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'easke 
an encore. 

Ronald J. Cook, 
Senior Vice President, 

E.F. Hutton & Company Inc. 
He helped pioneer the investment . 

industry's first direct client com
munication service. 
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"We've been using 
172-3™ from Lotus™ 
almost from the day it . 
was introduced. 

. 

"It's the one . 
. software program 
we've tried that meets 
the analytical needs . 
of almost every department. 
From Equity Research to Cor- ' 
porate Finance. Right now, 
we're using 1-2-3 for planning, 
forecasting, and decision 
support. 

"W ith the success we're 
having with 1-2-3, we were 
naturally excited about new 
Symphony:M Symphony's word 
processing simplifies our prep
aration of in-house reports 
and with Symphony's com
munication capability we can 
easily access a wide range of 
information sources. 

"We also recommend Symphony to 
our clients because it's the ideal complement to 

1-2-3, Lotus and Symphony are trademarks of Lotus Development Corporation. 
© 1984., Lotus Development Corporation. 
Huttonline is a trademark of E.F. Hutton & Company Inc. 

gave us 

phony." 

Huttonline'M-our online 
service that gives clients 

direct access to their 
portfolios, stock quotes 

and critical investment 
research. All this right on 
their own PC's. 

"W ith Symphony, our 
clients can now get this infor
mation in really useable terms, 
and in exactly the format they 
want: spreadsheet, graphics, 
database, or words. And like 
1-2-3, Symphony comes with 
everything in one package. 

"In a business where 
timely information is every
thing, Symphony clearly meets 
our needs." 

To find out which Lotus 
product is best for you, visit 
your authorized Lotus dealer. 

:iJLotU5 
One great idea ·after another.'" 
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THE COVER 

The illustration on the cover symbolizes the theme of this issue of SCIENTIFIC 
AMERICAN: computer software. The illustration is itself software: it i·s a program' 
In a pictorIal language called Mandala, under development by Jaron Z. Lanier 
and his colleagues at VPL.Research in Palo Alto, Calif. Instructions are given to 
the computer by arranging icons, or small, graphic symbols, on a display screen 
and setting them in motion. At the top a kangaroo·nops from a triple-clef icon, 
which activates a program for playing three-part canons,- to an icon that 'allows 
musical data to be viewed in traditional music notation and then to an ice cube,' 
where the sequence of hops is "frozen" so that it can be referred-to 'by a single_ 
symbol. An Icon can represent a 'hierarchy of programming structures. The 
triple clef "expands" into the loop shown below it; the loop is executed once, 
launching (at intervals of four measures) the three birds that perform-the can
on. The sequence of instructions embodied in each bird is shown to the right of 
the loop. If a bird. flying along> the score is 'at a note; it soundS' the note; other- " 
wise, if it is 'at the end of the score, it returns to the beginning. The canon 
Itself was composed by Lanier with the aid of the illustrated Mandala program. 
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A year's worth of reports, plans, 
schedules, charts, graphs, 
files, facts and figures and it 
could all be lost in the blink of an eye. 

The most important part of your 
computer may be the part you've considered 
least- the floppy disk. After all, there doesn't 
seem to be much difference between one disk 
and another. But now Fuj i introduces a floppy 
disk that's worth a second look. 

We designed our disk with the under, 
standing that one microscopic imperfection can 
erase pages of crucial data. That's why every Fuji 
Film Floppy Disk is rigidly inspected after each 
production process. And that's why each one is 

backed with a lifetime warranty. 
We've even considered how carefully 

a disk has to be handled, so we designed user, 
friendly packaging that makes it easier to get 

the disk out of the box. And we provided 
plenty of labeling space, so you won't have 

any trouble telling which disk is which. 
So think twice before buying a floppy 

-. .. '.. 
disk. And then buy the one you won't 

have any second thoughts about. 
Fuji Film Floppy Disks. 

-

FUJI. 
Nobody gives you __ _ 

better performance. 

101984 Fuji Photo Film U.S.A .. Inc., Magnetic Products Div., 350 Fifth Avenue, NY, Ny 10118 
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Artificial Intelligence at Sikorsky Aircraft 

Exelo�the 
evolution of 
vertical t-at 

the speed of light. 

The dragonfly perfected the 
fine art of vertical flight about 250 
million years ago. Nature's organic 
design system gave us a perfect 
example of form following function. 

Today, United Technologies 
Sikorsky Aircraft is building an 
"organic" design system for 
advanced vertical flight aircraft. 
And it's an information challenge 
that staggers the imagination. 

Says Joe Piteo, Sikorsky Chief 
of CAD/CAM: "Our goal is to 
gather in one central system 
everything our engineers know. We 
want to extract and store the very 
process of their decision-making. 
Once we've added this 'creative 
logic component,' our system will 
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make a quantum leap 
from being merely a repository 
for data, to being an information 
base that is truly 'intelligent.' " 

Using CAD/CAM software and 
two high-speed IBM 3081 computer 
systems, the Sikorsky team has 
tackled the design and manufacture 

With the help of an "intelligent" system, 
fluid line systems like these can be designed 
in minutes instead of weeks. 

of fluid lines. 
More than 2,000 tube 
drawings and their related 
design and manufacturing logic 
have been fed into the data system. 

"Down the line," Michael 
Adami, project coordinator, says, 
"as more and more parameters are 
included in the software, the system 
will be able to 'see' more and more 
of the overall design. Ultimately, 
for example, the aircraft's tubing 
could be considered as a structural 

element and, as such, 
used in achievingJhe 

ideal blend of function, 
weight and strength." 

"Our goal;' says Piteo, "is to 
weld together these islands of 

knowledge and the automation of 
industrial design into a powerfully 
productive 'organism' which under
stands the relationship of its parts 
and works toward a common end." 

For more information on 
IBM's programs for engineers and 
scientists write IBM Engineering 
and Scientific Marketing, 1133 
Westchester Ave., ==-=.::® 

White Plains, =::...: =-_-= 
NY 10604. ..:.. ..:.: .: ';' :. 
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Searching for a shipwreck under the Arctic ice is not for 
ordinary divers. Or ordinary watches. 
Temperatures reach 50° below zero. The wind chill 
factor: -100°F. Ice floes are a constant hazard. 

For Dr. Joe MacInnis, the conditions were perfect. 
In this hostile world lay a unique treasure: the 

HMS Breadalbane, a three-masted British barque 
lost in 1853 during the search for the Northwest 
Passage. MacInnis was determined to find her. 

Using delicate sonar, he was able to pinpoint the 
location of the vessel 340 feet below the surface, near 
Beechey Island. Divers discovered one of the most 
perfectly preserved shipwrecks found in any ocean. 

© 1984 Rolex Watch, U.S.A., Inc. 

� 
ROLEX 

In the Arctic, ordinary divers find it difficult to 
function. So do ordinary watches. For the past 15 
years, Dr. MacInnis, the first to dive and film under 
the North Pole, has chosen one watch: the Rolex 
Submariner. 

"I've worn it everywhere. From the North Pole 
... to the Red Sea." 

As for the future, there are still more explorer 
ships resting on the Arctic floor. 

A fitting challenge for Dr. Joe MacInnis and 
his Rolex. 

Pictured: The Role� Submariner Date Chronometer. Pressure-proof to 1,000 feet. 
Write for brochure, Rolex Watch, US.A., Inc., Dept.542, Rolex Building, 665 Fifth Avenue, New York, New York 10022-5383. 

World headquarters in Geneva. Other offices in Canada and major countries around the world. 

© 1984 SCIENTIFIC AMERICAN, INC



LETTERS 

Sirs: 
I cannot resist tweaking the toes of 

Alan H. Guth and Paul J. Steinhardt for 
propagating, in their otherwise excellent 
article ["The Inflationary Universe," 
SOENTIFIC AMERICAN, May], an old 
myth, namely that the universe, accord
ing to Einstein's theory of gravity, must 
be infinite if its energy density is less 
than the critical density for recollapse. 

When the energy density is too low for 
recollapse to occur, the average curva
ture of three-dimensional space must be 
either negative or zero (flat). It has long 
been known to mathematicians that 
a world of negative or zero curvature 
need not have infinite volume. The men
tal block that appears to afflict many 
cosmologists is their inability to visual
ize anything but 3-spheres (positively 
curved spaces) and infinite hyperboloids 
(negatively curved spaces). Even if the 
energy density is supercritical, the uni
verse need not be a 3-sphere topologi
cally. It could be what mathematicians 
call a quotient space, the divisor being 
any discrete subgroup of the symmetry 
group of the 3-sphere. Hyperboloids 
too can be factored into finite quo
tient spaces. 

Although the possibility that an ever 
expanding universe might be finite can
not do much to help the horizon prob
lem that besets the original big-bang 
model, it is by no means inconsistent 
with either the isotropy of the three
degree background radiation or the in
flationary model. 

BRYCE S. DEWITT 

University of Texas at Austin 

Sirs: 
We agree with Professor DeWitt that 

a universe with an energy density less 
than the critical density need not be infi
nite, as quotient spaces exemplify. In
stead these more exotic spaces are char
acterized by a periodicity. An observer 
who can see to distances greater than or 
equal to the periodicity length would see 
images of himself. 

In the context of standard cosmolo
gy these possibilities are frequently ne
glected because they violate the assump
tion of uniformity, which states that 
the universe should appear the same in 
all directions to observers at all points 
in space. A quotient space is locally 
uniform in that the universe appears 
the same to all "nearsighted" observers: 
those who cannot see their own images 
a periodicity length away. It is globally 
nonuniform in that "farsighted" observ
ers would see different patterns. 

Thus if the energy density is less than 

the critical density and one assumes the 
'universe is globally uniform, it must be 
infinite. On the other hand, one might 
assume only local uniformity, in which 
case quotient spaces of finite volume 
would be allowed. Because the inflation
ary model can explain the creation of 
huge regions of homogeneity even in an 
inhomogeneous universe,. however; it 
seems to us that one might just as well 
gi¥e up the assumption of local homoge-' 
neity as well. One can simply assume 
that the universe might do almost any
thing at distances far beyond those we . 
observe. In that case it would be possible 
for the universe to have a finite volume 
even without the fancy topology of a 
quotient space. 

ALANH.GUTH 

Massachusetts Institute of Technology 
Cambridge 

PAULJ. STEINHARDT 

University of Pennsylvania 
Philadelphia 

Sirs: 
We appreciate the general accuracy 

of your summary of our paper on the 
low-fertility zone in sub-Saharan Afri
ca ["Science and the Citizen," SCIENTIF

IC AMERICAN, April]. An essential point 
was missed, however. 

The low-fertility zone developed af
ter the establishment of the Congo Free 
State and the French Congo, two areas 
of unusually ruthless colonization: Even 
those societies that were fairly permis
sive about premarital sexual relations 
did not allow 10-year-old girls to have 
intercourse until. the social order fell 
apart as a result of massive terror and 
the breaking up of families. Such early 
sexual relations are probably the only 
explanation for sterility on such a scale 
by 15 or 16 years of age. 

Since we first discussed these findings 
a dozen years ago, David Voas, for a 
Ph.D. dissertation at the University of 
Cambridge, has checked out the the
sis in great detail and has shown the. 
extremely close geographical ideritifi-. 
cation between the areas of low fertil
ity and those of maximum social dis
ruption. Where an area has maintained 
high fertility in spite of being included' 
in a colonial concession, it turns out the· 
company involved failed to exploit that 
part of the concession. 

JOHN C. CALDWELL 

PAT CALDWELL 

Department of Demography 
Research School of Social Sciences 
Australian National University 
Canberra 
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Software that 

Summary: 
GTE computer scientists are pro
ducing software to help develop' 
a variety of things, from tele- . 
phone networks to integrated. 
circuits - software that writes 
other software; software that 
designs microcircuits; 
even software that has-its own 
intelligence. 

Modern telephone systems are 
essentially special-purpose com
puters. Their software represents 
more than half of their cost, and this 
figure is rising. 

GTE research is aiming to 
improve both productivity in soft
ware design and its quality. Two dif
ferent compiling systems are helping 
us (compilers aren't new, of course, 
but these are special). 

New-generation software 
compiler. 

Our General-Purpose Compiling 
System (GPCS) does not work with 

only one language and computer as 
ordinary compilers do. GPCS was 
designed to be independent of host 
and target machine, and support 
Pascal, Ada and CHILL. It was also 
designed to permit'automatic lan
guage translation between these sup
ported languages. 

Our researchers have completed 
work on GPCS, and it is now in our 
software development facilities. 
There, it will write software for new 
switching systems at increased pro
ductivity levels. 

Designing hardware with 
software. 

The demand for more and more 
function has inevitably led to higher 
costs for designing very large-scale 
integrated circuits. Designing a 32-
bit microprocessor with today's tools, 
for instance, can take over 100 man-

\. . 

I . 

years. Our silicon compiler project 
promises to reduce this time by 90 to 
95 percent. 

Using this design-automation tool, 
designers will describe what the cir
cuit should do functionally, rather 
than graphically. The tool will trans
late (compile) requests into appropri
ate geometry without the laborious 
circuit layout and routing formerly 
required. 

It is interesting to note that this 
project may result in the use of 
custom-logic circuits where micro
processors are used today. After all, 
when VLSI circuits become cheap 
and easy enough to produce, it may 
be preferable to integrate them into 
systems rather than write software 
for a microprocessor. 

• 

• 

• 

.. 

I 
1 
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creates softvvare. 

Simplifying database 
access. 

With the advent of communica
tions networks like GTE Telenet, 

'many databases have become acces
sible at relatively low cost. Each, 
however, may have its own access 
control mechanism, command lan
guage, "and output format; and users 
may want to switch from one data
base to another with a transparent 
interface. 

We have been working on a way 
for data-network subscribers to use 
natural language"which is translated 
into the various formats required by 
the different database services. It is 
called FRED-Front End for Data
bases. This technology incorporates 
natural-language processing and the 
expert systems areas of Artificial 
Intelligence. 

FRED acts like a librarian. It rec
ognizes the meaning of natural
language input and sends a request 
to the appropriate database. 

Not all our computer science proj
ects have the drama of artificial 
intelligence research, of course. 
However, our goal in all these inves
tigations is to create software to help 
improve quality and productivity for 
advanced communications products 
and services. 

The box at the right lists some of 
the pertinent papers GTE people 
have published on software and 
related sUbjects. For any of these 
you are invited to write GTE Mar
keting Services Center, Department 
TPIIIA, 70 Empire Drive, West 
Seneca, NY 14224 or call 1-800-828-
7280 (in N. Y. State 1-800-462-1075). 

Pertinent Papers. 

The System Compiler, 1983 IEEE 
International Symposium on Circuits. 

The MacPitts Silicon Compiler: A 
View from the Telecommunications 
Industry, VLSI Design, May-June, 
1983. 
An Intelligent Communication Assist
ant for Databases, Proceedings of the 
IEEE COMPSAC 83. 
A Natural Language Interface for 
Medical Information Retrieval, 
AAMSI Congress, Computer Applica
tions in Medicine. 

Separate Compilation for Block Struc
tured Languages: A Comparative 
Study of CH I LL and Ada Compiling 
Systems, Proceedings of the IEEE 
Symposium on Application and 
Assessment of Automated Tools for 
Software Development. 

An Efficient Compilation Strategy 
for Very Large Programs, ACM 
SIGPLAN 82 Symposium on 
Compiler Construction, June, 1982. 
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50 AND 100 
YEARS�AGO. 

SCIENTIFIC 
AMERICAN 

SEPTEMBER, 1934: "A seasoned 
army of hard-rock miners is pressing' 
forward, out on the California desert, 
on the largest tunnel-driving program 
ever undertaken in the history of en
gineering. They are excavating 29 18-
foot bores, totaling 91 miles in length, 
through ,the bleak mountairk ranges' 
between the .. Colorado RIver and the 
Coastal' Plain of southern California. 
Through these tunnels eventually will 
be turned a billion gallons of water daily 
to serve.the 13 municipalities that com
prise the- Metropolitan Water District 
of Southern California. Longest of the 
aq ued uct tunnels is the East Coachella 
bore, 18 miles from end to end. The 
aqueduct depends upon Boulder Dam 
for proper regulation of the Colorado 
River and for' cheap. electric energy 
needed. to pump the aqueduct water 
over the mountain ranges. Thirty-six 
per cent of the power generated at Boul
der Dam will be used for this purpose. 
Few realize that the aqueduct overshad
ows the dam in size. Cost- of- the dam 
proper is about 100,000,000 dollars, 
whereas·the aqueduct-bond issue, voted 
in 1931, was for 220,000,000 dollars." 

"The America's Cup has become the 
symbol of supremacy under sail. It is not 
to be wondered, therefore, that in a me
chanical age the boats built to challenge 
or defend should have become mech
anized to an extent· that would have 
caused sailors of the old school of beef 
and brawn to blush with. shame. The 
chief interest centers in the new yacht, 
Rainbow. Perhaps the greatest engineer
ing feat in the construction of the new 
boat is her mast of duralumin, some '165 

feet in ·Iength. It is pear-shaped in sec
tion, being about 30 inches in diame
ter fore and aft by 18 inches the other 
way. It was made by the Glenn L. Mar
tin Company, airplane manufacturers. 
The British. challenger,- again calling 
upon the knowledge of aerodynamics 
acquired in airplane development, has 
done much experimenting with model 
sails in wind tunnels." 

"The newspapers have given the pub
lic more than adeq uate information on 
the plans and prospects of the strato-. 
sphere flight by Major W. E. Kepner and 
Captain A. W. Stevens. The balloon is 
the world's largest and has a capacity of 
3,000,000 cubic feet When leaving the 

14 

ground the balloon will be less than one
tenth filled with hydrogen, which will 
gradually expand as the balloon rises to 
the thinner air. At the top of its flight, 
nearly 15.miles above sea level, the bal
loon will have become a sphere 180 feet 
in diameter." 

"The 'synthetic rubber' tire is now an -
accomplished fact! These relatively in
significant words tell a story of tremen
dous economic significance. They indi
cate the successful solution of a long 
fight to ensure for the United States a 
source of rubber goods and in particular 
tires which would make us independent 
of foreign producers of rubber in time 
of war. Tires made entirely of Du Prene, 
the so-called synthetic rubber developed 
by the Du Pont company, have been 
built by the Dayton Rubber- Manufac
turing Company, and severe tests have 
proved these. as tough and durable as 
tires made of natural rubber." 

SEPTEMBER, 1884: "Rufus Porter, 
the original founder of the SCIENTIFIC 

AMERICAN, died recently at New Haven, 
Conn., in the 93rd year of his age. He 
was a remarkable natural genius. He 
was in school learning Noah Webster'S 
spelling book at the age of four; spent six 
months at Fryburg Academy when 12 

years old; beyond this he had no educa
tional advantages. He had become quite 
an adept in the making of all sorts of 
mechanism. He was also something of a 
musician; he played the fife and the vio
lin, and wrote poetry. In 1807 his family 
concluded it would be best for him not. 
to fiddle any longer with life, but to set
tle down to something 'Solid and useful, 
in short, become a shoemaker, like his 
elder brother. But it was soon seen that 
he was not cut out fo'r this species of 
industry. In 1810 he was apprenticed 
to a house painterj in 1813 he painted 
sleighs, beat the drum for the soldiers, 
taught others to do the same and wrote 
a book on the art of drumming. In 1814 

he was enrolled in -the militia; after this 
he· taught school at Baldwin, married 
at Portland, taught at Waterford, made 
wind grist mills at Portland, painted in 
Boston, the same onlhr:ough New York 
to Alexandria, Va'. A peculiarity which. 
he developed about this time, and which 

. continued through life, was a frequent 
change of place ·and occupation. One 
of his most profitable businesses at this 
time was por·trait painting_ He made a 
camera obscura and was enabled to pro
duce a satisfactory portrait in 15 min
utes, for which his customers readily 
paid a dollar. He adorned his camera 
box with bright colors, bought'a light 
handcart for locomotion, planted a. flag 
on his vehicle, and with this attractive 

establishment was. welcomed in every 
town and village. He invented a re
volving almanac and suddenly stopped 
painting to make and introduce it In 
1824 he adopted the profession of land
scape painter. In 1825 he invented a suc
cessful cord-making machine. From this 
time on he figures very often as .an .in
ventor, producing am0ng' other things 
a wonderful' clock, a steam carriage, 
washing machine, signal telegraph and 
fire alarm. In 1840 he was offered an 
interest in a newspaper called .the· New 
York Mechanic and at once decided -to 
become an editor. He made it ostensibly 
a scientific newspaper, the first of its 
kind in the country. The paper pros
pered, but his attention was as usual 
diverted' to' something else, and in a 
few months' time the publication was 
stopped. He next learned the art of 
electroplating, and did profitable work. 
About this time the religious mania of 
the Millerite people struck him, and he 
was among the most ardent believers 
who hourly expected the second advent 
of the Messiah. In 1845 he was again in 
New York, doing electroplating. Here 
he wrote a prospectus for a new paper, 
which he entitled the SCIENTIFIC AMERI
CAN, and began its issue weekly, with 
a cash capital of one hundred dollars. 
He did not, however, continue long in 
charge of the publication. After running 
it for six months the desire and necessi
ty for a change once again came over 
him. During the remaining half-centu
ry, nearly, 01 his life he was chiefly oc-

c cupied with his inventions and regular£ 
ly moved from place to phice, but did 
not so often recur to h·is old profession 
of portrait painting.�' 

"To give an idea·.of the rapid develop
ment of telephonic communication, it 
may be interesting to show how the Bos
ton exchange has grown to its present 
proportions. Besides the. principal ex
change there are now two branch offices 
and 17 suburban exchanges in direct. 
connection, and more than 200. cities 
and villages in New England may be 
reached by telephone from Boston. The 
new 'central office' together with the two 
branch offices gives Boston a capacity 
for 6,000 lines. Taking the increase in 
the United States, the figures are even' 
more startling. In May, 1877, there was .. 
but one. exchange with five subscrib
ers; in January, 1884, there were 906 ex
changes with 123,625'subscribers." 

