley Publishing Company, Inc.,
1983.

COMPUTER SOFTWARE

FOR GRAPHICS

THE COMPUTER IMAGE: ApPLICATIONS

OF COMPUTER GRAPHICS. D. P. Green
berg and A. Marcus. Addison-Wesley
Publishing Company, Inc., 1982.

FUNDAMENTALS OF INTERACTIVE COM

PUTER GRAPHICS. James D. Foley and
Andries van Dam. Addison-Wesley
Publishing Company, Inc., 1982.

COMPUTER IMAGES: STATE OF THE ART.

Joseph Deken. Stewart, Tabori &
Chang Publishers, Inc., 1983.

PROCEEDINGS OF THE SIGGRAPH '84

CONFERENCE, JULY 23-27, 1984, MIN

NEAPOLIS, MINNESOTA. Edited by
Hank Christiansen in Computer
Graphics, Vol. 18, No.3; July, 1984.

COMPUTER SOFTWARE

FOR INFORMATION

MANAGEMENT

As WE MAY 'T-HINK. Vannevar Bush in
The Atlantic MOllthly, Vol. 176, No. J,

© 1984 SCIENTIFIC AMERICAN, INC

COMPUafSR END-USERS
ARE All. OVER 'THE UNITED STATFS.

SO ARE COMPUTER'5HOWCASEEXP05.

Hundreds of thousands of business owners,
corporate managers, educators, and
professionals have attended COMPUlER
SHOWCASE EXPO in cities across the United
States, They're in the market to buy personal
computers" small business systems,

packaged software, and related. products and
services for use in their offices and homes.
Join the exhibitors who have already used
COMPUlER SHOWCASE EXPO to reach this

explosive U.S. market.

COMPUTER
SHOWCASE

EXPO

COMPUTER'SHOWCASE EXPO'

WE'll TAKE YOU TO YOUR MARRET.

Atlanta, GA
Chicago, IL

Cleveland, OH

�THE
�INTERFACE

GROUP, Inc,

Detroit, MI

Los Angeles, CA

Miami (5. Florida), FL

New York, NY

Philadelphia, PA,

Tampa, FL

Conference & Exposition Producers
300 First Avenue. Needham. Massachusetts. (617) 449-6600. TELEX - 951176. TWX - 710-325-1888

Regional Office: 4700 North State Road '7. Suite 121. Fort Lauderdale. Florida 33319. (305) 484-6800

229
© 1984 SCIENTIFIC AMERICAN, INC

tybwJ!

The

one

Step
thesaurus.

Open it once-there's
the word you're after!
No time-wasting cross
references. Sample sen
tences for each entry!
Available with The Random
House College Dictionary
in a boxed gift set.

.

� Now at your bookstore.

RANDOM HOUSE

Explore NEW curves, relations, transformations &
problems in the Euclidean plane through

STRUCTURAL EQUATION GEOMETRY
by J. Lee Kavanau, UCLA

The author has discovered innumerable new worlds with
in that innocuous-looking Euclidean plane contains a
wealth of geometrical reflection & insight:' Prof.Alex.Grothendieck

Nov.,1983, 512 pages, 61 pp.offigs. $19.95+$3p/h

A UNIQUE SOURCEBOOK no geometry instructor can afford to be without

.. Introduces Prof. Kavanau's companion tr eatis es
on the analysis of general algebraic cur v es that..

"open up fields of seeming- "represent tremendous am-
ly inexhaustible wealth" ounts of new information'

Prof. Alexander Grothendieck Prof. Morris Newman

SYMMETRY, An Analytical Treatment CURVES & SYMMETRY, vol.1
August,1980, 656pp., illus.,$29.95+$4p/h Jan.,1982,448pp., illus., $ 21.95 +

$3.50p/h, all 3 books,$62+$7p/h "One of the most original treatments of plane
curves to appear in modern times. The author's
new and deeper studies ... reveal a great number
of beautiful & heretofore hidden properties of al
gebraic plane curves." Prof. Basil Gordon

"Provides sharp new tools for studying the prop
ert ies of general algebraic curves."

Prof. Richard Fowler

"Striking new results on symmetry & classifi
cation of curves ... Read this book for more in sym
metry than meets the eye." Amer. Math. Mont h1Y.1981

Send SASE for $3,OOOGeometry Competition details.