"Madame Kowalevsh a native of 
Russia, is a celebrated mathematician, 
who lectured last winter at the'Universi
ty of Stockholm, and.who has just been 
appointed Professor of Mathematics at 
that university. We· belie.ve this is the 
first time, since the . .middle ages (in it
aly), that a woman has been appoint
ed to an academical chair at any univer
sity in Europe." 
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WHAT SHOULD YOU 

WORKING "PARTNERSHIP" 

�II 

"At Container Corporation 
of America, an UP computer 
network helps us respond to 
customers faster, and saves us 
$600,000 a year. 

"It used to take us two days to esti
mate the cost of a job for a customer. 
With the UP network we can come 
up with an accurate figure in 
minutes. We now have the infor
mation we need to provide better 
quality packaging." 

Container Corporation of America is 
one of the nation's leading paper
board packaging manufacturers. 
The company has a network of 47 
HP 3000 computers operating in 78 
manufacturing plants. 

At company headquarters in 
Chicago, Jeff Norkin, Vice President, 
says, "Using HP's Productivity 
Tools, our staff developed a wood 
costing and payables system in half 
the time it took to develop a similar 
system in the past. The flexibility of 
the HP 3000 network enables us to 
design and implement additional 
systems as we need them, without 
costly conversions. 

"We've seen that we can count on 
UP's technical expertise to provide 
solutions to new challenges as they 
arise. Based on our success with HP 
systems, we plan to expand our net
work with 10 additional UP 3000s." 
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EXPECT FROM A 
a 

WITH HEWLETT-PACKARD? 

;, At Fairview Hospital, 
an UP CareNet system 
facilitates critical care and 
saves $54,000 a year in 
monitoring costs. 

"Because the HP computer-based 
system delivers extremely accurate 
vital sign data, we no longer have 
to repeat procedures or revert to 
manual methods. On-line monitor
ing eliminates the need for outside 
hemodynamic monitoring services, 
so our staff accesses critical data 
immediately. " 

At Fairview Hospital in Minneap
olis, Bill Maxwell, Hospital Admin
istrator, says: "HP offered us a total 
solution to intensive care monitor
ing-a means to deliver cost-effec
tive quality care. HP CareNet gives 
us control over our monitoring strat
egy. And we can continuously 
monitor all patients from any loca
tion in the network. 
liThe flexibility of HP hardware will 
enable us to expand our network 
threefold without significantly in
creasing our hardware costs. And 
through HP's upgrade program, we 
can put tomorrow's technology on 
today's system without increasing 
our capital investment. 
"Our HP system is maintaining 
close to 100% uptime. The reliabil
ity of our HP network and HP's sup
port team has convinced us to equip 
another Fairview intensive care unit 
with an HP CareNet system." 

=--illm= • 

Results with assurance. 

r/iO- HEWLETT 
�� PACKARD 

0002407A 
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THE AUTHORS 
ALAN KAY ("Computer Software") 

is an Apple Fellow at Apple Computer, 
Inc. While pursuing a vocation as a jazz 
musician, he earned B.A degrees in 
pure mathematics and in molecular bi
ology at the University of Colorado at 
Boulder and then did doctoral work at 
the University of Utah. He joined the 
Stanford Artificial Intelligence Labora
tory and became a founding member of 
the Palo Alto Research Center (PARC) 
set up by the Xerox Corporation in 
1971. There Kay and others developed a 
prototype of the first personal comput
er. Kay was instrumental in two person
al-computer developments: "windows," 
separate areas of the computer display 
in which different tasks can be accom
plished side by side, and the "mouse," 
a desktop controller that allows rapid 
movement of a screen cursor. In 1981 
Kay joined Atari, Inc., where until this 
May he was chief scientist. 

NIKLAUS WIRTH ("Data Struc
tures and Algorithms") heads the divi
sion of computer science at the Swiss 
Federal Institute of Technology (ETH) in 
Zurich. A boyhood enthusiasm for ra
dio-controlled model airplanes led him 
to study electronics, and he earned de
grees in electrical engineering from ETH 
(1959) and Laval University in Quebec 
(1960). He went on to graduate studies 
in the U.S. at the University of Califor
nia at Berkeley, where he received his 
doctorate in 1963. There he became in
terested in computer languages; as assis
tant professor in Stanford University's 
newly formed computer-science depart
ment from 1963 to 1967 he took part in 
the development of the computer lan
guage Algol W. After returning to Switz
erland he created the structured pro
gramming language Pascal. Recently 
Wirth has explored the concept of tai
loring hardware to software. 

LAWRENCE G. TESLER ("Pro
gramming Languages") manages a soft
ware-development group in the Macin
tosh Division of Apple Computer, Inc. 
While studying at Stanford University 
for his bachelor's degree, which he got 
in 1965, he founded a small software 
company. He remained in business for 
five years, then joined the Stanford Arti
ficial Intelligence Laboratory, where he 
did research in cognitive simulation and 
document formatting. In 1973 he moved 
to the Xerox Corporation's Palo Alto 
Research Center, where his work fo
cused on software for personal comput
ers. He began his career at Apple in 
1980 as manager of applications-soft
ware development for the Lisa com
puter. Tesler writes: "Although I have 
worked in many areas of software engi-
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neering and computer science during the 
past 24 years, a recurring theme has 
been the user interface: making it eas
ier for people to get computers to do 
their bidding." 

PETER J. DENNING and ROBERT 
L. BRO WN ("Operating Systems") are 
specialists in computer systems organi
zation at the Research Institute for Ad
vanced Computer Science (RIACS), part 
of the National Aeronautics and Space 
Administration's Ames Research Cen
ter in Mountain View, Calif. Denning is 
director of RIACS and Brown is a staff 
scientist. Denning's degrees are in elec
trical engineering: a B.E.E. (1964) from 
Manhattan College and an M.S. (1965) 
and a Ph.D. (1968) from the Massachu
setts Institute of Technology. He has 
taught electrical engineering at Prince
ton University and computer science at 
Purdue University. Brown was graduat
ed from Ohio Wesleyan University in 
1975 with a bachelor's degree in mathe
matics and is working toward a Ph.D. 
in computer science at Purdue. 

TERRY WINOGRAD ("Computer 
Software for Working with Language") 
is associate professor of computer sci
ence and linguistics at Stanford Univer
sity. He is a graduate of Colorado Col-

- lege and the Massachusetts Institute of 
Technology, where he received his doc
torate in applied mathematics in 1970. 
He taught at M.LT. until 1973 and then 
joined the Stanford faculty. Since 1973 
he has served concurrently as a consul
tant at the Xerox Corporation's Palo 
Alto Research Center. Winograd pur
sues his research interests-artificial in
telligence, computational linguistics and 
cognitive modeling-at Stanford's Cen
ter for the Study of Language and Infor
mation, and in addition he is a member 
of the National Executive Committee 
of Computer Professionals for Social 
Responsibility. 

ANDRIES VAN DAM ("Computer 
Software for Graphics") is chairman of 
the department of computer science at 
Brown University. A native of Holland, 
he studied at Swarthmore College and 
the University of Pennsylvania, where 
in 1966 he obtained a Ph.D. in computer 
science-only the second to have been 
awarded in the U.S. At Brown he was 
a founder of the computer-science de
partment, and he has "been instrumental 
in initiating the campus-wide installa
tion of computer work stations. Van 
Dam is coauthor of Fundamentals 0/ In
teractive Computer Graphics. 

MICHAEL LESK ("Computer Soft
ware for Information Management") is 

Division Manager of Computer Science 
Research at Bell Communications Re
search, Inc., in Murray Hill, N.J. After 
earning a Ph.D. in chemical physics at 
Harvard University in 1969, he joined 
the technical staff of Bell Laboratories. 
His interest in data bases has led him to 
develop a program for automobile route 
finding and to experiment with a com
puterized library-cataloguing system. 
Recently Lesk has taught at Columbia 
University as an adjunct lecturer in the 
department of computer science. 

ALFRED Z. SPECTOR ("Computer 
Software for Process Control") teaches 
computer science at Carnegie-Mellon 
University. He went to Harvard Col
lege, where he got an AB. in applied 
mathematics, and Stanford University, 
where he was awarded a Ph.D. in com
puter science in 1981. While studying 
for his doctorate, he worked at IBM's 
San Jose Research Laboratory. He took 
up his current job in 1981. Over the past 
two years he has helped to design an 
integrated file system for a campus com
puterization project undertaken jointly 
by Carnegie-Mellon and IBM. Spector 
writes: "I like designing and program
ming complex computer systems be
cause of the challenge of integrating di
verse techniques into cohesive systems 
that solve practical problems." 

STEPHEN WOLFRAM ("Computer 
Software in Science and Mathematics") 
has been a member of the Institute 
for Advanced Study at Princeton since 
1982. Born in London, he was educated 
at Eton College and the University of 
Oxford and then came to the U.S. to 
study at the California Institute of Tech
nology, where he received a Ph.D. in 
theoretical physics in 1979. In 1980 he 
joined the faculty of Cal Tech, and 
he remained there until he accepted 
his present position. Wolfram has done 
work in high-energy physics, cosmology 
and statistical mechanics, and in 1981 
he was awarded a MacArthur Founda
tion Prize Fellowship. 

DOUGLAS B. LENAT ("Computer 
Software for Intelligent Systems") is a 
specialist in artificial intelligence who 
holds an assistant professorship in com
puter science at Stanford University. 
His B.A and M.S. degrees are from 
the University of Pennsylvania; in 1976 
he obtained his Ph.D. in computer sci
ence from Stanford. In his doctoral the
sis he showed that a computer can be 
programmed to propose original mathe
matical theorems. Since then he has pur
sued an inquiry into the nature of heu
ristic reasoning. He taught for a year at 
Carnegie-Mellon University before tak
ing up his present post. Lenat is associat
ed with a number of corporations, or
ganizations and journals specializing in 
artificial intelligence. 
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TAKE THE 3·VOlUME 

HANDBOOK OF ARTIFICIAL INTElliGENCE 
(A $141.95 VALUE) FOR ONLY $4.95 

when you join the Library of Computer and Information Sciences. 
You simply agree to buy 3 more books-at handsome discounts-within the next 12 months. 

'"'. .,.> ""�.,.:' " " .•... �" 

Just the massive,' 3- . " . 

H A N DB OOK O F  AR T I F I C I A L  
INTELLIGENCE promises to. beco.me 
the standard reference wo.rk in the grow
ing AI field. 

Co.nceived and pro.duced by leading 
scientists and researchers at Stanfo.rd 
University, with co.ntributio.ns from uni
versities and labo.rato.ries acro.ss .the 
natio.n, the Handbook makes available to. 
scientists, engineers, students, and hob
byists who. are enco.unteringAI fo.r the 
first time the techniques and co.ncepts in' 
this rapidly expanding co.mputer uni
verse. 

The 200 articles co.ver the emergi,ng 
issues, technical problems, and ,design. 
strategies which have been develo.ped 
during the past 25 years o.f research. The 
Handbook has been written fo.r peo.ple 
with no. background in AI; jargo.n has 
been eliminated; and, the 
hierarchical organizatio.n· o.f 
the boo.k allo.ws the reader to. 
delve deeply into. a particular 
subject or browse the articles 
which serve as o.verviews o.f 
the vario.us subfields. 

The 15 chapters (5 per vo.l
ume) include: th e histo.ry, 
go.als, and current areas o.f 
research activity; the key co.n
cept of "search"; research o.n 
"natural languages"; the 
design o.f p r o. g r a m s  t h a t  
understand spo.ken language; 
a p pl i c ations-o.riented AI 

The co.mprehensive 
HANDBOOK OF 
ARTIFICIAL 
INTELLIGENCE 
answers questio.ns like: 
• W hat is a "heuristic 

problem-so.lving 
pro.gram?" 

-. Ho.w do. co.mputers 
.understand English? 

• Can co.mputer programs 
. outperfo.rm human 
experts? 

AND INCWDES: 
• o.ver 1,450 pages. 
• Mo.re than 200 articles 

in 15 chapters. 
• With numero.us charts, 

tables, and schematics. 
.� Edited by Avro.n B arr, 

Paul Co.hen and Edward 
Feigenbaum. 

science, medicine, . . .. 

catio.n; auto.matic pro.gramming; mo.dels 
o.f co.gnitio.n; automatic deductio.n; visio.n 
and learning research; and, planning and 
problem so.lving. 

. The Library of Computer and Infor-
. mation.Sciences is the o.ldest and largest 

bo.o.k club especially designed fo.r the 
co.mputer professio.naL In the incredibly 
fast-mo.ving wo.rld o.f data. pro.cessing, 
where up-to.-date kno.wledge is essential, 
we make it easy fo.r yo.u to. keep to.tally 
info.rmed o.n all areas o.f the info.rmatio.n 
sciences. 

Begin enjo.y ing the club's benefits 
to.day! 
MEMBERSHIP BENEFITS: In addition to get· 
ting the 3-volume Handbook of Artificial Intelli
gence for only $4.95, when you join, you keep 

. saving substantially on the books you 
buy. Also, you will immediately be
come eligible to participate in our 
Bonus Book Plan, with savings of up 
to 70% off the publishers� prices. At 
3-4 week intervals (16 times per year) 
you will receive the Book Club News, 
describing the. coming Main Selec
tion, and Alternate Selections, to
gether with a dated reply card. If you 
want the Main Selection, do nothing 
and it will be sent to you automati
cally. If you prefer another selection, 
or nO'book at all, simply indicate your 
choice on the card, and return it by the 
date specified. You will have at least 
10 days to decide. If, because of late . 
mail delivery of the News, you should 
receive a book you do not want, we 

guarantee return postage. 

If the reply card has been removed, 
please write to: 

The Library of Computer and 
Information Sciences 

Dept. 7-CE2, Riverside, N.J. 08075 
to obtain membership information 

and an application. 
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We can't do anything about your taxes. Or 
the rush-hour traffic. Or the person who keeps 
stealing lunches out of the office refrigerator. 

But we can take a big load off your mind 
when it comes to diskettes. 

3M diskettes are certified 100% error-free. 
And guaranteed for life. 

No floppy is more reliable. . 
There's no way one could be. Because only 3M 

controls every aspect of the manufacturing process. 
We make our own magnetic oxides. And 

the binders that attach them to the dimensionally 
stable substrate. W hich we make ourselves from 
liquid polyester. W hich we make ourselves. 

We also test our floppies. At least 327 ways. 
And not just on exotic lab equipment with per
fectly aligned, spotless heads. But also on office 
equipment like yours. 

We even reject a floppy if its label is crooked. 
Some people think we're a little crazy to 

go to all that trouble. After all, do you really 
need a diskette that can make one read/write 
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pass on every track , every hour, every day for 
the next 200 years? 

Not really. 
But now that you know a 3M floppy can 

do it , you can relax. 
And worry about other things. 
Like who stole your lunch from the office 

refrigerator. 

One less thing to 
worry about. 
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COMPUTER 
RECREATIONS 

The failings of a digital eye suggest 
there can be no sight without insight 

by A. K. Dewdney 

I
magine a black box rather like a cam

era. At the front is a lens and on one 
side is a dial with various settings 

such as "Tree," "House," "Cat" and so 
on. With the dial set to "Cat" we go for a 
walk and presently encounter a cat sit
ting on a neighbor's porch. When the 
box is aimed at the cat, a red light goes 
on. When the box is aimed at anything 
else, the light remains dark. 

Inside the box is a digital retina send
ing impulses to a two-layer logical net
work: an instance of the device called a 
perceptron. At one time it was hoped 
that perceptrons would ultimately be 
capable of real-world recognition tasks 
like the one described in the fantasy 
above. But something went wrong. 

The 1950's and 1960's were years of 
tremendous creativity and experimen
tation in the newly developing field of 
computer science. Romantic paradigms 
such as self-organizing systems, learn
ing machines· and intelligent computers 
influenced many scientists, and I. am 
tempted to call the period the Cybernet
ic Age. Incredible machines that could·· 
see or think or even reproduce them
selves seemed just around the corner. 
The simplest of these machines was the 
perceptron. 

Aperceptron consists of a finite grid
like retina subdivided into cells that 

receive light. Like certain cells in the 
human retina, each perceptron cell turns 
on if it receives enough light; otherwise 
it stays off. It is therefore reasonable to 
think of the image a perceptron analyzes 
as a grid of light and dark sq uares,.as in 
the illustration on page 27. 

Besides the retina, a perceptron con
sists of a great many primitive decision
making elements I shall call local de
mons. Each local demon examines a 
fixed subset of the retinal cells and re
ports on conditions there to a more com
plex decision maker I may as well call 
the head demon. Specifically, each local 
demon is equipped with a notebook list
ing certain patterns it must watch for in 
its locale, the subset of retinal cells un- . 
der its jurisdiction. If any of the listed 
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patterns appears, the local.demon sends 
a signal to the head demon; otherwis.e 
it remains silent. The head demon's job 
is more complicated in that it must do 
some arithmetic. · Each signal from a 
local demon is mUltiplied by a specific 
positive or negative integer (the local de
mon's assigned "weight") and the result
ing numbers are added. If the sum is at 
least as great as a fixed threshold, the 
head demon says yes; otherwise it says 
no. To avoid making any assumptions 
about what the various demons look like 
I have shown them in the illustration on 
page 27 as boxes. 

Demons are often given dangerous or· 
even impossible jobs such as opening 
tiny doors in the wall of a container to 
let molecules pass through. In compari
son, the demons of the perceptron have 
quite easy jobs. Indeed, the local de
mons could be replaced by simple log
ic circuits, and the head demon's job 
could easily be done by a few registers, 
an adder and a comparator (elements 
of the central-processing unit of any 
computer). Demons, however, have a 
romantic charm that electronic devices 
cannot match. 

A perceptron's job is to say yes when 
certain patterns are presented to it and 
to say no to all others. The former pat
terns are said to be recognized by the 
perceptron. Although it is highly doubt
ful that a cat-recognizing perceptron 
could ever be built, other recognition 
tasks are attainable. 

A perceptron can be programmed, af
ter a fashion, to recognize a given class 
of patterns by adjusting the weights and 
the threshold. Local demons supplying 
evidence in favor of the class are weight
ed positively and those providing evi
dence against it are weighted negatively. 
The magnitude of each weight reflects 
the value or importance of the evi
dence. Although the perceptrons dis
cussed here operate with a fixed set of 
weights, the notion of programming 
plays a central role in the theory of per
ceptrons developed in the 1950's. 

The following perceptron recogJ)izes 
a dark rectangle of any size or shape 

placed anywhere on its retina. In fact, it 
recognizes any number of such rectan
gles (including zero), provided no two of 

. them touch along a side or at a corner. 
There are three steps in the construction 
of the perceptron. First, install a local 
demon at each 2 X 2 locale in the retina. 
Then put all the subpatterns in list P [see 
top illustration all page 29] on each local 
demon's list. Third, set all the head de
mon's weights to + 1 and set the thresh
old to d, the number of local demons. 

This design calls for quite a few de
mons: if the perceptron has an n X n 

retina, there will be (n - 1)2 local 
demons. They are all given positive 
weights, indicating they all supply posi
tive evidence toward the recognition of 
rectangles. For example, it is not hard to 
see that when a single rectangle is pro
jected onto the perceptron's retina, each 
2 X 2 set of cells must contain one of 
the subpatterns in list P. It follows that 
every local demon sends a signal to the 
head demon and the weighted sum of 
the signals is, of course, d. The head 
demon says yes. On the other hand, if 
one of the dark shapes is not a rectangle 
or if two rectangles touch, then at least 
one of the 2 X 2 sets contains a subpat
tern from list N in the top illustration 
on page 29. Hence at least one of the lo
cal demons fails to report and the head 
demon develops a sum no greater than 
d - 1. It says no. 

An equivalent perceptron could be 
designed in which each local demon 
uses the smaller list N. In this case all 
the weights would be - I and the thresh
old would be zero. Each local demon 
would supply negative evidence toward 
a pattern of rectangles and the head 
demon would say yes only if none of 
the local demons sent it a signal. 

The style of perceptron defined above 
has many interesting properties, and it 
seems worthwhile to give it a name. 

. Without specifying what list of subpat
terns all the local demons use, a device 
of this kind will be called a window per
ceptron because each local demon looks 
at the input pattern through a 2 X 2 
window. For an n X n retina there are 
(1/ - 1)2 demons, and the threshold is 
equal to this number. 

Genecally speaking, perceptrons seem 
to be best at recognizing geometric fig
ures. Window perceptrons can recog
nize not only rectangles but also "black 
holes" (isolated .dark cells), vertical and 
horizontal lines, stairways, checker
boards and _many other patterns. It .all 
depends on what set of 2 X 2 subpat
terns is chosen for the local demon lists 
[see illustration on page 34]. Indeed, each 
subset of the 16 possible 2 X 2 subpat
terns defines a different window percep
tron, and each of the resulting 65,536 
window perceptrons recognizes a cer
tain class of patterns. Or does it? 

The window perceptron based on the 
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Hayes. Leading the way 
with quality teJecomputing 
systems for the personal 
computers that businesses 
use most. 
When it comes to communicating
computer to computer-Hayes says it 
best. Let a Hayes telecomputing 
system handle your communications. 
Instantly. Accurately. Economically. 

All you need is a Hayes Smart
modem (it's like a telephone for your 
computer) and Smartcom If softWare. 
In no time at all you can create. send 
and store files. and automatically log 
on to information services. The com
munication possibilities are endless! 

Introducing our new Smartcom II. 
More connection capabilities. 

More convenience. 

Compatibility. Now Smartcom II is 
available for more than 16 personal 
computers (With more to come). That 
means you can communicate. Smart
com to Smartcom. with an IBM PC. 
DEC Rainbow 100. HP 150. TI Profes
sional Computer* and many others. 

Two popular protocols. In addition 
to the Hayes Veiification protocol. 
our new Smartcom II includes the 
XMODEM protocol. for error-free 
transmission to a wide range of per
sonal computers and mainframes at 
information services. 

1erminal emulation. Smartcom II 
also allows your computer to "emulate" 
the DEC VT100 and VT52 terminals. 
opening the door to a vast number of 
DEC minicomputers. 

Voice to data communications. With 
Smartcom II you can easily switch from 
voice to data transmission (and back 
again). all in the same phone call. This 
saves you time and money. since you 
don't have to hang up and dial again. 

Unattended operation. Smartcom II 
makes telecomputing simple. even 
when you're not there. It can take a 
message when you're out. and leave it 
on your disk or printer. And you can 
tell Smartcom II to "save" the messages 
you've created during the day. and 
automatically send them at night. 
when phone rates are lowest. 

Get your hands on the leadeL 
Hayes Smartmodem. 

With an unsurpassed record of rehability. 
it's a small wonder Smartrnodem is 
such a smart buy! Smartmodem 3OO™ 

(the first of the Smartrnodem series). 
transmits and receives data at UQ to 
300 bps. For longer distances and 
greater volume. Smartrnodem 12oo™ 
and Smartmodem 1200BTM (it plugs into 
an expansion slot inside an IBM PC or 
com..patible) provid� �gh-speed. high
perrormance supenonty. 

Visit your computer dealer for a 
hands-on demonstration of Smart
modem and Smartcom II. A complete. 
rehable telecomputing system for your 
personal computer. 

Hayes Microcomputer Products. Inc .. 
5923 Peachtree Inaustrial Blvd .. 
Norcross. Georgia 30092. 404/441-1617. 

Smarfcom II is a registered trademark of Hayes Microcomputer Products, Inc. Smartrnodem 300, Smartrnodem 1200, and Smartrnodem 1200B are trademarks of Hayes Microcomputer Products, Inc. 
'1l:ademarks of Intemational Business MaChines Corp., Digital Equipment Corporation, Hewlett·Packard and lexas Instruments. ©1984 Hayes Microcomputer Products, Inc. 
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Nile dial: A few years back, faced with explosive 
urban growth and an inadequate telephone 
system , the' Egyptian governm ent en gaged 
Continental Telecom Inc. to redesign its communi
cations system. A massive research and planning 
pro gram to achieve this 

metamorphosis was 
initiated and carried out by Contel Page, Contel's 
engineering and construction subsidiary. Today, 
one of the world's most up-to-the-minute com-

o munications systems is becoming a reality in one 
of the world's most andent hubs. From telephony 
to satellites. Architects of telecommunication. 
WRITE CONTEL, DEPT. 504, 245 PERIMETER CENTER PKWY. ATLANTA GA 30346 © 1983 CONTINENTAL TELECOM, INC. .- -. - - - __ ------

�--�-- ---
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��------
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two subpatterns below does not recog
nize anything. 

EEEE 
The reason is simple. Assuming a fair
ly large retina, select a 2 X 2 window 
somewhere in the middle of it. If the 
window contains the first'of the two sub
patterns above, examine the window 
one cell to the right: it will have a dark 
cell in its upper left corner, and so the 
demon in charge of that locale will send 
no signal to the head.demon. Remember 
that in a window perceptron all the local 
demons must report in for a pattern to 
be recognized. If the second subpattern 
is present, shifting the window one cell 
to the left yields a similar contradiction. 

Which subsets of the 16 subpatterns 
give rise to window perceptrons 

that actually recognize something? The 
question is probably hard to answer, but 
it illustrates very well the kind of ques
tion an interested computer scientist 
or mathematician might ask when con
fronted by the phenomenon of a percep
tron that recognizes nothing. Because of 
the large number of such perceptrons, 
the answer would best take the form of 
some easily applied criterion or test: giv-

............................. 
......... .... .......................... 

/ 

A perceptron attempts to recognize a cat 

en a subset of 2 X 2 subpatterns, one 
applies the test and obtains an answer 
for that particular subset. 

The point of these remarks is that pro
fessional standing as a computer theo
rist is not always needed to answer such 
questions. Although they go somewhat 
beyond the kind of puzzle commonly 
given in recreational-mathematics col
umns, they call for the same kind of 
thinking. Readers who have solved at 
least one of Martin Gardner's puzzles in 
the "Mathematical Games" department 
of SCientific American should be able to 
make some progress with the question 
above. In theoretical research, as in ex
perimental science, a partial answer is 
better than no answer at all. 

Work in perceptrons was pioneered 
by Frank Rosenblatt of Cornell Univer
sity in the 1950's. Rosenblatt and his co
workers, both at Cornell and elsewhere, 
became optimistic about the prospects 
for perceptrons as useful pattern-recog
nizing devices. The "convergence theo
rem" told them that in principle percep
trons could learn to recognize patterns 
by making the weights used by the head 
demon subject to automatic control. 
The theorem states that any adjustment 
of weights in the direction of improved 
powers of recognition can serve as the 
basis of still further improvements. Ac
tual perceptrons were built, and in some 
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/ 
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tests on simple patterns they achieved 
high recognition scores. 

What seemed encouraging progress at 
the time was, in a sense, illusory. Ac
cording to Marvin L. Minsky and Sey
mour Papert of the Massachusetts Insti
tute of Technology, the enthusiasts for 
perceptrons had been beguiled by the 
simplicity and apparent success of their 
devices. Below the surface lay some 
grave defects in the concept. In 1969 
Minsky and Papert issued Perceptrons, a 
book that effectively punctured the bal
loon by pointing out (and proving) sev
eral things perceptrons cannot do. 

One of the most dramatic failures dis
covered by Minsky and Papert was the 
inability of certain perceptrons to recog
nize when a figure is connected (that is, 
all in one piece). Assuming each local 
demon inspects only a limited locale, 
Minsky and Papert gave examples of 
four patterns designed so that one of 
them always stumps a perceptron whose 
job is to recognize connectivity. The pat
terns are shown in the bottom illustra
tion on page 29. Two of them (b and c) 
are connected figures and the other two 
(a and d) are not. 

Suppose someone claims to have de
signed a diameter-limited percep

tron capable of distinguishing between 
connected and unconnected patterns. By 
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Now, 
a micro--based DBMS 

for the rich and 
powerful. 

reQ,.ICS( is a trademark o(Sysn!m Automation Corporation. 

There are well over a hundred bundles 
of ones and zeroes called Data Base 
Management Software. 

Sometimes it seems that there's an 
answer for every hacker, a system for 
every machine. 

And there's the rub. 
If you have a data base, and more 

than one user, and more than one kind 
of desktop micro, then you might well 
envy the meek. 

They have their answers. Where are 
yours? 

We submit reQuest: an easy-to-use 
DBMS for people who really need one. 

reQuest: the answer to corporate 
multiplication. 
Look around at the desktop micros. 
You'll see IBM PC, and its compatibles: 
NCR. Burroughs. HP. Gould. 
Datapoint. 

Look at the people. They come from 
every discipline, every specialty, every 
level of computer awareness. 

It's a jumble out there. How can you 
accommodate all these people, at all 
these levels, with all these pieces of 
hardware, using so many operating sys
tems (MS-OOS, PC-OOS, CT-OS)? 
Answer: reQuest. It can run any of these 
systems. And network within each 
system. 

Nobody else can do all that. 

reQuest: Not off-the-shelf; on the line. 
Guaranteed. 
Yes, you can buy a DBMS off the shelf. 
You get a disk, a book, and the best 
wishes of the people who sold their soft
ware to you and their company to 
somebody else. 

But after 17 years in the business, we 
can promise you this: When you buy 
reQuest, you buy us. All of us. All of the 
time. For training. For re-training. And 
phone rights. And visitation rights. 
And, if all that doesn't work, your 
money back. 

Nobody else does all that, either. If 
you don't believe it, ask your data base. 
If it doesn't answer, call 301-565-9400. 

System Automation 
Corporation, Inc. 
8555 Sixteenth Street 
Silver Spring, MD 20910 
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The 2 X 2 sllbpattems recognized by positive(P) and negalil'e (N) local demons 

diameter-limited I mean that for some 
number m every local demon can exam
ine only the squares within an m X m 
window. To test the claim Minsky and 
Papert would prepare versions of their 
four patterns, with each pattern adjust
ed to be more than m cells long. The 
local demons can then be classified in 
three disjoint sets. Left Demons exam
ine at least one cell on the left edge of the 
figure. Right Demons examine at least 
one cell on the right edge. Other De
lions are neither Left nor Right. 

When the proposed connectivity per
ceptron is presented with pattern a, it 
either fails (by saying yes) or succeeds 
(by saying no). If it fails, of course, the 
test is over. If it succeeds, the next step is 
to examine the sum developed by the 
head demon and split it into three parts: 
L. 0 and R. representing the weighted 
sums of the Left, Other and Right de-

a 

c 

'.' " '. 1'.�i\4, 
I��, 

mons that signal the head demon when 
pattern a is projected on the retina. Since 
the connectivity perceptron says no, the 
sum of L. 0 and R falls short of the 
threshold. If pattern a is now replaced 
by pattern b, only the Left Demons 
change their response, since only the 
cells along the left edge of the figure 
change. Suppose the partial sum L be
comes L'. On the other hand, if pattern a 
is replaced by pattern c, only the cells 
along the right edge change and only the 
Right Demons change their response, 
say from R to R'. 

Now the perceptron has got itself into 
a most curious position. Since band c 
are connected, it must answer yes in 
both cases, and so the sums L' + 0 + R 
and L + 0 + R' must be at least as large 
as the threshold. It is already known, 
however, that L + 0 + R is less than the 
threshold because a was not connected. 

b 

.,'" ., l': 

It follows that L' isiarger than Land R' 
is larger than R. The deathblow comes 
when the perceptron faces pattern d. 
Here both the left- and the right-hand 
cells of the figure have changed from 
the state they had in pattern a, and the 
head demon finds itself computing the 
sum L' + 0 + R', which is certainly 
greater than the threshold. The head de
mon says yes. It is wrong. 

Additional failings of perceptrons dis
covered by Minsky and Papert include 
the unrealistically large number of local 
demons needed for some recognition 
tasks and the low rate of learning (or 
convergence) for other tasks. 

Perhaps it is not surprising that per
ceptrons should fail in many cases 

where the human visual system suc
ceeds. I noted above that the local de
mons and head demon could be replaced 

I · l,��1�; t·· : . " 

"15 . :.� ::>" 
�.: .'::�' 

.. : .,:' 

d 

FOllrjigllres designed 10 con/lise a connectil'il), perceplron 
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$49.95 
Fine Tuned For Scientific, Business 

and Engineering Applications 

(And perfect for the Weekend· Programmer too) 
"Finally, somebody has done it right. A powerful Pascal Z80 or 
8086/88 single pass native code compiler together with a full

screen editor and error checking to make a super programming 

development package." 

Dave Carroll, M/crosystems, February 1984 
• Automatic overlays (no address.es or memory space to calculate) 

• Optional 8087 support (available for an additional charge) 

• Full-screen, interactive editor 

• Windowing (for IBM PC or Jr.) 

• Full support of operating system facilities 

• Full heap management-via dispose procedure 

• Graphics, sound and color support for IBM PC or Jr.· 

• Occupies only 35K including editor!!! 
• Extended Pascal for your IBM PC, PC Jr., Apple CP/M, MS DOS, 

CP/M 86,CCP/M 860r CP/M 80 computer. 

"It is, simply put, the best software deal t6 come along in a long 
time ... buy it." 

Bruce Webster, Softalk IBM, March 1984 
To order your copy of Turbo Pascal2�O can: . 

1-800-255-8008 
in CA 1-800-742-1133 

Dealer and Distributor Inquiries welcome 

408-438-8400 
�---------------------------------------------------

CHOOSE·ONE:' 
o Turbo Pascal version 2.0 $49.95 + $5.00 shipping peJ copy.. _ 

o Turbo Pascal 2.0 with 8087 support $89.95 + $5.00 shipping.per co.py-

Check _._. __ MoneyOrder __ · _ Mysystemis:8bit� 16bit __ _ 
VISA- MasterCard'- Operating System: CP/M 813 � __ _ 
Card #: CP/M 86 _ MS DOS _PC DOS _ 
Exp. date.: Shipped UPS Computer: __ Disk Format: __ 

.) BORLAnD' 

.)} INTER-NATIONAL 
Borland International 
4113 Scotts Valley Drive 
Scotts Valley. California 95066 
TELEX: 172373 

Please be sure model number & format are correct. 

NAME: 
ADDRESS: 
CITY/STATE/ZIP: _____ _ 

TELEPHONE: ______ __ 
California residents add 6% sales tax. Outside U.S.A. 
add $15.00. (I f outside of U.s.A., payment must be by 
bank draft payable in the U.S. an'd in U.S. dollars.) Sorry, 
no C.O.D. or Purchase Orders. E3 

by simple computational circuits. They 
could also be replaced by the formal 
neurons first described in the 1940's by 
Warren S. McCulloch and Walter H. 
Pitts in their classic work on neural net
works. These formal neurons are much 
simpler than human neurons; likewise 
the complexity of a perceptron orga
nized as a two-layer neural network 
does not come close to the complexity of 
the first two layers of the human visual 
cortex. Moreover, "behind" the visual 
cortex, as it were, there is an amazing 
and almost completely unknown analyt
ic apparatus-something that is entirely 
lacking in the perceptron model of vi
sion, To even begin modeling this great
er complexity one would have to replace 
the head demon by a Turing machine, 
but here the argument sinks into a sea of 
uninformed speculation, and so I shall 
call a halt. 

Even if perceptrons are eyes without 
minds, they have a certain charming 
simplicity and, for some patterns at 
least, definite powers of recognition. 
I wonder what other patterns readers 
might discover to be within the compe
tence of the window perceptron. Those 
wishing to explore the tougher question 
of which subsets of the 16 2 X 2 subpat
terns lead to "good" window percep
trons (those that recognize at least one 
pattern) will find the question somewhat 
cleaner to handle if a constraint is add
ed: the patterns recognized should be 
"translatable"-it should be possible to 
shift them on the retina without chang

. ing the fact that they are recognized. 
This requirement not only rules out 
certain overspecialized window percep
trons (for example the one that recog
nizes a single dark cell in the upper right 
corner of its retina) but also reflects the 
notion that the perceptron is looking at a 
real scene that shifts across the retina as 
the black box in my fantasy scans it. 

Although diameter-limited percep
trons are unable to distinguish connect
ed figures from unconnected ones, it 
may be possible to recognize connectivi
ty in certain classes of figures. For exam
ple, within the class of all multiple-rec
tangle patterns the connected figures 
would be those that include exactly one 
rectangle. Can you design a percep
tron that recognizes just such patterns? 
Your local demons must use 2 X 2 
windows, but you may hire additional 
demons if necessary. 

I implied above that perceptron re-
- search came to an end with the publica

tion of Minsky and Papert's Perceptrons. 
This is true in the sense that a certain 
woolly and wishful attitude toward per
ceptrons and their powers of recognition 
is no longer possible. On the other hand, 
it was far from Minsky and Papert's in
tention that all research in perceptron 
theory be stopped. The precise powers 
of these simple but sometimes effective 
devices have yet to be discovered. 
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Rosenblatt, whose work extended into 
psychology and neurobiology, died in 
a tragic boating accident on his 43rd 
birthday, July 11, 1971, in Maryland. 

Deader response to the column on ana
n. log gadgets was gratifying, with no 
fewer than 17 new gadgets being sug
gested. Three correct solutions to the 
light-in-a-mirrored-box problem were 
also submitted. 

Before taking up these matters, how
ever, I must correct an error. To my 
knowledge the fastest digital-computer 
algorithm for finding the convex hull of 
a set of points in the plane requires on 
the order of n log n operations, not n 
log log n. The string analog gadget that 
solves the same problem was invented in 
1957 by George J. Minty, Jr., o(lndiana 
University. Minty also points out that 
the soap-film technique for finding mini
mum Steiner trees originated with Wil
liam Wiehle in 1958. 

The laser gadget for discovering 
whether a number n is prime was criti
cized by David Zimmerman of Beaver 
Dam, Wis. The light must be reflected n 
times in going from the laser to the de
tector, he notes, and since the speed of 
light is finite, the solution time is propor
tional to n. If the problem size is defined 
as the number of digits in n, the solution 
time grows exponentially and the device 
is no faster than a digital algorithm. 

The finite speed of light also bothered 
Steven P. Hendrix of New Braunfels, 
Tex., who remarked that in the mir
rored-box problem one might have to 
wait a very long time for the light to 
emerge. I asked what property of the 
light path the mirrored box measures. 
Hendrix was among those who solved 
the problem by noting that the question 
of whether the light emerges is equiva
lent to the question of whether an infi
nite straight line in the plane intersects a 
point with integer coordinates. 

Imagine an infinite orchard with infi
nitely thin trees planted on a sq uare grid. 
If a bullet is fired from one tree in an 
arbitrary direction, will it ever strike an
other tree? It will if the angle with re
spect to the rows of trees has a rational 
slope. If the tree struck is p rows north 
and q rows east of the firing point, the 
slope is pi q. The mirrors in the box 
merely fold up the path of the bullet. 
John Dewey J ones of Farmington Hills, 
Mich., and Paul Kingsberg of Imperial, 
Pa., also solved the problem. 