1983 Co-Awardees: Prof s. J.F. Rigby, Cardiff;
J.B.Wi Iker, Toronto; W. Wunder I ich, Vienna

"Casts much new light on inversion &
its generalization, the linear fraction
al (Moebius) t ra n s f o r m ation,with
promise of increasing their utility by
an order of magnitude!' Prot. Richard Fowler

"Replete with fascinating, provocative
new findings ... accompanied by a wealth
of beautiful & instructive illustrations:'

Prof. Basil Gordon

"Ex tends the idea of inversion into quite
a new field." E. H. Lockwood

VISA, M/C, 213-477-8541, OUTSIDE U.S.,

PREPAID DNLY, +ADDIT'L $1!BOOK p/h

Science Software Systems, Inc., 11899 W. Pico Blvd., Los Angeles, Calif., 90064

230

pages 101-108; July, 1945.
THE ART OF COMPUTER PROGRAMMING,

VOL. 3: SORTING AND· SEARCHING.

Donald E. Knuth. Addison-Wesley
Publishing Company, Inc., 1973.

TOWARD PAPERLESS INFORMATION SyS

TEMS. F. W. Lancaster. Academic
Press, 1978.

COMPUTER SOFTWARE

FOR PROCESS CONTROL

MODERN CONTROL ENGINEERING. Kat
suhiko Ogata. Prentice-Hall Book
Company, 1970.

DIGITAL CONTROL OF INDUSTRIAL PROC

ESSES. Cecil L. Smith in Computing
Surveys, Vol. 2, No.3, pages 211-241;
September, 1970.

MINI- AND MICROCOMPUTER CONTROL

IN INDUSTRIAL PROCESSES: HANDBOOK

OF SYSTEMS AND ApPLICATION STRAT

EGIES. Edited by M. Robert Skro
kov. Van Nostrand Reinhold Compa
ny, 1980.

SOFTW ARE FOR INDUSTRIAL PROCESS

CONTROL. Computer, Vol.' 17, No. 2;
February, 1984.

COMPUTER SOFTWARE

IN SCIENCE

AND MATHEMATICS

ORDER IN CHAOS. Edited by David
Campbell and Harvey Rose. North
Holland Physics Publishing, 1983.

SMP REFERENCE MANUAL. Stephen
Wolfram. Inference Corporation, Los
Angeles, 1983.

DOING PHYSICS WITH COMPUTERS. Phys
ics Today, Vol. 36, No.5; May, 1983 ..

CELLULAR AUTOMATA: PROCEEDINGS OF

AN INTERDISCIPLINARY WORKSHOP,

Los ALAMOS, NEW MEXICO. Edited
by Doyne Farmer, Tommaso Toffoli
and Stephen Wolfram. North-Hol
land Physics Publishing, 1984.

COMPUTER SOFTWARE

FOR INTELLIGENT SYSTEMS

ARTIFICIAL INTELLIGENCE. Patrick Hen
ry Winston. The MIT Press, 1982.

KNOWLEDGE-BASED SYSTEMS IN AR

TIFICIAL INTELLIGENCE. Randall Da
vis and Douglas Lenat. McGraw-Hill
Book Company, 1982.

ARTIFICIAL INTELLIGENCE. David L.
Waltz in Scientific American, Vol. 247,
No.4, pages 118-133; October, 1982.

ARTIFICIAL INTELLIGENCE. Elaine Rich.
McGraw-Hill Book Company, 1983.

THE AMATEUR SCIENTIST

KINEMATICS OF AN UL TRAELASTIC

ROUGH BALL. Richard L. Garwin in
American Journal 0/ Physics, Vol. 37,
pages 88-92; 1969.

THE DYNAMICS OF SPORTS. David F.
Griffing. Mohican Publishing Com
pany, Loudonville, Ohio; 1982.

© 1984 SCIENTIFIC AMERICAN, INC

ACCOUNTING PARTNER II'"
THE NEW KING OF SMAIl.
BUSINESS SOFlWARE.

What makes Accounting
Partner n the best way
for a small business to
leap into computerizing?

Star Software Systems has proba
bly studied the micro-computer soft
ware needs of the small business to
a more in-depth degree than anyone
else around. Maybe that's why
nearly 50,000 small businesses
turned to Star last year alone.