The only way to do justice to the 
wealth of gadgets described by readers 
is to devote a second column to the sub
ject, probably early in 1985. Meanwhile 
I shall at least mention some of the more 
interesting gadgets. 

Peter F. Ash of St. Joseph's Universi
ty reported on solving a cubic equation 
by immersing solids in a tank of water. 
Tom Digby of Los Angeles remarked 
that the computational power of an ana-

For personally signed Ken Davies print, 18" x 19", send $10. payable to "ANCO". Box 2832·SN. NYC, 10163 

Always On The Move 
The Wild Turkey instinctively 

seeks "elbow room:' If the bird 
senses any encroachment on its 
territory, it will travel many miles 
a day in search of a remote 
swamp or forest preserve . 

Native only to the American 
continent , the Wild Turkey 
is a fitting symbol for America's 
greatest native whiskey-
Wild Turkey. 

WILD TURKEY®/IOI PROOF/8 YEARS OLD 
AUSTIN�NICHOLS DISTILLING co., LAWRENCEBURG, KENTUCKY � 1982 
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And it's no surprise. 

Only one software company so completely covers business, home and education. 

Only one is backed by the resources of the world's largest 
independent producer of mainframe software, 
Management &ience America, Inc. (MSA). 

And only one offers you the most complete line 
for microcomputers. Peachtree Software � �->-�'��iIIIIII...... 
The pioneer that's still pioneering. 
With 25 new products this season, 67 in all. 
And with applications for IBM, Apple 
and most leading microcomputers. 

Case in point: our neW" 
Decision Manager. Created to 
give executives higher productivity on the 
job than ever before. With up to ten windows 
displayed at once, dramatic graphic capability, 
mainframe communications link and much, much more. 
The perfect companion to our PeachText 5000. 

Case in point: our famous PeachText 5000 1M. A complete 
package for better office productivity, including word processing, financial spreadsheet, 
Random House thesaurus, spelling proofreader and list manager. Even includes 
free special instructional software for a limited time. 

Case in point: our neW" Back To Basics Accounting System. 
Created for the small businessman with a new PCjr 1M, Apple, Atari, 
Commodore or almost any leading microcomputer. Lets him set 
up his basic accounting system even if he has little or no previous 
accounting knowledge. 

Whether it's for business, home or education, America's software grows on the 
Peachtree. Look for all our products wherever software is sold, or send us the coupon 
for a free brochure. 

Better productivity grows on the Peachtree. Reach for it. 
r---------------------� 

America's Software 
grows on the Peachtree .. 

PCjr is a trademark of International Business Machines Corporation. 

Peachtree and Peachtree Software are registered trademarks of Peachtree 
Software Incorporated. an MSA Company. CC> 1984. 

Peachtree Software 
3445 Peachtree Road NE 
Atlanta, GA 3032(') • 1-800-554-8900 

Please send me more infonnation about Peachtree Software. 
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log gadget can be attributed to its ability 
to carry out many processes in parallel. 
He showed how to set up n digital com
puters to sort n numbers in linear time, 
equaling the performance of the spa
ghetti analog gadget. 

Eric Halsey of the University of Wash
ington described a longest-path 

gadget made out of "snakes." Each edge 
of the graph is represented by an elastic 
string threaded through an integer num
ber of beads. Does the longest path 
stand out when the gadget is stretched 
and then released? Another of his gad
gets measures the length of the shortest 
path between two vertexes in a graph. 
Make each edge a piece of fuse and put 
a firecracker at the second vertex. Now 
light the fuses at the first vertex and 
stand back: the time until the firecrack
er explodes is proportional to the length 
of the shortest path. 

I was reminded by Palmer O. Hansen, 
Jr., of Largo, Fla., that the planime
ter, a mechanical device for measuring 
area, could qualify as an analog gadget. 
Dale T. Hoffman of Bellevue Commu
nity College in Washington pointed out 
some additional problems that can be 
solved by soap films, including a clever 
computation of Snell's law. David Kim
ball of San Diego solves mazes by 
pumping water into the maze and fol
lowing the current to the exit. Another 
pretty gadget was described by J. H. 
Lueth of the United States Metals Refin
ing Company in Carteret, N.J. SLAG (the 
smelter-location analog gadget) finds 
the location for a smelter that minimizes 
transportation costs for limestone, coal 
and ore. Three holes in a board and 
three weights tied together with string 
solve the problem. The same device was 
also mentioned by Hendrix. 

Tony Mansfield of the British Nation
al Physical Laboratory in Teddington 
solves linear-programming problems 
with a framework made up of parts 
from a toy construction set. Thomas A. 
Reisner of Universite Laval in Quebec 
generates a contour map of a surface 
by spreading mosquito netting over it. 
A strong overhead light creates a moi
re pattern as the net interferes with its 
own shadow. 

The U.S. citrus industry apparently 
uses an analog gadget to sort fruit. Or
anges roll in the channel between two 
not quite parallel pipes and fall through 
when the distance between the pipes is 
equal to the diameter of the orange. 
John P. Schwenker of Louisville, Colo., 
once found the center of gravity of a 
piece of equipment by a variant of Ron
ald L. Graham'S plate-balancing tech
niq ue. When the eq uipment is dragged 
by a rope across a smooth surface, the 
vertical plane passing through the rope 
also passes through the center of gravi
ty. The intersection of three such planes 
identifies the center of gravity itself. 
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Is This a 
Black Hole 

at the 
Core of 

our Milky Way 
Galaxy? 

Black holes are conjecture-hypothetical bodies so dense that 
the gravity field around them does not allow light or anything else 
to escape. Yet they appear to exist at the core of all galaxies. And 
perhaps elsewhere. 

The mass of three Suns crushed into 
a space smaller than this period (.)! 

When a large star has spent its nuclear fuel, it blows apart in a 
colossal explosion which we call a supernova. All that remains is 
a tiny, hot, burned-out core. Compressed by its own gravity, the 
core shrinks, becoming denser and denser. If the star is heavier 
than three Suns, gravity crushes its matter into a space smaller 
than the period at the end of this sentence. The star "blinks off' 
and a black hole is the result. 

An incredibly destructive force? Yes, but astronomers think the 
black hole-or whatever it is-at the core of the Milky Way may 
have been there from the beginning. And it may hold the secret 
to how the Galaxy began as well as how it might end. 

Are we alone in the Uniuerse? 
Astronomers may get to the heart of the matter (in the ultimate 
sense!) within your lifetime-maybe within the next few years. 
Meanwhile, other fascinating discoveries are taking place. 

Astronomers have recently discovered bands of solid particles 
orbiting several other stars, including such naked eye stars as 
Vega and Fomalhaut. These stars are surrounded by rings of 
relatively cool, small solid material perhaps no larger than grains 
of sand which may be the stuff of planets in some early stage of 
creation. The system of planets we inhabit may not be unique 
after all. 

There are billions of stars in our Galaxy alone-so somewhere 
else in the Galaxy there may be a solar system like ours. It's 
perhaps the most exciting indication yet that "mankind is not 
alone." 

Presenting ASTRONOMY Magazine, 
If discoveries such as these interest, enthrall, or excite you, then 
join us now in the quest for knowledge as a subscriber to 
ASTRONOMY Magazine. By reading ASTRONOMY every month, 
you'll appreciate the significance of discoveries that few other 
people even begin to grasp. 

ASTRONOMY is brilliantly illustrated-mainly in color-for 
astronomy is the most beautiful of all sciences. The magazine is 
authoritative-it's written largely by astronomers-but edited for 

the layman. Articles take you step by step from the basics all the 
way to the frontiers of astronomical knowledge! 

While other people remain Earthbound, you can be exploring 
the solar system, the Galaxy, the outer reaches of space. You can 
be eye-witnessing the most awesome phenomena. Contemplat
ing the most astonishing possibilities. Challenging your mind 
and stretching your imagination. 

You'll be inuolued! 
ASTRONOMY involves you-intellectually and emotionally. And 
if you choose to become one of the tens of thousands of 
amateur astronomers, ASTRONOMY will be your guide also. 
We'll show you how to observe and photograph the planets, the 
stars, and celestial phenomena. How to use a telescope-or 
build one from scratch. 

Discouer ASTRONOMY Magazine now 
and receiue a Free 'MAN FLIES FREE" Poster 

Return this coupon today. You'll receive 12 issues of 
ASTRONOMY for only $15-$9 off the single-copy price. And 
with your paid subscription, you'll receive a free color 21" x 30" 
wall poster commemorating the historic space walk made from 
the Shuttle Challenger, when "man flew free" for the first time 
-no tether, no lifeline. 

r--�------------------------------------

ASTRONOMY Y
ES. I'm fascinated 

by it all and I want to 
know more. Start 

my trial subscription to 
ASTRONOMY -satisfaction 
guaranteed. My introductory 
price is just $15 for a full 
year-12 monthly issues. 
I save $9 off the single
copy price. And I get a free 
21" x 30" M A N  FLIES 
FREE poster with my paid 
subscription. 

D Bill me later. 

o Payment encJosed
send poster right away. 
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ASTRONOMY 
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GUARANTEE 
If you don't agree that ASTRONOMY is out of this world, you can 
cancel at any time, receive your money back on all unmailed 
issues, and still keep your MAN FLIES FREE poster free! 
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If a word process� 
these 8 toofs for better 
1 Pop-up menus-so you 

can start writing 
better right away. 

You can't write better if you're not 
writing. So Perfect WriterT" has pop-up 
menus that make it extra easy to use. 
They guide you through every function 
with simple English language words. So 
you don't have to struggle with compli
cated commands. 

2 Simple function that 
lets you keep your mind 
on what you're writing. 
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program doesn't give you 
writmg, it's not Perfect: 

·J.d, 

7AutomatiC formatting to make your 
writing look even better on paper. 
Perfect Writer works with most popular printers. And with 

our special document appearance features, your letter, memo, 
report or paper will look like a masterpiece. 

Boldface and italics let 
you write with new 
emphasis. 

If you want page num· Perfect Writer automat· 
bers, Perfect Writer can ically numbers, posi· 
handle it-automatically. tions and prints out 

footnotes. Whew. 

6 Split-screen windows that 
help keep your thoughts 
organized-while you write. 

It's like having a notepad right on your screen. 
You can use one window to jot down notes, 
key points or an outline-as you develop your 
text in the other window. See? With Perfect 
Writer, you can really compose your prose. 

8 PerfectT" 
integration 
witt! other Perfect software. 

Perfect Writer is just part of the complete, 
integrated Perfect Software family. There's also 
Perfect CalcT" spreadsheet. Perfect FilerT" 
database management . And Perfect LinkT" tele
communications software. You can share 
information between programs. And, each pro
gram uses common commands. So they work 
PerfectT" together-to help you work better. 

Why settle for anything less than PerfectT"? 
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BOOKS 

The numbers of physics, a life in molecular 
biology, a 2-D world, ecology of body size 

by Philip Morrison 

THE CONSTANTS OF PHYSICS, edited 
by W. H. McCrea and M. J. Rees. 
The Royal Society, 6 Carlton 

House Terrace, London SWIY 5AG, 
England (23.40 pounds sterling or dollar 
equivalent). Looking from the summit 
of success climbed in the past decade, 
the gauge-field theorists think they see 
a grander unification at the horizon, 
and they have boldly marched toward 
it. The ir vision is wide indeed, albeit 
distant; it joins an understanding of the 
inwardness of the quarks to an unprec
edented familiarity with the expand ing 
universe past and present. 

This book is a collection of a dozen 
and a half related papers buoyed by the 
cresting wave of theory. Some take only 
a page or two and can be easily under
stood by the informed general reader, 
some are long and difficult summaries 
meant for hard-bitten traffickers in d if
ferential equations. Most of them are 
followed by a transcript of brief d iscus
sion, since the thin volume records a 
meeting held by the Royal Society in 
May of last year. Those present includ
ed a wide international cut of physicists, 
some of them bearing very well-known 
names. Their topic is the key num bers, 
-in our quantum epoch easily put into 
d imensionless form, that measure the 
intrinsic strengths of all the forces that 
couple particles, along with certain oth
er parameters of microcosm and macro
cosm that underlie the particulate uni
verse we inhabit. The meeting recorded 
opinion almost at its most sanguine. In 
the past year there have come several 
hints from the big laboratories and the 
underground experiments, some con
firming the electroweak theory brilliant
ly at the energies we now command, 
some more recently hinting that nature's 
way may not after all follow the sim
plest of erudite conjectures out to the 
requisite d izzying extrapolation. 

The most familiar ground is explored 
in the first half-dozen papers, looking 
over the measurements of the basic con
stants. The national standards laborato
ries are coming to found their central 
units on "well-understood quantum sys
tems." The second of time is of co urse 
fixed by the cesium atomic clock; the 
speed of light and the atomic clock to-

gether have j ust replaced the platinum 
bar to fix the meter, and both the volt 
and the ohm will soon be determined by 
certain precise quantum steps electri
cally measurable in condensed matter 
at low temperature. The kilogram will 
soon enough be defined by a count of 
atoms based on the spacing of crystal 
lattices measured by X ray. Meanwhile 
d imensionless constants such as - the 
fine-structure constant-the notorious 
1/137 that serves as a measure of elec
tric charge-are known better and bet
ter. The d iscrepancies now are at the 
level of only parts per million. 

The elusive measures of gravitation, 
isolated from all the other constants, are 
closely watched: the most d iscussed of 
them is the idea, perhaps inconsistent, 
that the gravitational constant is chang
ing as the expanding universe becomes 
more dilute. A good review establishes 
that the change, if any, is less than one 
part in 10 billion per year. This result is 

. based on a detailed analysis of the mo
tions of Mars using signals from the Vi
king Lander combined with Mariner 9 
data, and on laser reflections from a 
retromirror on the moon. Methods now 
current promise an improvement in ac
curacy by a factor of 10, but not much 
more than that. The limit for orbit pre
cision in the solar system is now set by 
asteroid noise; there are quite a few big 
asteroids still unweighed and thousands 
of little fellows. They all add up, to 
daunt even the modelers who command 
supercomputers. 

"There is now a small, international 
industry dedicated to testing relativistic 
theories of gravitation," states one pa
per. The approximate truth of general 
relativity is well supported by a variety 
of first-order results, to 1 percent or bet
ter. The time has come to probe deep
er, to check second-order effects and to 
study quite new phenomena. Much can 
be done in the isolation of space, and the 
exq uisite timing studies of the binary
pulsar orbit and lately of the millisec
ond pulsar challenge the space experi
menters to improve on what is now be
ing done by the ground-based radio 
astronomers exploiting those serendipi
tous natural clocks. 

Setting macrocosmic gravity aside, it 

is possible to seek changes in the con
stants of microphysics within astronom
ical and geologic contexts. The ratio 
of spectral frequencies seen in quasars 
and other d istant sources is not hard to 
measure to reasonable accuracy, choos
ing spectral lines whose energies depend 
differently on the various constants. The 
21-centimeter radio line can be com
pared with the. normal lines in the visible 
spectrum of hydrogen, or one can com
pare visible lines from iron with those 
from hydrogen. Both allow the compar
ison of nuclear properties with electron
ic properties, the one for magnetism, 
the other for mass. All of this leads to a 
direct check of the nominal 1/137; it 
is invariant over most of visible space
time within one part in 10,000. 

A few pages by J. M. Irvine of Man
chester clearly set out afresh the marve
lous ded uction first drawn in 1976 by the 
Russian physicist A. I. Shlyakhter. In the 
Oklo uranium mine in the African na
tion of Gabon there were found residues 
of several natural nuclear chain reac
tors, which were boiling away merrily in 
river sands for a while a couple of bil
lion years ago. N ow, there is j ust one 
energy value we can be sure of to high 
precision, even without measurement. 
That is the kinetic energy of a particle at 
rest: zero. Thermal neutrons move at the 
speed of so und, but that is scant energy 
indeed compared with the intrinsic ener
gies of the neutrons' capture by atomic 
nuclei. Yet mineral analysis proves that 
thermal neutrons in the Oklo mine long 
ago were resonantly captured in exactly 
the same rare isotopes that would swal
low them today. This implies the nucle
ar quantum energies have not shifted 
enough over the past two billion years to 
detune the narrow nuclear energy level 
away from its chance resonance at near
zero kinetic energy. The electric repul
sive forces and the specifically nuclear 
attractive forces must have struck then 
nearly the same bargain they keep to
day; agreement implies that'the relevant 
microconstants cannot have changed by 
more than a few parts in 10 billion over 
the entire time. 

Still, the coupling constants are not 
truly constant under all circumstances. 
The very basis of the grand unification 
of the nuclear, weak and electromagnet
ic forces is the understanding that the 
external effects of electric charge and its 
less familiar analogues all depend on 
the energy with which particles collide. 
Several reports here survey the situation 
from various more or less convention
al points of view; none of them is real
ly accessible to the reader not familiar 
with gauge theory, although the conclu
sions are understandable. The chief con
clusion for a decade has been that the 
three forces would all show the same 
effective strength at energies equivalent 
to about a million billion proton mas
ses, if no other phenomenon intervene 
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before the tiny distances implied are 
reached. Thus the forces between the 
particles in a gas are dependent on tem
perature, and the way is opened to 
examine what happened in the very 
early universe, which by extrapolation 
is shown to be hot indeed. 

A few reports sum up the inferred 
states of that plausibly conjectured in
ferno. We live now in a cold universe of 
protons and neutrons; when radiation 
and matter were as hot as the beams of 
today's big accelerators, all was un
confined quarks and gluons. At a much 
higher temperature still all microforces 
became equal. All was symmetric; mat
ter was of a kind now entirely alien but 
governed by high symmetry. Along this 
line of thought, based of course on sim
plified models proposed for a world not 
known in detail, many features of our 
universe (or better, surmises about it) 
come clear. They include the asym
metry between ordinary matter and the 
rare but equivalent antimatter, and the 
measured tendency to expand with near
zero acceleration. It is all quite impres
sive, except for the brutal fact that the 
same arguments applied in hope to the 
gravitational field yield a rough estimate 
of the present energy content of cosmic 
space that is too high by a cool factor of 
some 120 powers of 10! We do not know 
what is so wrong; most probably gravi
tation is not simply one more example 
of a quantum field theory but, as a cou
ple of papers here try to show, some
thing very distinct. 

A delightful exploration into known 
scales is made by William H. Press and 
Alan P. Lightman of Harvard. They es
timate one after another the characteris
tic properties of solids and molecules, of 
rocks, asteroids and stars, of planet spins 
and wind speeds, of human stature and 
the speed of a human runner, in each 
case expressing their results for all these 
phenomena in terms of the fundamental 
constants of physics. A runner can move 
at a calculable fraction 0f the speed of 
light; that fraction depends .only on the 
fine-structure constant, on its gravita
tional analogue and on the ratio of the 
mass of the electron to the mass of the 
proton. The calculation predicts (per
haps to some degree by good luck) a six
second record for the 100-yard, dash, 
which is not too bad for such an elevat
ed approach. 

A less convincing study examines the 
so-called anthropic principle, by which 
we are enjoined to remember that we 
could not, for instance, observe too hot 
a stage of the universe; the existence of 
observers implies certain limits on their 
environment and hence on the physics 
of the cosmos, "Although' our situation 
is not necessarily central, it is necessari
ly privileged to some extent,': argues the 
author, Brendon Carter. He goes on to 
make quite a lot of this through mod
els of long-term evolution; the conclu-
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sions require a certain enthusiasm for 
simple formulas. 

The most original paper here, not at 
all an easy one, is by the Copenhagen 
theorist H. B. Nielsen. He begins dis
armingly enough with the example of 
the kinetic energy of a free particle at 
low speed, the familiar square of the 
velocity. That limit can come out of 
an almost arbitrary version of the true 
form of relativistic dynamics. The result 
must, apart from constants, depend on 
momentum alone; it cannot depend on 
position, since that is what is meant by a 
free particle. If energy is also to be inde
pendent of direction, the speed must ap
pear as an even power. The lowest pow
er possible gives the limit at low speeds. 
The familiar result follows, just the cor
rect limit from relativity, unless the 
coefficient of the square term is "by 
chance" zero. Now, if the laws of dy
namics were so complex as to approxi
mate a randomly chosen set of functions 
for the true energy, the result would 
nonetheless usually be the one we know, 
derived in the limit from a few princi
ples alone. The details at a more funda
mental level may not matter much if we 
do physics only in a restricted range, "in 
a corner," say at low energy. 

By extension Nielsen proposes-with 
examples-that the laws of physics, all 
the powerful symmetries and simplici
ties we have, are simply the evolved 
outcome of physics done in one corner 
of the room of possibilities. Underneath 
everything there may be levels of struc
ture that are extremely small and far too 
complex to guess at. Our experiments, 
even in the highest-energy beam, may 
still be at large space-time distances 
compared with those unknown scales. 
The regularities we rely on-powerful 
gauge invariance and the conservation 
laws-may, like the velocity-squared 
law for kinetic energy, depend little on 
the unknown details at the lower levels. 
Random dynamical systems might give 
rise to the special symmetries we see 
with our clumsy spatial resolution and 
our slow gaze, without requiring the fine 
tuning that symmetries appear to imply. 
All laws stand merely as approxima-' 
tions valid over a wide range of under
lying, unknown and perhaps disagree
ably complex theories. The laws and 
constants of physics thus evolve, so 
to speak, as the cruder simplicities that 
roughly average out some complex and 
chancy substructure lying far below 
our v.ision. 

The Copenhagen group offers illus
trative examples closer to the genuine 
symmetries of today than the merely 
pedagogical case of kinetic energy. The 
four dimensions of space-time, the lin
ear quantum equations, relativity and 
more might be shown to arise from 
deeper laws of much less simple struc
ture. (There is another technical paper 
here that takes a wide look at possible 

high dimensionalities, recently rather 
popular. ) Such hidden theories might in 
our ignorance be just as well described 
by complicated systems of equations 
chosen at random. A few simple ex
amples have been carried through with 
some success. 

Given the eventual working out of 
Nielsen's program, the origin of the laws 
of physics would be understood statisti
cally, although the laws we now know 
would all be approximate. As most 
theorists imagine their final success, 
however, they expect one day to set 
eyes on that One Golden Lagrangian, 
whose wonderful groups of symmetries, 
in some domain exact, would control 
everything that exists. But whence that 
elegant utterance? The uppercase letters 
would have to bear the entire burden of 
origins. Someday we shall see; mean
while this slender, varied and difficult 
book records a scientific program at 
the brilliant summit of its hopes, and 
it holds as well a small hard seed of 
dissent. These papers are already in 
the libraries; they were published in 
1983 in Vol. A3 10 of the Phil. Trans. 
Roy. Soc. London. 

ASLOT MACHINE, A BROKEN TEST 

TUBE: AN AUTOBIOGRAPHY, by 
S. E. Luria. Harper & Row, Publishers 
($17.95). Only a chunk of paraffin, it lay 
on the windowsill in Edoardo Amaldi's 
laboratory in Rome, ready to hand for 
tyro Luria to melt up for his casual 
purpose. Fortunately Amaldi was right 
there to rip the piece from his assistant's 
hands just in time. It was no ordinary 
chunk of wax but "a holy relic" like the 
telescope of Galileo, carefully matching 
the hand-carved chunk of lead Fermi 
had compared with that very wax in 
that very room years before when nu
clear transmutation by the absorption 
of slow neutrons was first found, and 
nuclear fission and the nuclear chain 
reaction were foreshadowed. 

The new assistant was a bright if 
romantic young man from gray, re
strained, "Protestant " Turin, buffeted 
between the lively familiarity of Roman 
manners and the stern expectations of 
Fermi's hardworking crew of physicists. 
They called him Signor Garzone (freely, 
Mr. Lab Boy); he was 25 and held a 
fresh M.D. In 1937 Italy an M.D. was an 
easy path for the studious son of school
oriented striving Jewish parents, the 
handsome mother a semi-invalid depen
dent on opiates and secretive about it. 
Young Salva shared no healer's voca
tion; his aim was a profession, although 
his dream was of science. The compro
mise career he sought was the physicist's 
one of radiologist. His year among the 
physicists was justified as a remedy for 
incompetent instruction in a dull spe
cialty, as it was taught and seen in Turin. 

When the next year Fermi left for 
Stockholm, never to return to Fascist 
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Italy, Luria, dreaming both of freedom 
and of science, left for Paris. He was 
lucky; his interests in radiation biolo
gy and bacteriophage, the one kindled 
by the Rome physicists, the other by a 
chance friendship formed on a stalled 
trolley in power-short Rome with a 
young bacteriologist, led him to a re
search post in generous anti-Fascist Par
is. He learned both research and po
litical concern there, until the Germans 
marched too close. By the summer of 
1941 Luria and the German emigre the
oretical physicist Max DelbrUck, whose 
piece on the gene as a molecule had 
drawn the dreaming Luria along with 
him on the road to a genuine biophysics, 
were seasonal colleagues at Cold Spring 
Harbor on Long Island and were secure 
from the wars. 

The organisms were called bacterio
phage because they ate bacteria. It was 
not the right term; the phage group pre
ferred to talk of bacterial virus parti
cles. A virus particle is open to physical 
study; not long after Pearl Harbor, Lu
ria, who to this day is uneasy with tech
nology and finds "even laboratory in
struments forbidding," worked with a 
biophysicist colleague, Tom Anderson, 
to produce with the new RCA elec
tron microscope the first good images of 
phage particles. Radiation, imaging, sta-

tistics; that was how to find out about 
bacterial virus. The time had come for 
sharp reductionism: genes were mole
cules, viruses held strings of genes, and 
their bacterial hosts should be not much 
different, however biochemists might 
demur. Molecular biology was budding 
in those wartime years: one red bread 
mold gene made one enzyme. It looked 
as though what entered to permanent
ly transform the pneumococcus was the 
substance DNA, and phage was more a 
tiny inert proteinaceous structure load
ed with nucleic acids than a hungry 
predator on bacterial cells. 

The experiments showed that a few 
bacteria always survived the fiercest at
tack of phage. Were these survivors re
sistant by some chemical action set up 
by contact with phage or were they born 
resistant by genetic inheritance? A slot 
machine at a weekend faculty dance at 
Indiana University gave Luria the con
cept of his test, and half of the title of his 
book. Steady losers trickled coins into 
the machine, but once in a while some
one would hit the jackpot. The fluctu
ations are uncommonly large. It was 
not hard to devise a scheme to study 
the fluctuations in phage resistance. By 
Tuesday afternoon the first experiments 
were finished. If mixing with phage in
duces rare resistants in a large colony of 

bacteria, the fluctuations will be small. 
If the resistants occur by spontaneous 
mutation in the course of growth, how
ever, there will be some that mutate ear
ly, to leave huge numbers of their resis
tant progeny. Jackpot! Resistance was 
genetic. The physicists had chosen the 
right metaphor; individual spontane
ous events worthy of study can happen 
to particles. Bacteria were overnight el
evated to genetic leadership; no other 
forms could be studied genetically in 
such large numbers so quickly. 

Nobel prizewinner Luria counts one 
even more important result to his credit. 
It was a chance result that depended on 
a broken test tube. What he was after 
was to see what happened when certain 
bacterial mutants appeared to be infect
ed by the virus but did not give rise to 
more virus in their turn. Never a partic
ularly neat worker, Luria lost with that 
tube the entire supply of phage-sensitive 
bacteria he was about to test. The re
placement he could borrow quickly was 
a sample of a different bacterial species. 
Those bacteria should have worked as 
well. In fact, they worked too well: they 
yielded plenty of infectious phage. The 
effect had not been the failure of phage 
to engender phage progeny but rather 
the copious production of a modified 
phage, one restricted in its host range, 
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able to grow on the borrowed strain but 

not on the original. It turns out that 

some bacteria can become immune be

cause they develop specific enzymes to 

cut intruding DNA at particular cod

ed positions. Such restriction enzymes 

are now the indispensable tools of DNA 
manipulation. 

These two discoveries lie at opposite 
poles of style in science. The fluctua
tion test was an apt product of the free 
imagination. If Luria had not hit on it, 
probably no one else would have. The 
proof of spontaneous bacterial muta
tion would nonetheless have come soon 
by the route pioneered by Joshua Led
erberg, a clever but much more straight
forward technical device able to reach 
the conclusion without explicit statis
tics. Phage modification and the restric
tion enzymes were found by following 
up on an accidental revelation; if that 
tube had not broken, some other phage 
investigator would have come on them 
within a year or so in systematic trial. 

Three men won a Nobel prize for 
phage in 1969: Luria, DelbrUck and Al
fred Hershey. Max was surer of him
self, organized, convivial, but he regard
ed politics as a "distasteful joke. " "He 
was certainly not lavish with approval. " 
When Luria's standard monograph on 
viruses appeared, DelbrUck never said 

anything about it to Luria except to 
point out a misprint in a footnote. Her
shey was a loner, silent, his work and 
his writings sharing "a spare elegance. " 
Asked once for his notion of heaven, 
Hershey answered: "'To find a perfect 
experiment and do it every day for the 
first time.' " 

About a third of Luria's autobiogra
phy treats these external topics, always 
briefly and clearly. There is all too little 
of younger years in Turin, Rome and 
Paris; even so they are convincingly 
present. The book nonetheless achieves 
much more; it is at once confessional 
and analytic of motive. Organized by 
development rather than by calendar 
alone, the text outlines what Luria did 
and who he is by describing the growth 
of his personal set of commitments, ac
tive guides to action within this or that 
sphere of a long and reflective life. 

Luria's mind and heart are held by the 
search for pattern, pressed through the 
solution of problems in quest of a grow
ing and demonstrable order. His is an 
active and participant mind; the large 
but often vague questions of origins and 
the cosmos do not attract him, and pas
sive surrender to entertainment is rare. 
"Theater I love," but it is the actor's viv
id performance rather than the play that 
attracts. (He reports that in spite of per-

vasive exposure, he has watched just one 
program on television in a lifetime. ) An
tipathetic to all sports, he is a dedicated 
worshiper of the indoors, and he would 
not so much as pick up an experimental 
crab with his fingers. "There was some
thing forbidding to me in the appear
ance of the sun-etched, bearded giants 
in jeans and sailing clogs who used to 
populate nature-study laboratories . . .  at 
Woods Hole (before a crowd of tennis
playing biochemists came to take their 
place). " Science is conceptual clarity 
for this logical Piemontese of the labs; 
biology is inward order and not bemus
ing diversity. 

It is unlikely any other well-known 
scientist could recount that for years 
he had invited the new graduate stu
dents weekly to his home for "a Sunday
night literary seminar. " There they read 
works around one high theme, say good 
and evil, the Greeks to Hesse, Proust 
and the Gita, as their mood and the am
bience led them. Even less expected is 
Luria's love for poetry; he can still re
cite school-day set pieces, and within the 
past decade he has come to know and 
love the moderns, a Roethke or a Rich. 
Here again it seems that pattern is his 
aim; the characters of Shakespeare ap
pear rather shallow to him. It is what 
they say, not what they are, that is so 
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purchase Power-base at any computer dealer. 

TODAY FOR YOUR COMPLETE � ____ �\ WE MADE IT POWERFUL. 
POWER-BASE,M DEMO .� \\ __ BU_T _W _E K_E_PT_IT_SI_MP_LE_. _ 
Experience Power-base'M � yourself. Send $10 with � � 0 Send me my demo copy of Power-base'" 1 

the completed coupon � , ��.. Mail to: PowerBase SystClns, Inc. Dept. A-I 1 
below for your "-- �:;.�� ... - � .,.... 12 West 37th Street. NY. NY 10018 1 
Power-base demo. 

2/''''' � �� NAME T[TLE 1 
ADDRESS 

1 1 
1 

�CI�T�Y ________________________ S�T�AT�E� ____ -=Z[�P_________ 1 
o My SIO CHECK [S ENCLOSED -, . --==;;=:==--=-==-� - �- -'-1 0 VISA 0 MASTERCARD # EXP DATE 1 

--�:--- - *For use on the IBM PC and PC/XT or compatibles_ Power-base and DataZOOM are trademarks 
Lof =er::'S>=s,�IB!!!C ='IB�/�rC�t=r=ar:: (:!M�:r:.!,!;mJ 
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Hitachi's visual-tactile robot can handle objects as fragile 
as eggs, because its sensors detect size, shape and required pressure 
to attain sensitivity almost equal to that of a human hand. 
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Nearly two decades ago, Hitachi began turning 
common science fiction into startling industrial 
fact. The device: The company's first servo
manipulator, a key component in the develop
ment of real robots to eliminate the monotony, 
danger and dirty work of manufacturing. 

Your mechanical right-hand man 

Today, the results of Hitachi research are in 
use all around you. Robot welders using micro
computers and built-in sensors to detect weld 
lines automatically. Spray-painting robots 
capable of remembering up to 2,000 instruc
tions and performing 99 different painting tasks. 
Process robots that can be programmed for 
new job functions through a simple teaching 
box. Robots on wheels for transporting parts 
and warehouse stock. 

Our electronics and mechanical engi
neering experts have joined their talents to give 
robots the benefits of high technology. They 
have created models with expanded memory 
capacities and advanced sensing systems. 
And they have applied them in Hitachi's own 
factories, where our production specialists 
suggest further refinements. 

In fact, we are constantly coming up with 
innovations and new applications. One of the 

latest: A visual-tactile sensing robot with multiple 
arms and seven camera eyes, developed to 
independently assemble home appliances such 
as vacuum cleaners. 

These examples demonstrate a few of the 
ways in which Hitachi is improving upon basic 
technology. Then using it to create practical 
tools that meet your needs ... and those of 
professionals in marine exploration, aerospace, 
and virtually every other field you can name. 

The best of worlds is yet to come 

Our vision of the future includes robots with 
artificial intelligence that will learn from their own 
experiences. Flexible manufacturing systems 
where robots handle every step of production. 
Personal robots that will take the drudgery out 
of household chores. And much, much more. 

We'd like you to share in the benefits of 
our scientific research, covering the next genera
tion of lasers, sensors and other electronic 
devices. For improved business efficiency. For 
a higher quality of life. Two goals we've pursued 
for 74 years as part of our commitment to a 
better world through electronics. 

WE BELIEVE ROBOTS FREE MINDS TO CREATE BY FREEING BODIES FROM TOIL 

*HITACHI 
Robotics GrouP. Industrial Components Sales & Service Division, Hitachi America, Ltd .. 50 Prospect Avenue, Tarrytown, NY t0591-4698 Tel: 914-332-5800 
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all <,SI W" "" Write or c �':.L. 
for a free catalog �;� .. .'i1 

Allen-Edmonds Shoe Corp. Belgium, Wisconsin 53004 
1-800-558-8653, Telex 260021 

In Wisconsin, 1-800-242-7220 

riveting, as in the modern poets word 
sounds and concept may fit. 

Existential as a matter of philosophi
cal stance, Luria has long been a demo
cratic socialist, his view based neither on 
reasoned study nor on mere allegiance 
to a political creed. He has chosen to 
cast his lot with social justice and hu
man equality. He has been a firmly gen
tle, if sometimes sharp-penned, radical, 
anxiously alert to effective compromise. 
Some of his best political work was done 
over the telephone, say in persuading 
editors to publish statements of dissent. 
For more than 70 years he has watched 
dismayed the war and slaughter of our 
century. "I dread [that] I may yield to 
the temptation to tend my own garden. 
Could I then preserve my self -respect? " 

Would you know more of a scientist 
and a man? More is here: rightful if un
common praise for his first-and best
graduate student, James D. Watson, and 
the honest but artful book Jim wrote 
about the double helix, all intensity, ar
rogance and joy. There is an appre
ciation of his long good marriage to 
Zella Hurwitz, a psychologist and teach
er of integrity and distinction, her work 
as thorough in commitment to complex 
human issues as Luria's to the colony 
count. There is a little about his enemies, 
most of them the users of cant. He ac
cepts no claim by science either to "re
sponsibility for [or] absolution from the 
problems of society. " Finally, we learn 
of his severe depressions, a frequent dis
ability over the decades. For 10 years 
Luria has been freed of his fear by intel
ligent chemotherapy, long delayed in 
the finding. 

It is easy to admire this cultivated, 
ironic man and his lucid, pointed book 
of an enviable life founded alike on rea
son and on commitment. For readers 
who find empathy for the growth of can
dor and self-awareness as the chapters 
pass, admiration will be colored with a 
deeper cast. There are no modern auto
biographies and not many novels that 
can more reward readers young enough 
to find the grand choices in life still 
before them. The reward is of course 
not one path for Everyman but instead 
a way of going on. 

THE PLANIVERSE: COMPUTER CON

TACT WITH A TWO-DIMENSIONAL 

WORLD, by A. K. Dewdney. Simon & 
Schuster, Inc. ($16.95). Yendred was 
shocked to learn that the humans 
around the terminal his own was linked 
to by some mysterious informational 
resonance had a food channel running 
clear through their bodies. "Why do you 
not then fall into two pieces? " he sensi
bly asked. Yendred is a sentient two-di
mensional creature, living on-oJ in-a 
disk planet lost somewhere in the depths 
of planiversal 2-space. All we know of 
him and his kind we find in this unique 
account by a Canadian mathemati-
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cian, whose name by some ooincidence 
resembles after simple transformation 
that of his alien friend. Naturally the 
people of planet Arde must eat j ust as 
we do, but they manage a connected ex
istence on the model of some Earthly 
marine animals. They must eject the in
d igestible portion of their food after al
lowing time for absorption within their 
d igestive pouch, which has no second 
outlet. Their two-dimensional biology, 
like their geology, hydrodynamics, do
mestic and industrial technology, man
ners, travels and much more, are pre
sented in description and diagram. All 
of this was learned, we are told,  in a 
fragmentary and personal way d uring 
long days at the graphics terminal, once 
a group of college students had made 
the still-mysterious contact. ended by 
a strange metaphysical conversion. "To 
talk again is of no benefit," the newly 
mystic Yendred said near the end. 

This is  original science fantasy, as 
much done in the popular .accents of 
these years, all jargon lang uage, hackers 
and cult events, as the famous Flatland 
was an authentic piece of higfi Victorian 
social irony. That work has its centenary 
this very year. The science behind the 
planiverse is  much richer and more so
phisticated than Edward Abbott's was, 
and the everyday observations are as 
compelling. It is a delight to read how 
that flat world manages construction: 
nails and saws, of course, are not usable, 
glue dominates fastenings, and plywood 
is a. useful composite of hairlike ele
ments. Every lowland house-dug into 
the Ardean ground-must have its emer
gency oxygen tank. A minor flood there 
is no mere expensive inconvenience: it 
cuts off the air. Sexual life in this 2-D 
society is examined, as contemporary 
fictional form requires. Its nature can be 
grasped through a scene in which Yen
dred, a night traveler in a d istant indus
trial city, is accosted by a young female. 
"You my egg to buy do want? It a beau
tiful blue is and very large and good to 
sit upon." Again Earthly natural history 
has provided in certain crayfish a mod
el adaptable to an intelligent species in 
two d imensions. 

Information technology is well ob
served. A book is reproduced here, 
although at rather poor resolution. It 
looks exactly like the cross section of an 
Earth book; the line-pages hold about 
one sentence each, written in a d ot-dash 
alphabet. Linear information storage is 
costly, and so books are few, terse and 
rapidly recycled, to prevent inundation 
by best sellers. Only true classics are en
shrined in the big libraries, each shelving 
1,000 volumes (areas?) or so. A second 
and more conservative nation across the 
mountains from Punizla has a d ifferent 
style. There it  is held impious to try to 
improve on the old masters, so that few 
new works are approved, and then only 
after a trial period in a single copy. A 

THE BEST GIN GROWS ON TREES. 
The driest and 

most delicate gin of all, 
in fact, comes from the 
tree at the left: the 
family tree of james 
Burrough, a distiller in 
19th century London. 

Burrough had a basic philosophy: if 
you want a thing done right , do it yourself. 
Not a single distillation of his Beefeater Gin 
left his distillery till it was approved by 
James himself. 

He wasn't much of a delegator, but 
he made a beautiful gin. 

His philosophy has been handed 
down through succeeding generations of 
the Burrough family, who still supervise 
each day's r.un and approve each batch of 
Beefeater before it leaves the distillery. 

The apple never falls far from 
the tree. For which gin drinkers to this day 
are profoundly grateful. 