Now Star introduces Accounting
Partner II for the small businessman
who needs to keep on top of his
business. Who needs a profit and
loss statement every month. Who
needs to know if his customers are
paying their bills. Who needs to

know when to pay his own bills.
Who has to know what the cash
flow looks like. Who wants to
automate his payroll system.

Who hungers for better

inventory control.
The Accounting Part

ner II does it all ... in one
package. Even if you are all
thumbs around computers,
you'll still be up and running
in a single day. It's that easy.

If that isn't enough, Account
ing Partner II costs only $995.

Complete. Less than half of what a
comparable package goes for. And

it's compatible with almost any
micro-computer on the market.

The Accounting Partner II ...
it's some kind of animal. Check it

out today.
For the dealer nearest you, call

(213) 538-2511.

��CCOUNTING
P-ARlNERII

STAR SOFTWARE SYSTEMS� 20600 Gramercy Place. Torrance. California 90501 • 12131538-2511

© 1984 SCIENTIFIC AMERICAN, INC

Designed to do everything
a modern car should.

It just looks better doing it.

Technology never
looked so good.

Tempo, the car that com
bines form and function.

Tempo's aerodynamic
shape manages the flow of
air over and around it to
reduce overall lif t and
improve stability and direc
tional control.

Tempo technology
includes features like front
wheel drive for all-weather
traction, four-wheel inde
pendent suspension for a
smooth ride, and a High
Swirl Combustion engine
for quick power response.

You can now get
a new tachometer
in your Tempo as
part of the optional
Sports Appearance
Group. T his option
includes new low
back bucket sport
seats, a sports instru
ment cluster, 3-oval
spoq steering wheel,
contoured rear seat
and package tray.

T his Sports
Appearance Group
offers a sporty new
flair for those who
like their Tempo a bit
more upbeat.

New diesel option.

Ford Tempo now has a
new optional diesel engine.

It is a true diesel engine,
not merely a modified
gas engine. T his new diesel
has additional sound insula
tion. Cold weather starting
problems usually associated
with most diesels are
eliminated. And, of course,
it has strong diesel
mileage:

1411�. 56�y

Front-wheel drive.

Tempo's front-wheel drive
configuration is practical for
all driving conditions. It
gives you good traction in
rain, snow and mud.

Tempo's front-wheel drive
is powered by its own effi
cient High Swirl Combustion
engine. And the whole oper-

ation is coordinated by the
most advanced automotive
computer in the world.

T he EEC-IY. It monitors
and controls engine opera
tion precisely and instantly
for optimum power output
and fuel efficiency

T he inside story.

Tempo's
five-passenger computer
refined interior has more
room than a Mercedes 300D.

It provides an excellent
combination of head,
shoulder, hip and leg room.

Reduced
insurance rates.

T he Allstate Insurance
Company offers reduced

Ford Tempo

rates on collision and com
prehensive coverages to
Tempo owners, because
of Tempo's construction with
features like 5 mph impact
bumpers.

Reduced rates are realistic
testimony to Tempo's struc
tural integrity

Best-built
American cars ..

W hen we say "Quality is
Job I;' we are talking about
more than a commitment.
We are talking about results.

A recent survey concluded
Ford makes the best-built
American cars.

T he survey measured
owner-reported problems
during the first three months
of ownership of1983 cars
designed and built in the
U.S., and the commitment
continues in 1984.

Lifetime Senice
Guarantee.

As part of Ford
Motor Company's com
mitment to your total
satisfaction, participat
ing Ford Dealers stand
behind their work in
writing with a free
Lifetime Service Guar
antee. No other vehicle
company's dealers, for
eign or domestic, offer
this kind of security
Nobody

See your participat
ing Ford Dealer for
details.
"'For comparison. Your mi leage

may differ depending on speed.
distance and weather. Actual
highway ratings will probablv
be lower. Not available with NC

Have you driven a Ford ...
lately?

© 1984 SCIENTIFIC AMERICAN, INC

© 1984 SCIENTIFIC AMERICAN, INC

.� - � -- p--.,.,..,�---

Af:�T �'�{;1 r � .�.,, ' <: "
k

""'"� �?'l
Lrmw..J.'ii;'"

P(lt�"',d.o c...tttaFtKor\klf Ml5l �

© 1984 SCIENTIFIC AMERICAN, INC