The Crown Jewel of England:" 

Joggin& Swimmin& or Cycling ... 

ordlcjrack 
jarless Total Body 

Cardiovascular Exerciser 
Duplicates X-C Skiing for the 

Best way to Fitness 

Cross-country skiing is often cited by physiologists 
as the most perfect form of cardiovascular exercise 
for both men and women. Its smooth, fluid, total 
body motion uniformly exercises more muscles so 
higher heart rates seem easier to attain than when 
jogging or cycling. NordicTrack closely simulates the 
pleasant X-C skiing motion and provides the same 
cardiovascular endurance-building benefits-right 
in the convenience of your home, year ·roWld. 
Eliminates the usual barriers of time, weather, 
chance of injury, etc. Also highly effective for weight 
control. 
More Complete Than Running 
NordicTrack gives you a more complete work out
conditions both upper body and lower body 
muscles at the same time. Fluid. jar/ess motion does 
not cause joint or back problems. 
More Effective Than Exercise Bikes 
NordicTrack's stand-up skiing motion more un i-

PSI 124F Columbia 

formly exercises the large leg muscles and also adds 
important upper body exercise. Higher pulse rates, 
necessary for building fitness, seem easier to attain 
because the work is shared by more muscle mass. 

Even BetterThan Swimming 
NordicTrack more effectively exercises the largest 
muscles in the body, those located in the legs and 
buttocks. When swimming, the body is supported 
by the water, thus preventing these muscles from 
being effectively exercised. T he stand up exercising 
position on the NordiCfrack much more effectively 
exercises these muscles. 
A Proven, High Quality Durable Product 
NordiCfracks have been in production since 1976. 
NordicTrack is qUiet, motorless and has separately 
adjustable arm and leg resistances. We manu
facture and sell direct. Two year warrantee, 
30 day trial period with return privilege. • . 

Folds and stands on end 

�' , !�:���i��c�Y 15" x 17" • t, · 
Call or write for... • .. , 
FREE BROCHURE "�I r 
Toll Free 1-800-328-5888 . . , 
Minnesota 612-448-6987 _ 

MN -
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Say goodbye to the Tower of Babel 

to CP/M to MS-DOS to CP/M to PC-DO� 

Format, Read" Write. 
It's a piece of cake 

with 
XENO COPY PLUS 2.0lM 
New! Version 2.0 formats 
70 alien disks. Copy files 
to and from DOS in your IBM PC. 
No need for exasperating serial links or modem madness. All formatting 
and file transfers are easily accomplished on your Pc. Runs on most 
PC-compatibles too. XENO-COPY PLUS 2.0. . . . . . . . . . . . . . . . . . . .. $149.50 
Also available: 
• ADVANCEDTM Option ..... " . . . . . . . . . . . . . . . . . . . . . . . . ... add $50.0 0 

Supports 8:' 96 TPi. parameter input for other formats. 

• XENO DISKTM. . . . . . . . . . . . . . . . . . . . . . .................... $379.50 
Turn your PC into a disk production machine. Many features. 

• 80-MATETM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $149.50 
A CP/M 22 emulation utility RUN CP/M PROGRAMS UNDER DOS 
without an expensive co-processor board. Includes video emulation. 

See your dealer or call for information. 

������sY�l�� Inc. 

Dept. A, 6022 West Pi co Blvd. 
Los Angeles, CA 90035 
(213) 938-0857 

IBM is a registered trodemarlt of Internaflonal Business Machines CorlXlrction. CP/M is a registered trademark ot Digilal Research. 

MS OOS Is a trademark of Microsoft Corp. 

painting is also reproduced in widened 
form; it resembles the bar code on the 
supermarket package. The projection 
used by most painters there in the flat 
forces them to render many different ob
jects with a single sequence of dots. That 
lends a creative ambiguity to painting, 
familiar to us in several periods. 

An appendix to the book itself goes 
into more detail about the nature of that 
2-D world. The most unexpected result 
corrects a position a couple of decades 
old. It was argued that a brain complex 
enough to support an intelligent being 
could not be built in two dimensions: the 
number of neural connections cannot be 
large enough without the possibility of 
crossing neurons. The geometric argu
ment is simply naive. All that is needed 
is to send two pulses toward each other 
as though their fibers could cross. Nat
urally they cannot cross in 2-D. It is 
enough, however, to split each fiber and 
let the pulse move along each member 
of the new pair. A small array of relay 
and rectifier cells at the fourfold junc
tion simply generates outgoing pulse 
trains able to mimic any two patterns 
entering, to relay them along the two 
distinct outgoing paths. That crossing, 
impossible passively, has simply been 
simulated dynamically. Axleless gears 
with concave teeth and clever trains 
of swinging cams manage to perform 
in two dimensions the usual tasks per
formed by clockwork. 

Not every reader will find the cam
pus-born fictional form of this original 
book an aid to the enjoyment of its inge
nious 2-D world, both the scientific and 
the everyday. Its substance is nonethe
less a delight, along with its recruitment 
of powerful theoretical aid to treat, if 
only briefly, the implications of rel
ativity, electromagnetism, gravitation 
and quantum theory in two dimensions. 
There is wide interest in the answers, 
and it is pretty plain that the last word is 
still to come. Students ought to find 
challenge here for years. Readers will 
recognize with pleasure that the author 
of The Planiverse is now to be observed 
monthly in this magazine at his intel
lectual dance, both antic and powerful, 
within the theater of software. 

THE ECOLOGICAL IMPLICATIONS OF 

BODY SIZE, by Robert Henry Peters. 
Cambridge University Press ($29.95). 
The First Law is ineluctable: what goes 
into an animal must come out, account
ing over life and death alike, allowing 
for both energy and material. The ther
modynamic books must balance; that 
allows the calculation of many partial 
accounts, from defecation to respira
tion, reprod uction, locomotion and a 
variety of vital rates and flows. On that 
unshakable foundation this McGill bi
ologist has built a brief and engaging 
quantitative monograph, frank, learned, 
painstaking and made explicitly helpful 
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to readers with little mathematical expe- ' 

rience. Its overall aim is the use and re

flection on one grand quantitative em

pirical generalization: the effect of body 

size on animal metabolism as a predic

tive tool for ecology. 
After two introductory chapters, one 

philosophical, one mathematical, we are 
caught up in the substantive flow of the 
work. That cen·ters on critical examina
tion of the power laws, usually shown 
as empirical points tightly scattered 
around straight lines on log-log plots, 
that broadly fit relations between the 
size of organisms of all kinds and a wide 
variety of their physiological and func
tional features. These plots make visual 
some 60 tabular pages of well-docu
mented results from the copious litera
ture, spanning diversity such as the mass 
of the pancreas in a couple of hundred 
species of primates, the swimming speed 
of salmon at various water tempera
tures, the liver DNA content of mam
mals, the egg mass of crustaceans and 
the urine prod uction of frogs. All are 
expressed as best fits to a power law in 
body weight. One summary graph plots 
88 physiological functions, matching 
the empirical best-fit slope with the ex
ponent expected from a dimensional 
analysis based on the single key rela
tion between body weight and metab
olism. The points cluster impressively. 
The data themselves remain in the 500 
references cited. 

One dramatic example of these rela
tions is offered by "the gothic calcula
tion that, on average, a full life is me
tered by each of 250 million breaths and 
1.2 billion contractions of the heart." 
For mammals and birds, at least, that 
invariant result holds well: the fast-beat
ing pulse of the tiny, short-lived shrew 
scales neatly up to the great slow rhythm 
of the elephant's heart, a beat main
tained over most of a century. Physio
logical time fixes population times, en
tailing that a long time among plankton 
populations is only a moment for big 
fishes. Simulations that correctly scale 
individual growth and reproduction con
firm that populations of creatures of 
differing size ought to vary by predict
ably differing clocks. 

The relation between species popula
tion density and body size is less clear. It 
may well be that the simplest relation, 
according to which each species tends 
toward equal total mass, the head count 
going inversely with individual weight, 
is no poor guide for all life forms. The 
relation would imply an equal biomass 
in each logarithmic size class of organ
isms. It seems to work rather well for 
marine samples, where chemical or op
tical means can nowadays catch ev
erything in. their subtler logarithmic 
meshes. The particle size is measured 
automatically Tight along with the head 
count (if we may generalize the notion 
of a head to animals and plants that are 

Say goodbye to the Tower of "APPLE" Babel 

VI to APPLE to IBM to APPl 
File Transfers 

are easy as pie 
with 

APPLE· TURNOVERa. 
READ, WRITE, and FORMAT Apple© II DOS 3.3 and Apple 
CP 1M disks in your PC or most compatibles. 

No need for exasperating serial links or modem madness. 
Leave your Apple where it is. All formatting and file-transfers 
are easily accomplished on your PC. 

The APPLE-TURNOVER package consists of a half-sized card, 
friendly supporting software, and complete documentation. 
$279.50. 
See your dealer or call for information. ���������� rtex Dept. A. 6022 WestPico Blvd. 

Los Angeles, CA 90035 
sys1ems. inc. (213)938-0857 

INNOVATION IN MICROCOMPUTER PRODUCTS 
Apple is a registered trodemon.: 01 Apple Computer Inc. IBM Is 0 registered trademark of IntemoHonaI Business Machines Corporation. 
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THE 80286 IS IN STOCK! 
Get a h ead start on the competit ion!  The M icroWay* 

MWS- 286 Com puter uses the most sophist icated I ntel 
tech nology, i nc lud ing the 80286, 80287 and 8089 
processors, g iv ing you super- m icro performance for as 
l itt le  as $8,600. Th is  processor com bination is ideal for 
m u lti- user operati ng systems. It ru ns either Xen ix-286, 
an I ntel adaptat ion of M icrosoft Xen i x  that uses special  
hardware to manage memory, or  M icroWay's Real Time 
M u lt i-Tasking Operat i ng System RTOS-286. M S- DOS is 
avai lable for Si ngle- user work stat ions. 

A typical m u lt i - user system incl udes a seven- slot 
mu It ibus backplane, 230- watt power su pply, 51 2 K bytes 
of h igh- speed, e rror- correct i ng ram, two Single-board 
computers which manage a l l  I /O, and a Master s ing le
board computer - the I ntel  iSBC- 286/ 1 0, which has six 
t imes the t h roug h p ut on an 8088. The m u lt ibus arch itec
t u re e m ployed makes it possible to control up to l ight  
drives and 1 4  serial l ines without bogging down the main 
cpu. Standard drives include a 1 9  or  40 megabyte 
Winchester, 360 K byte f loppy and five megabyte Syq uest 
removable Winchester that is ideal for backu p or storage 

of data M ult i - user systems start at $ 1 3,900. Service on 
al l hardware is avai lable nationwide t h rough I ntel and 
most config u rations are avai lable for i m m ediate del ivery. 

MicroWay™ 8087 SUpport 
87 FORTRAN/RTOS'· - our adaptation of 
the I ntel Fortran-86 Compiler generates in l ine 
8087 code using al l  8087 data types including 
80-bit reals and 64-bit i ntegers. The compiler 
uses the I ntel large memory model, al lowing 
code/data structures of a full  megabyte, and ��fg�:��;�rlays.
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87 PASCAL/RTOSm is I ntel's ISO
Standard Pascal with 8087-8088 exceptions. 
These make it possible to use all the 8087 data 
types d irectly, whi le generating modules in one 
of the three I ntel Memory Models. I ncludes 
RTOS and support for one year . . . . . . . . .  $1 350 
RTOS DEVELOPMENT PACKAG E 
includes 87 FORTRAN, 87 PASCAL, PUM-86, 
Util ities, TX Screen Editor and RTOS . . . .  $2500 
REAL TI M E  M U LTI-TASKI NG/ 
M U LTI- USER EXECUTIVE - RTOS 
RTOS is a M icroWay configured version of 
i R M X-86. I ncludes ASM-86, L l N K-86, LOC-86, 
L l B-86, and the ROM H ex Loader .  . . . .  . .  $600 
OBJ �ASM'· - a multipass object module 
translator and d isassembler. Produces 
assembly language l istings which include public 
sym bols, external symbols, and labels 
com mented with cross references. Ideal for 
understanding and patching object modules 
and l ibraries for which source is not 
avai lable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $200 

so 

I nformation and Orders -
61 7-746-7341 

Un iversity, Corporate and 
Govern ment Buyers -

61 7-746-7364 

M- P.o. Box 79 lero Kingston, Mass. 

'JI'alU 02364 USA " WI r.I (6 1 7) 746-734 1 

PC TECH JOU R NAL R EVI EW: 
"The M icroWay package is prefer
able . . .  it executes the basic opera
tions more rapidly and M icroWay 
provides a free u pdate service." 

87 BASICm i ncludes patches to the I B M  
Basic Compiler a n d  both runtime l ibraries for 
USER TRANSPARENT and COMPLETE 8087 
support Provides super fast performance for all 
numeric operations including trigonometrics, 
transcendentals, addition, subtraction, 
multipl ication, and division . . . . . . . . . . . . . . . . $1 40 
87 BASIC/I N LI N Em generates in l ine 
8087 code! Converts the I BM Basic Compiler 
output into an assem bly language sou rce listing 
which al lows the user to make additional 
refinements to his program. Real expression 
evaluations run five times faster than in 
87 BASIC . . . . . . . . .  . . . . . . .  $200 
87 MAC RO'· - our complete 8087 software 
development package. It contains a " P re
processor," source code for a set of 8087 
macros, and an object l ibrary of numeric 
fu nctions including transcendentals, 
trigonometrics, hyperbolics, encod ing, 
decoding and conversions . . . . . . . . . . . . . . . . $1 50 
87 DEBUGm - a professional debugger with 
8087 su pport, a sophisticated screen-oriented 
macro command processor, and trace features 
wh ich include the abil ity to skip tracing throug h 
branches to calls and software and hardware 
interrupts. Breakpoints can be set in code or on 
guarded addresses in RAM . . . . . . . . . .  $1 50 
FOR � BAsm - a library of interface routines 
which allow MS Fortran programs to cal l  the 
IBM Basic Compiler l ibrary and access features 
such as the RAN DOM N U M BER G E N E RATOR, 
SOU N D, PLAY, D RAW and SCREEN 
commands . . . . . . .  . . . . . . . . . . . . . . . .  $1 50 

You Can 
TalkToUs! 

8087 -3 C H I P  . . . . . . . . .  $1 75 
including DIAGNOSTICS and 1 80-day warranty 64K RAM Set. . . . . . . $4750 
MATRIXPA� manages a M EGABYTE! 
Written in assembly language, our runtime 
package accurately manipulates large matrices 
at very fast speeds. I ncludes matrix inversion 
and the solution of simultaneous linear equa
tions. Callable from MS Fortran 3.2, 87 MACRO, 
87 BASIC, and RTOS . . . . . . . . . . . . . . . .  each $1 50 
87/88GUI DE. . . . . . . . . . . . . . . . . . . . . . . . . . . $30 
MICROSOFT FORTRAN 3.2 . . . . $239 
MICROSOFT PASCAL 3.2 . . . . . .  $209 
These I EEE compatible compilers support 
double precision and the 8087 

MICROSOFT C COM PI LE R  includes 
Lattice C and the MS Librarian . . . . . . . . . . . $350 
LATTICE C with 8087 support . . . . . . . $350 
FLOAT87 for M S  C . . . . . . . . . . . . . . . . . . . . . . . . . 1 25 
SuperSoft Fortran 66 . . . . . . . . . . . . . . . . . . . . . . . 329 
Computer Innovations C86 . . . . . . . . . . . . . . . . .  345 
STSC APL* PLUS/ PC . . . . . . . . . . . . . . . . . . . . . . 500 
TURBO PASCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
TURBO PASCAL with 8087 Support . . . . . . . . 85 
S I D EKICK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
HALO G RAP H I CS . . . . . . . . . . . . . . . . . . . . . . . .  CALL . 
GRAPHMATIC . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . 1 25 
E N E RGRAPH I CS . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 
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crudely spherical), and in one dream of 
this marine ecologist we may someday 
be able to measure the size spectrum 
of the organisms at any site at sea by 
"simply driving across it in a boat. " 
It is an "extraordinary and audacious 
claim" that the amount of living matter 
in each logarithmic size class is a con
stant "from bacteria to whales ."  No 
doubt the conclusion is only tentative, 
but the speculation is not shown to be 
grossly wrong whether by land or by 
sea; big fierce animals are rare for good 
thermodynamic reason. (Deep-ocean 
submarines are not c urrently reported. )  

Why do physiological rates r ise  with 
body mass as they do, by the three
fourths power? Professor Peters spends 
a few pages on what that "why" could 
mean for a scientist. Waiving all that, we 
do not appear to have a good expla
nation yet. The old workers thought 
animal heat loss was limited by surface 
area, which yields a two-thirds power 
law, pretty surely wrong. It  must be the 
evolutionary engineering that fixes the 
result, since the biochemical properties 
cell by cell lie under the same overall 
law: the minute fuel-making mitochon
dria know what size body they dwell in. 

An ingenious structural explanation 
by Thomas A.  McMahon of Harvard 
works all too well; it derives the very 
result one wants, but it rests on the buck
ling strength of skeletal components un
der load, a principle less than plausible 
applied to the protozoa, say, that none
theless fit the same universal relation. 
M ore abstract versions of d imensional 
analysis work too, but they show the 
same kind of flaw. One recent ver
sion, for example, firmly predicts that 
animals living in water, where not the 
weight but the d isplaced volume should 
measure the demands of aquatic loco
motion, ought to follow a d ifferent scal
ing law. They do not. We have a good 
deal to learn. 

The modest author ends with an ap
peal for more hard work. His text is an 
unequaled review of results in the field, 
although he points out it does not sur
vey the "rich Soviet literature." He sees 
his book as a link between the empirical 
regularities and current ecological theo
ry built on the statistical study of many 
individual results. The critical collec
tion of all these striking yet thin allo
metric relations presents "the greatest 
body of quantitative general theories in 
biology. "  They differ glaringly both 
from our deep qualitative understand
ing of evolution in all its richness and 
from the intricate informational micro
mechanisms of molecular biology that 
support it. Understanding the overall 
criteria followed in the long, slow engi
neering design of the organism seems 
beyond our present reach, although per
haps j ust beyond it. The relations none
theless stand, ready to serve a variety of 
powerful ecological predictions. 
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Computer Software 
Presenting a single-topic issue on the concepts and techniques needed 

to make the computer do one's bidding. It is software that gives form 

and purpose to a programmable machine, much as a sculptor shapes clay 

C
omputers are to computing as in
struments are to music. Software 
is the score, whose interpretation 

amplifies our reach and lifts our spir
it. Leonardo da Vinci called music "the 
shaping of the invisible," and his phrase 
is even more apt as a description of soft
ware. As in the case of music, the in
visibility of software is no more mys
terious than where your lap goes when 
you stand up. The true mystery to be ex
plored in this issue of Scientific American 
is how so much can be accomplished 
with the simplest of materials, given the 
right architecture. 

The materials of computing are the 
tersest of markings, stored by the bil
lions in computer hardware. In a mu
sical score the tune is represented in 
the hardware of paper and ink; in biol
ogy the message transmitted from gen
eration to generation by DNA is held 
in the arrangement of the chemical 
groups called nucleotides. Just as there 
have been many materials (from clay to 
papyrus to vellum to paper and ink) for 
storing the marks of writing, so comput
er hardware has relied on various physi
cal systems for storing its marks: rotat
ing shafts, holes in cards, magnetic flux, 
vacuum tubes, transistors and integrat-

by Alan Kay 

ed circuits inscribed on silicon chips. 
Marks on clay or paper, in DNA and in 
computer memories are equally power
ful in their ability to represent, but the 
only intrinsic meaning of a mark is that 
it is there. "Information," Gregory Bate
son noted, "is any difference that makes 
a difference." The first difference is the 
mark; the second one alludes to the need 
for interpretation. 

The same notation that specifies ele
vator music specifies the organ fugues 
of Bach. In a computer the same no
tation can specify actuarial tables or 
bring a new world to life. The fact that 
the notation for graffiti and for sonnets 
can be the same is not new. That this 
holds also for computers removes much 
of the new technology's mystery and 
puts thinking about it on firmer ground. 

As with most media from which 
things are built, whether the thing is a 
cathedral, a bacterium, a sonnet, a fugue 
or a word processor, architecture domi
nates material. To understand clay is not 
to understand the pot. What a pot is all 
about can be appreciated better by un
derstanding the creators and users of the 
pot and their need both to inform the 
material with meaning and to extract 
meaning from the form. 

INTANGIBLE MESSAGE embedded in a material medium is the essence of computer soft
ware. Here the message is made visible in a voltage-contrast image: a scanning-electron micro
graph of a small part of an Intel 80186 microprocessor. The features of the image are formed 
not by the conductors and transistors on the chip but by the signals passing through them. The 
trajectory of the secondary electrons emitted in response to the microscope beam is affected by 
electromagnetic fields at the surface of the chip: regions of higher voltage attract electrons, 
weakening the image-forming signal. The microscope beam is pulsed on only when the micro
processor is in a particular electronic state: when certain logic elements are "on." The colors of 
the lines indicate the voltages in metal communications lines leading to logic elements. Where 
a signal is traveling along a line there is a region of high voltage. The false-color image has been 
processed so that such regions, and thus "messages," are seen in light blue. Low-voltage regions 
are green, intermediate-voltage regions yellow. The red lines are conductors at ground poten
tial, or zero volts. The micrograph was made by Timothy C. May of the Intel Corporation. 

There is a qualitative difference be
tween the computer as a medium of ex
pression and clay or paper. Like the ge
netic apparatus of a living cell, the com
puter can read, write and follow its own 
markings to levels of self-interpretation 
whose intellectual limits are still not un
derstood. Hence the task for someone 
who wants to understand software is not 
simply to see the pot instead of the clay. 
It is to see in pots thrown by beginners 
(for all are beginners in the fledgling 
profession of computer science) the pos
sibility of the Chinese porcelain and Li
moges to come. 

Here I need spend no more time on 
computing's methods for storing 

and reading marks than molecular biol
ogy does on the general properties of 
atoms. A large enough storage capacity 
for marks and the simplest set of in
structions are enough to build any fur
ther representational mechanisms that 
are needed, including even the simu
lation of an entire new computer. Au
gusta Ada, Countess of Lovelace, the 
first computer-software genius, who 
programmed the analytical engil}e that 
Charles Babbage had designed, under
stood well the powers of simulation 
of the general-purpose machine. In the 
1930's Alan M. Turing stated the case 
more crisply by showing how a remark
ably simple mechanism can simulate all 
mechanisms. 

The idea that any computer can simu
late any existing or future computer is 
important philosophically, but it is not 
the answer to all computational prob
lems. Too often a simple computer pre
tending to be a fancy one gets stuck in 
the "Turing tar pit" and is of no use if 
results are needed in less than a million 
years. In other words, quantitative im
provements may also be helpful. An in-
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crease in speed may even represent a 
qualitative improvement. Consider how 
speeding up a film from two frames 
per second to 20 (a mere order of mag
nitude) makes a remarkable difference: 
it leads to the subjective perception 
of continuous movement. Much of the 
"life" of visual and auditory interaction 
depends on its pace. 

I 

As children we discovered that clay 
I\. can be shaped into any form simply 
by shoving both hands into the stuff. 
Most of us have learned no such thing 
about the computer. Its material seems 
as detached from human experience as a 
radioactive ingot being manipulated re
motely with buttons, tongs and a televi
sion monitor. What kind of emotional 
contact can one make with this new stuff 
if the physical access seems so remote? 

One feels the clay of computing 
through the "user interface": the soft
ware that mediates between a person 
and the programs shaping the computer 
into a tool for a specific goal, whether 
the goal is designing a bridge or writing 
an article. The user interface was once 
the last part of a system to be designed. 
Now it is the first. It is recognized as 
being primary because, to novices and 
professionals alike, what is presented 

HLL 

FORTRAN 

LLL 

ASSEMBLY 
LANGUAGE 

ALGOL 
LISP 

1950 1956 1961 1966 

to one's senses is one's computer. The 
"user illusion," as my colleagues and 
I called it at the Xerox Palo Alto Re
search Center, is the simplified myth 
everyone builds to explain (and make 
guesses about) the system's actions and 
what should be done next. 

Many of the principles and devices 
developed to enhance the illusion have 
now become commonplace in software 
design. Perhaps the most important prin
ciple is WYSIWYG ("What you see is what 
you get"): the image on the screen is 
always a faithful representation of the 
user's illusion. Manipulating the image 
in a certain way immediately does some
thing predictable to the state of the ma
chine (as the user imagines that state). 
One illusion now in vogue has "win
dows," "menus," "icons" and a pointing 
device. The display frames called win
dows make it possible to present a 
number of activities on the screen at 
one time. Menus of possible next steps 
are displayed; icons represent objects 
as concrete images. A pointing device 
(sometimes called a mouse) is pushed 
about to move a pointer on the screen 
and thereby select particular windows, 
menu items or icons. 

All of this has given rise to a new gen
eration of interactive software that capi-

UHLL 

1972 1978 1983 

SOFTWARE GENRES succeed one another at sporadic intervals, as is shown here through the 
example of some programming languages. Languages are categorized rather arbitrarily by lev
el, although the levels (colored ballds) overlap. There are low-level languages (LLL), high
level languages (HLL), very-high-Ievel languages (VHLL) and ultrahigh-level languages (UHLL). 
In the evolution of programming languages a genre is established (horizontal white lilies), then 
after a few years

, 
an improvement is made (curved white lilies). In time the improved language 

is seen to be not merely a "better old thing" but an "almost new thing," and it leads to the next 
stable genre. The language Lisp has changed repeatedly, each time becoming a new geQre. 
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talizes on the user illusion. The objective 
is to amplify the user's ability to simu
late. A person exerts the greatest le
verage when his illusion can be manip
ulated without appeal to abstract inter
mediaries such as the hidden programs 
needed to put into action even a sim
ple word processor. What I call direct 
leverage is provided when the illusion 
acts as a "kit," or tool, with which to 
solve a problem. Indirect leverage will 
be attained when the illusion acts as 
an "agent": an active extension of one's 
purpose and goals. In both cases the 
software designer's control of what is 
essentially a theatrical context is the key 
to creating an illusion and enhancing its 
perceived "friendliness." 

The earliest computer programs were 
designed by mathematicians and sci

entists who thought the task should be 
straightforward and logical. Software 
turned out to be harder to shape than 
they had supposed. Computers were 
stubborn. They insisted on doing what 
was said rather than what the program
mer meant. As a result a new class of 
artisans took over the task. These test 
pilots of the binary biplane were often 
neither mathematical nor even very sci
entific, but they were deeply engaged 
in a romance with the material-a ro
mance that is often the precursor of 
new arts and sciences alil;.e. Natural sci
entists are given a universe and seek 
to discover its laws. Computer scien
tists make laws in the form of programs 
and the computer brings a new universe 
to life. 

Some programmers breathed too 
deeply of the heady atmosphere of cre
ating a private universe. They became 
what the eminent designer Robert S. 
Barton called "the high priests of a low 
cult." Most discovered, however, that it 
is one thing to be the god of a universe 
and another to be able to control it, and 
they looked outside their field for design 
ideas and inspiration. 

A powerful genre can serve as wings 
or chains. The most treacherous meta
phors are the ones that seem to work for 
a time, because they can keep more 
powerful insights from bubbling up. As 
a result progress is slow-but there is 
progress. A new genre is established. A 
few years later a significant improve
ment is made. After a few more years 
the improvement is perceived as being 
not just a "better old thing" but an 
"almost new thing" that leads directly 
to the next stable genre. Interestingly, 
the old things and their improvements 
do not disappear. Strong representatives 
from each past era thrive today, such 
as programming in the 30-year-old lan
guage known as FORTRAN and even in 
the ancient script known as direct ma
chine code. Some people might look 
on such relics as living fossils; others 
would point out that even a very old 
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species might still be filling a particular 
ecological niche. 

The computer field has not yet had its 
Galileo or Newton, Bach or Beetho

ven, Shakespeare or Moliere. What it 
needs first is a William of Occam, who 
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said "Entities should not be multiplied 
unnecessarily." The idea that it is worth
while to put considerable effort into 
eliminating complexity and establishing 
the simple had a lot to do with the rise of 
modern science and mathematics, par
ticularly from the standpoint of creating 
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new aesthetics, a vital ingredient of any 
growing field. It is an aesthetic along 
the lines of Occam's razor that is need
ed both to judge current computer soft
ware and to inspire future designs. Just 
how many concepts are there really? 
And how can metaphor, the magical 
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INHERITANCE PROGRAMMING shows the power of differen
tial description. A generic "object" (top) is displayed as a cloud. One 
can make a rectangle from the undifferentiated object by saying, in 
effect, "I want something just like that, except ... ," and then specifying 
such properties as the location of the origin (the upper left corner), 
the width, the height and so on. A further elaboration of the idea is a 
"window," a rectangular area of the display screen that gives a view of 
the output of a program. In creating a window one can allow it to "in-
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herit" applicable properties of the rectangle and add new features 
such as scroll bars (to move the window about over the material being 
viewed), a title and facilities for changing the window's size and posi
tion. A more complex window with panes is made by adding new 
display methods to shape the panes and establish communications 
among them (colored arrows). Paned windows can be manipulated to 
make "browsers": systems enabling one to retrieve resources without 
remembering names. Four examples of browsers are shown (bottom). 
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process of finding similarity and even 
identity in diverse structures, be put to 
work to reduce complexity? 

The French mathematician Jacques S. 
Hadamard found, in a study of 100 lead
ing mathematicians, that the majority of 
them claimed to make no use of symbols 
in their thinking but were instead pri
marily visual in their approach. Some, 
including Einstein, reached further back 
into their childhood to depend on "sen
sations of a kinesthetic or muscular 
type." The older parts of the brain know 
what to say; the newer parts know how 
to say it. The world of the symbolic can 
be dealt with effectively only when the 
repetitious aggregation of concrete in
stances becomes boring enough to moti
vate exchanging them for a single ab
stract insight. 

In algebra the concept of the varia
ble, which allows an infinity of instan
ces to be represented and dealt with as 
one idea, was a staggering advance. Met
aphor in language usually accentuates 
the similarities of quite different things 
as though they were alike. It was a tri
umph of mathematical thinking to real
ize that various kinds of self-compari-

son could be even more powerful. The 
differential calculus of Newton and 
Leibniz represents complex ideas by 
finding ways to say "This part of the idea 
is like that part, except for. . . .  " The 
designers of computing systems have 
learned to do the same thing with dif
ferential models, for example with pro
gramming methods that have the prop
erty called inheritance. In recent years 
models based on the idea of recursion 
have been formulated in which some of 
the parts actually are the whole: a de
scription of the entire model is needed to 
generate the representation of a part. An 
example is the fractal geometry of Be
noit B. Mandelbrot, where each subpart 
of a structure is similar to every other 
part. Chaos is captured in law. 

Designing the parts to have the same 
power as the whole is a fundamental 
technique in contemporary software. 
One of the most effective applications of 
the technique is object-oriented design. 
The computer is divided (conceptually, 
by capitalizing on its powers of simula
tion) into a number of smaller comput
ers, or objects, each of which can be giv
en a role like that of an actor in a play. 

The move to object-oriented design rep
resents a real change in point of view-a 
change of paradigm-that brings with 
it an enormous increase in expressive 
power. There was a similar change when 
molecular chains floating randomly in 
a prebiological ocean had their efficien
cy, robustness and energetic possibilities 
boosted a billionfold when they were 
first enclosed within a cell membrane. 

The early applications of software 
objects were attempted in the context 
of the old metaphor of sequential pro
gramming languages, and the objects 
functioned like colonies of cooperat
ing unicellular organisms. If cells are a 
good idea, however, they really start to 
make things happen when the coopera
tion is close enough for the cells to ag
gregate into supercells: tissues and or
gans. Can the endlessly malleable fab
ric of computer stuff be designed to 
form a "superobject" ? 

The dynamic spreadsheet is a good ex
ample of such a tissuelike superob

ject. It is a simulation kit, and it provides 
a remarkable degree of direct leverage. 
Spreadsheets at their best combine the 
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I-�-------------VALUE RULE 

I�------------------------- VALUE 

·----�--------------------FO RMAT RULE 

----------------------------------- IMAGE 
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DYNAMIC SPREADSHEET is a simulation "it: an aggregate of 
software objects called cells that can get values from one another. 
The window selects a rectangular part of the sheet for display. Each 
cell can be imagined as having several layers behind the sheet that 
compute the cell's value and determine the format of the presenta-

tion. The cell's name can be typed into an adjoining cell. Each cell bas 
a value rule, which can be the value itself or a way to compute it; the 
value can also be conditional on the state of cells in other parts of the 
sheet. The format rule converts the value into a form suitable for 
display. The image is the formatted value as displayed in the sheet. 
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genres established in the 1970's (objects, 
windows, what-you-see-is-what-you-get 
editing and goal-seeking retrieval) into a 
"better old thing" that is likely to be one 
of the "almost new things" for the main
stream designs of the next few years. 

A spreadsheet is an aggregate of con
currently active objects, usually orga
nized into a rectangular array of cells 
similar to the paper spreadsheet used 
by an accountant. Each cell has a "val
ue rule" specifying how its value is to 
be determined. Every time a value is 
changed anywhere in the spreadsheet, 
all values dependent on it are recom
puted instantly and the new values are 
displayed. A spreadsheet is a simulated 
pocket universe that continuously main
tains its fabric; it is a kit for a surprising 
range of applications. Here the user il
lusion is simple, direct and powerful. 
There are few mystifying surprises be
cause the only way a cell can get a val
ue is by having the cell's own value rule 
put it there. 

Dynamic spreadsheets were invented 
by Daniel Bricklin and Robert Frank
ston as a reaction to the frustration 
Bricklin felt when he had to work with 
the old ruled-paper versions in busi
ness school. They were surprised by 
the success of the idea and by the fact 
that most people who bought the first 
spreadsheet program (VisiCalc) exploit
ed it to forecast the future rather than 
to account for the past. Seeking to de
velop a "smart editor," they had creat
ed a simulation tool. 

Getting a spreadsheet to do one's bid
ding is simplicity itself. The visual meta
phor amplifies one's recognition of situ
ations and strategies. The easy transition 
from the visual metaphor to the sym
bolic value rule brings the full power 
of abstract models to bear almost with
out notice. One powerful property is 
the ability to make a solution generic by 
"painting" a rule in many dozens of cells 
at once without req uiring users to gener
alize from their original concrete level 
of thinking. 

The simplest kind of value rule makes 
a cell a static object such as a number 
or a piece of text. A more complex rule 
might be an arithmetic combination of 
other cells' values, derived from their 
relative or absolute positions or (much 
better) from names assigned to them. A 
value rule can test a condition and set its 
own value according to the result. Ad
vanced versions allow a cell's value to 
be retrieved by heuristic goal seeking, 
so that problems for which there is no 
straightforward method of solution can 
still be solved by a search process. 

The strongest test of any system is not 
how well its features conform to an

ticipated needs but how well it performs 
when one wants to do something the de
signer did not foresee. It is a question 
less of possibility than of perspicuity: 

Can the user see what is to be done and 
simply go do it? 

Suppose one wants to display data as 
a set of vertical bars whose height is nor
malized to that of the largest value, and 
suppose such a bar-chart feature was 
not programmed into the system. It calls 
for a messy program even in a high-lev
el programming language; in a spread
sheet it is easy. Cells serve as the "pix
els" (picture elements) of the display; 
a stack of cells constitutes a bar. In a 
bar displaying one-third of the maxi
mum value, cells in the lowest third of 
the stack are black and cells in the up
per two-thirds are white. Each cell has 
to decide whether it should be black or 
white according to its position in the 
bar: "I'll show black if where I am in 
the bar is less than the data I am trying 
to display; otherwise I'll show white" 
[see illustration on next page]. 

Another spreadsheet example is a so
phisticated interactive "browser," a sys
tem originally designed by Lawrence G. 
Tesler, then at the Xerox Palo Alto Re
search Center. Browsing is a pleasant 
way to access a hierarchically organized 
data base by pointing to successive lists. 
The name of the data base is typed into 
the first pane of the display, causing the 
subject areas constituting its immediate 
branches to be retrieved and displayed 
in the cells below the name. One of the 

. subject areas can be chosen by pointing 
to it with a mouse; the chosen area is 
thereby entered at the head of the next 
column, causing its branches in turn 
to be retrieved. So it goes until the de
sired information is reached [see illus
tration on page 59]. Remarkably, the en
tire browser can be programmed in the 
spreadsheet with just three rules. 

The intent of these examples is not to 
get everyone to drop all programming in 
favor of spreadsheets. Current spread
sheets are not up to it; nor, perhaps, is 
the spreadsheet metaphor itself. If pro
gramming means writing step-by-step 
recipes as has been done for the past 40 
years, however, then for most people it 
never was relevant and is surely obso
lete. Spreadsheets, and particularly ex
tensions to them of the kind I have sug
gested, give strong hints that much more 
powerful styles are in the offing for nov
ices and experts alike. Does this mean 
that what might be called a driver-edu
cation approach to computer literacy is 
all most people will ever need-that one 
need only learn how to "drive" applica
tions programs and need never learn to 
program? Certainly not. Users must be 
able to tailor a system to their wants. 
Anything less would be as absurd as re
quiring essays to be formed out of para
graphs that have already been written. 

In discussing this most protean of me
dia I have tried to show how effective
ly design confers leverage, particularly 
when the medium is to be shaped as 
a tool for direct leverage. It is clear 

that in shaping software kits the limita
tions on design are those of the creator 
and the user, not those of the medium. 
The question of software's limitations 
is brought front and center, however, 
by my contention that in the future a 
stronger kind of indirect leverage will 
be provided by personal agents: exten
sions of the user's will and purposes, 
shaped from and embedded in the stuff 
of the computer. Can material give rise 
to mentality? Certainly there seems to 
be nothing mindlike in a mark. How 
can any combination of marks, even dy
namic and reflexive marks, possibly 
show any properties of mentality? 

Atoms also seem quite innocent. Yet 
Il.. biology demonstrates that simple 
materials can be formed into exceeding
ly complex organizations that can inter
pret themselves and change themselves 
dynamically. Some of them even appear 
to think! It is therefore hard to deny cer
tain mental possibilities to computer 
material, since software's strong suit is 
similarly the kinetic structuring of sim
ple components. Computers "can only 
do what they are programmed to do·," 
but the same is true of a fertilized egg 
trying to become a baby. Still, the diffi
culty of discovering an architecture that 
generates mentality cannot be overstat
ed. The study of biology had been under 
way some hundreds of years before the 
properties of DNA and the mechanisms 
of its expression were elucidated, reveal
ing the living cell to be an architecture in 
process. Moreover, molecular biology 
has the advantage of studying a system 
already put together and working; for 
the composer of software the computer 
is like a bottle of atoms waiting to be 
shaped by an architecture he must in
vent and then impress from the outside. 

To pursue the biological analogy, 
evolution can tell the genes very little 
about the world and the genes can tell 
the developing brain still less. All levels 
of mental competence are found in the 
more than one and a half million surviv
ing species. The range is from behavior 
so totally hard-wired that learning is nei
ther needed nor possible, to templates 
that are elaborated by experience, to a 
spectrum of capabilities so fluid that 
they require a stable social organiza
tion-a culture-if full adult potential 
is to be realized. (In other words, the 
gene's way to get a cat to catch mice is 
to program the cat to play-and let the 
mice teach the rest.) Workers in artifi
cial intelligence have generally content
ed themselves with attempting to mimic 
only the first, hard-wired kind of behav
ior. The results are often called expert 
systems, but in a sense they are the de
signer jeans of computer science. It is 
not that their inventors are being dis
honest; few of them claim for a system 
more than it can do. Yet the label "ex
pert" calls up a vision that leads to dis-
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illusionment when it turns out the sys
tems miss much of what expert (or even 
competent) behavior is and how it gets 
that way. 

Three developments have very low 
probabilities for the near future. The 

first is that a human adult mentality can 
be constructed. The second is that the 
mentality of a human infant can be 
constructed and then "brought up" in 
an environment capable of turning it 
into an adult mentality. The third is 
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"Show black if (11 - vertical 10-
cation) x pixel height is less 
than data [horizontal locationj 
else show white." 

DATA: Value rule for each cell is 
either the number itself or a number 
fetched from some other part of 
the sheet. 

· Maximum datum � 10. 

250: 67: 205 : 193: 92 . . .. ............ ........ .............. . ...... . 
: 25: : : 

:lIlIll ............................. . 
:ifIIlII: ......... : .. . ..... .  : .. ....... : 
:WiI!III: ........ : ... ..... .. ......... : RlJjjJf ....... : .. . .. .... : .. ..... : 

�-: . 
_t,. :ftIIiIlIi:_:·

····
····· 

11IlIJI_:�:r,.: IfIiIIJ tgliJ'Jl :lHlfIJId:' ........ . 
�:wa:' :rteB�: 
.JIIMf/lla:�:r_:�: 

· . · . ............. ............. ................. ...... 
250 : 367 : 205 : 193 : 92 

:36.7 : 

BAR CHART can be constructed out of the standard materials of a spreadsheet. A bar is a col
umn of cells, where each cell serves as a pixel, or picture element. One cell associated with each 
column holds the datum, or value, to be represented by the height of the corresponding bar. 
Within a bar all the cells are governed by the same rule. The quantity represented by the height 
of a single pixel is the maximum datum divided by the number of pixels in the longest bar; in 
chart a there are 10 pixels per bar and each pixel represents 2S units. Each cell shows black if 
its vertical position in the bar multiplied by the number of units per pixel is less than the datum 
for that bar; otherwise it shows white. When a new datum is entered in a column (b), a new bar 
appears in that column (c). If a new datum is larger than the previous maximum (d), the set of 
bars is replotted (e) on the basis of the new number of units per pixel, which in this case is 36.7. 
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that current artificial-intelligence tech
niques contain the seeds of an architec
ture from which one might construct 
some kind of mentality that is genuine
ly able to learn competence. The fact 
that the probabilities are low emphati
cally does not mean the task is impossi
ble. The third development is likely to 
be achieved first. Even before it is there 
will be systems that look and act some
what intelligent, and some of them will 
actually be useful. 

What will agents be like in the next 
few years? The idea of an agent 

originated with John McCarthy in the 
mid-1950's, and the term was coined 
by Oliver G. Selfridge a few years later, 
when they were both at the Massachu
setts Institute of Technology. They had 
in view a system that, when given a goal, 
could carry out the details of the appro
priate computer operations and could 
ask for and receive advice, offered in 
human terms, when it was stuck. An 
agent would be a "soft robot" living 
and doing its business within the com
puter's world. 

What might such an agent do? Hun
dreds of data-retrieval systems are now 
made available through computer net
works. Knowing every system's arcane 
access procedures is almost impossible . 
Once access has been gained, browsing 
can handle no more than perhaps 5,000 
entries. An agent acting as a librarian is 
needed to deal with the sheer magnitude 
of choices. It might serve as a kind of 
pilot, threading its way from data base 
to data base. Even better would be an 
agent that could present all systems to 
the user as a single large system, but that 
is a remarkably hard problem. A persis
tent "go-fer" that for 24 hours a day 
looks for things it knows a user is inter
ested in and presents them as a person
al magazine would be most welcome. 

Agents are almost inescapably an
thropomorphic, but they will not be hu
man, nor will they be very competent 
for some time. They violate many of the 
principles defining a good user interface, 
most notably the idea of maintaining the 
user illusion. Surely users will be dis
appointed if the projected illusion is 
that of intelligence but the reality falls 
far short. This is the main reason for 
the failure so far of dialogues conduct
ed in ordinary English, except when 
the context of the dialogue is severe
ly constrained to lessen the possibility 
of ambiguity. 

Context is the key, of course. The user 
illusion is theater, the ultimate mirror. 
It is the audience (the user) that is in
telligent and can be directed into a par
ticular context. Giving the audience 
the appropriate cues is the essence of 
user-interface design. Windows, menus, 
spreadsheets and so on provide a con
text that allows the user's intelligence to 
keep choosing the appropriate next step. 
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An agent-based system will have to do 
the same thing, but the creation of an 
interface with some semblance of hu
man mentality will call for a considera
bly subtler approach. 

Any medium powerful enough to ex
.£\. tend man's reach is powerful 
enough to topple his world. To get the 
medium's magic to work for one's aims 
rather than against them is to attain lit
eracy. At its simplest, literacy means flu
ency. Familiarity (knowing the "gram
mar") is not enough. People who can 
recognize a book and its words, a type
writer and its keyboard or a computer 
and its input-output devices are not lit
erate unless they can spend mostof their 
time dealing with content rather than 
with the mechanics of form. 

Is the computer a car to be driven or 
an essay to be written? Most of the con
fusion comes from trying to resolve the 
question at this level. The protean na
ture of the computer is such th'at it can 
act like a machine or like a languag'e to 
be shaped and exploited. It is a medi
um that can dynamically simulate the 
details of any other medium, including 
media that cannot exist physically, It is 
not a tool, although it can act like many 
tools. It is the first metamedium, and as 
such it has degrees of freedom for repre
sentation and expression never before 
encountered and as yet barely investi
gated. Even more important, it is fun, 
and therefore intrinsically worth doing. 

If computers can be cars, then cer
tainly computer literacy at the level of 
driver-education courses is desirable. 
Indeed, the attempt is now being made 
to design user interfaces giving access 
to the computer's power by way of inter
actions even easier to learn than driv
ipg a car. Integrated programs for word 
processing, graphics, simulation, infor
mation retrieval and person-to-person 
communication will be the paper and 
pencil of the near future, The driver-ed
ucation level of paper-and-pencil litera
cy is taught, however, in kindergarten 
and first grade, implying that what can 
be called mark-making literacy in com
puters should be attained as early as 
possible; children should not be made to 
wait until they can get in a half year of 
it just before they graduate from high 
school, as recent reports by educational 
commissions suggest. Children need in
formational shoes, bicycles, cars and 
airplanes from the moment they start 
to 'explore the universe of knowledge. 

Paper-and-pencil literacy does not 
stop, moreover, when children know 
how to manipulate a pencil to make cer
tain kinds of marks on paper. One rea
son to teach reading and writing is cer
tainly that people need these skills to get 
through daily life in the 20th century, 
but there are grander and more critical 
goals. By reading we hope not only to 
absorb the facts of our civilization and 
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PAIII of Browser has 
a HEAD CELL, 
LATCH CELLS 
and LIST CELLS. 

LATCH CELLS notice 
mouse pOinter in ad
jacent list cell and 
latch by showing a 
check mark. 

name in head cell 
and retrieve corre
sponding 
subcategories. 

EAO eEL (except 
the first one) looks 
for latched cell in 
preceding list and 
copies it. 

DATA-BASE BROWSER allows one to gain access to a hierarchically organized data base by 
simply pointing to items in successive lists. To learn about the silver fox one types "animals" 
into the first pane (a). SUbject areas of the "animals" data base appear in the pane (b). Selection 
of "mammals" causes that subcategory to appear in the next pane (c); selection of "foxes" 
brings up a list of foxes (d), and· eventually the description of the silver fox is retrieved (e). 

of those before us but also to encounter 
the very structure and style of thought 
and imagination. Writing gets us out of 
the bleachers and onto the playing field; 
old and new knowledge becomes truly 
ours as we shape it directly. 

In short, we act as though learning 
to read and write will help people to 
think better and differently. We assume 
that starting with centuries' worth of 
other people's knowledge is more effi
cient than starting from scratch and 
will provide a launch pad for new ideas. 
We assume that expressing and shap
ing ideas through metaphor and other 
forms of rhetoric makes the ideas more 
fully our own and amplifies our abili
ty to learn from others in turn. (Oliver 
Wendell Holmes said, "The mind, once 
expanded to the dimensions of larger 
ideas, never returns to its original size.") 
We hold all of this to be important even 
though reading and writin� seem to be 

quite hard and take years to master. Our 
society declares that this kind of literacy 
is not a privilege but a right, not an op
tion but a duty. 

What then is computer literacy? It 
is not learning to manipulate a word 
processor, a spreadsheet or a modern 
user interface; those are paper-and-pen
cil skills. Computer literacy is not even 
learning to program. That can always be 
learned, in ways no more uplifting than 
learning grammar instead of writing. 

Computer literacy is a contact with 
the activity of computing deep enough 
to make the computational equivalent 
of reading and writing fluent and enjoy
able. As in all the arts, a romance with 
the material must be well under way. If 
we value the lifelong learning of arts 
and letters as a springboard for personal 
and societal growth, should any less ef
fort be spent to make computing a part 
of our lives? 
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Data Structures and Algorithms 
They are the basic elements of every computer program. The choice 
of data structures and the design of procedures to manipulate them 
hold the key to verifying that a program does what it is meant to do 

Data structures and algorithms are 
the materials out of which pro
grams are constructed. Further

more, the computer itself consists of 
nothing other than data structures and 
algorithms. The built-in data structures 
are the registers and memory words 
where binary values are stored; the 
hard-wired algorithms are the fixed 
rules, embodied in electronic logic cir
cuits, by which stored data are interpret
ed as instructions to be executed. Thus 
at the most fundamental level a comput
er can work with only one kind of data, 
namely individual bits, or binary digits, 
and it can act on the data according to 
only one set of algorithms, those defined 
by the instruction set of the central 
processing unit. 

The problems people undertake to 
solve with the aid of a computer are sel
dom expressed in terms of bits. Instead 
the data take the form of numbers, char
acters, texts, events, symbols and more 
elaborate structures such as sequences, 
lists and trees. The algorithms employed 
to solve the problems are even more var
ied; indeed, there are at least as many 
algorithms as there are computational 
problems. How can a vast spectrum 
of problems be solved by a single ma
chine that always acts according to fixed 
rules? The explanation is that the com
puter is a truly general-purpose device, 
whose nature can be transformed alto
gether by the program given it. The un
derlying principle was first set forth 
by John von Neumann. A stream of in
formation is at one moment data being 
processed by a program, and at the next 
moment the same information is inter
preted as a program in its own right. 
Hence a program is formulated in terms 
of familiar notions convenient to the 
problem at hand; then another program, 
called an assembler or a compiler, maps 
those notions onto the facilities avail
able in the computer. 

In this way it is possible to construct 
systems of extraordinary complexity. 
The programmer sets up a hierarchy of 
abstractions, viewing the program first 
in broad outline and then attending to 
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one part at a time while ignoring the in
ternal details of other parts. The proc
ess of abstraction is not merely a con
venience; it is a necessity, because pro
grams of more than trivial size simply 
could not be created if one had to work 
with an undifferentiated, homogeneous 
mass of bits. Without higher-level ab
stractions a program could not be un
derstood fully even by its creator. 

Specifying the abstract data struc
. 

tures and algorithms of a program 
req uires a formal notation, one in which 
the meaning of any legal statement is 
defined precisely and unambiguously. 
Such formal notations for programming 
have come to be known as languages, 
but the term is misleading because pro
gramming is only superficially like writ
ing. I prefer to think of programming as 
the activity of designing a new machine 
(to be implemented with the aid of an 
existing, general-purpose machine). The 
design is specified in terms of the facili
ties provided by the notation, just as an 
electronic device is designed by drawing 
the symbols for basic circuit elements 
and their connections. If one views pro
gramming as the design of a machine, 

PATH LENGTH (ROOT) 1 0 
2 

the need for precision becomes all the 
more obvious. 

Among the facilities provided by al
most all programming languages is the 
ability to refer to an item of data by 
assigning it a name, or identifier. Some 
of the named quantities are constants, 
which have the same value throughout 
the segment of the program in which 
they are defined; for example, pi might 
be assigned the value 3.14159. Other 
named quantities are variables, which 
can be assigned a new value by state
ments within the program, so that their 
value cannot be known until the pro
gram is run. The variables diameter 
and circumference might take on new 
values each time a calculation is done. 

The name of a constant or a variable 
is a mnemonic aid to the programmer, 
but it has no meaning to the comput
er. The compiler that translates a pro
gram text into binary code merely as
sociates each identifier: with an address 
in memory. If an instruction calls for 
multiplying diameter by pi. the comput
er fetches. wha tever n umbers are stored 
at the specified addresses and calculates 
the product; if the result is to become 
the new value of circumference. it is 
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FOREST OF BINARY TREES illustrates the close interaction of data structnres and algo
rithms. An ordered binary tree, which by convention grows from the root downward, is a data 
structure that is often chosen wheu items are to be retrieved at random from a large body of in
formation. The tree is made up of nodes identified by a key value; in the diagrams on the oppo
site page the key is an integer between 1 and 15. Each node has at most two "children," which 
are arranged so that the child to the left invariably has a key that is smaller than the parent's 
key and the child to the right has one that is larger. The optimum tree is the one at the upper 
left: it is fully balanced, so that the average number of nodes that must be traversed to reach a 
given node is minimized. (The path length to each node is indicated by color according to the 
key above.) The other trees were generated by a random-insertion algorithm, which adds a 
node at the first position a key is allowed to occnpy without moving any other nodes to maintain 
the balance of the tree. A more elaborate algorithm conld reduce the average path length some
what, bnt the algorithm itself would then be more complicated. The random-insertion algo
rithm and the benefits of tree-balancing are explored in the illustrations on pages 68 and 69. 
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stored in memory at the address corre
sponding to that label. 

The naming of constants and vari
ables in programming is similar to the 
use of symbolic expressions in algebra, 
but for a computer to handle the proc
ess some additional information must 
be supplied. The information gives the 
"type" of each named quantity. A per
son working a problem by hand has an 
intuitive grasp bf data types and the op
erations that are valid for each type; it is 
known, for example, that one cannot 
take the square root of a word or capi
talize a number. One reason such dis
tinctions are easily made is that words, 
numbers and various other symbols are 
represented quite differently. For the 
computer, however, all types of data 
ultimately resolve into a sequence of 
bits, and the type distinctions must be 
made explicit. 

Suppose in the course of some opera
tion the seven-bit binary value 10 100 1 1  
has been read into a register in the cen
tral processing unit of a computer. How 
is the value to be interpreted? One possi-

TYPE 
DISPLAYED 
FORM 

CARDINAL 83 

INTEGER -83 

REAL 83.0 

SET 0,1,4,6 

CHARACTER S 

STRING SET83 

bility is that it represents a cardinal, 
or counting, number, in which case the 
equivalent in decimal notation would be 
83. In many programming languages the 
value could also represent a signed inte
ger equal to decimal -45. The same bi
nary data could encode not a number 
but a character; in the American Stan
dard Code for Information Interchange 
(ASCII) binary 10 100 1 1  specifies the let
ter S. Several other possibilities exist. 
(Indeed, the binary code might not be 
data at all but an instruction to the 
computer; its interpretation would then 
depend on the particular processor.) 

The data types recognized by com
mon programming languages include 
cardinal numbers, integers, real num
bers (approximated as decimal frac
tions), sets, characters and strings of 
characters. Information on each vari
able's type is needed not only to in
terpret the binary representation but 
also to set aside the correct amount of 
space in storage. In many modern com
puter systems a single character is allo
cated eight bits, or one byte, of mem-

ory, whereas a cardinal or an integer 
might be given two or four bytes and a 
real number might take up as many as 
eight bytes. 

In some programming languages the 
compiler infers the type of a con� 

stant or a variable from certain clues in 
the way the assigned value is written; the 
presence of a decimal point, for exam
ple, might indicate a real number. Other 
languages require the programmer to 
state each variable's type explicitly. Ex
plicit declaration of data types may seem 
bothersome if it can be avoided, but it 
has an important advantage. Although 
the value of a variable may change re
peatedly as a program executes, its type 
should never change; hence the com
piler can check to make certain that all 
operations carried out on the variable 
are consistent with the type declaration. 
Such consistency checking can be done 
by examining the program text, and so. 
it holds for all possible computations 
specified by the program. A "trial run" 
of the compiled program, on the other 

INTERNAL REPRESENTATION 

00000000 00000000 00000000 01010011 
" 
MAGNITUDE 

1 1111111 1111111 1111111 10101101 

� " 
MAGNITUDE 

SIGN 

o 1000111 10100110 00000000 00000000 00000000 00000000 00000000 00000000 

V \ORMALIZED MANTISSA 
WEIGHTED EXPONENT 

SIGN OF MANTISSA 

00000000 00000000 00000000 01010011 
" 
MEMBERS OF SET 

01010011 
\ 

ASCII CODE 

S E T <SPACE> 8 3 
00000110 01010011 01000101 01010100 00100000 00111000 00110011 

"" 
, 

ASCII CODES OF CHARACTERS 
NUMBER OF CHARACTERS 

ELEMENTARY DATA TYPES are given a predetermined internal 
representation by the compiler program that translates statements in 
a programming language. The type of a variable must be specified so 

that the compiler can allocate space in storage and put the data in the 
correct format. In the data representations shown here a cardinal 
number or an integer is stored in 32 bits, or four bytes. A real num
ber is accorded 64 bits and is represented in scientific notation, with 

an exponent, a mantissa and a sign bit. A set can be represented as 
a string of bits, where a 1 indicates that an element is a member of 
the set and a 0 indicates that it is not. Characters are generally giv
en seven- or eight-bit values specified by the ASCII standard code. A 

string of characters consists of the individual character codes with an 
additional byte to give the length. The division of the binary values 
into groups is for readability; the gaps would not appear in memory. 
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hand, can verify correct operation only 
for the specific input values tried. 

The notion of a data type has been 
extended, primarily through the pro
gramming language Pascal, to encom
pass the description of data structures. 
A structured variable is one with multi
ple elements, or components, that can 
nonetheless be referred to as a single 
entity. In a calendar, for example, one 
must be able to specify a particular date, 
but there should also be a way to refer to 
entire months and years. The type decla
ration for a structured variable estab
lishes the number of elements making 
up the variable, it enables the compil
er to allocate the necessary storage for 
them and it provides information about 
the intended method of access to them. 

If all the elements are of the same type 
(and so have the same storage require
ment), the structured variable is said to 
be homogeneous, and it can be declared 
as an array. A structured variable to be 
given the name Sept and consisting of 30 
cardinal numbers might have the fol
lowing type declaration: 

Sept: array[ 1 .. 30] of cardinal 

In an array individual elements are 
readily identified by means of a comput
ed index, which represents a position in 
the sequence of elements. The address 
of the fifth element, for example, is sim
ply the address of the first element plus 
five times the size of an element. 

If the elements of the structured vari
able are not all of the same type, this 
simplicity of access is lost. On the other 
hand, elements that differ in type are 
likely to differ in other ways as well, 
and there is less need to refer to them 
by means of a computed index. Instead 
each element is given its own identifier. 
The entire structured variable is called a 
record and the elements are called fields. 
A record designed to hold information 
on cities is shown in the bottom illustra
tion at the right. The record is referred 
to by the variable name city: individual 
fields are designated city. name, city. 
population and so on. 

Another fundamental structured data 
.fl. type is the set. It is of use where the 
value of an element is not of immediate 
interest and only its presence or absence 
matters. If a variable named primes is 
declared to be a set of cardinal num
bers, a set-membership operation can be 
defined that will yield the logical value 
True if a number is a member of the set 
and the value False otherwise. Sets can 
be efficiently implemented and manipu
lated; each element of the set is repre
sented by a single bit, where the pres
ence of the element is indicated by a· I 
and its absence by a O. 

Arrays, records and sets are called ba
sic structures. In many contexts more 
complicated structures are needed, but 

primes: array[O . .  71 of cardinal 

19-
PRIMES[O] 2 PRIMES + (7 -4) 

f----17-
PRIMES[1] 3 PRIMES + (6 - 4) 

t---13-
PRIMES[2] 5 PRIMES + (5- 4) 

1---11-
PRIMES[3] 7 PRIMES + (4 - 4) 

7 
PRIMES[4] 11 PRIMES + (3 - 4) 

5 
PRIMES[5] 13 PRIMES + (2 - 4) 

3-
PRIMES[6] 17 PRIMES + (1 - 4) 

-2 
PRIMES[7] 19 PRIMES 

ARRA Y OF DATA consists of a specified number of elements that are all of the same elemen
tary data type. The compiler can allot the same amount of space to each element, and so a par
ticular element can be found by a simple calculation of its address from its index value. Here 
an array of eight elements has been given the name primes, which also represents the address 
in memory at which the array begins. The elements are cardinal numbers with a storage re
quirement of four bytes, so that the address of any element in the array is calculated by multi
plying the element's index by 4 and adding that number of bytes to the address of primes. 

CITY.LONGITUDE I 

CITY LATITUDE I 

CITYALTITUDE 

CITY POPULATION 

city: record 
name: array[O .. 9l of character; 
longitude, latitude: real; 
altitude, population: cardinal 

end 

8.33 

47.23 

400 

450,000 

CITY + 34 

r- POPULATION -
CITY + 30 

r--ALTITUDE-
CITY + 26 

- LATITUDE-

CITY + 18 

f--LONGITUDE-

CITY + 10 

t---NAME-

CITY 

RECORD STRUCTURE holds heterogeneous information. Here a record named city has been 
defined to include five fields, inclnding a string of characters, two real numbers and two cardi
nal nnmbers. A particular field can be accessed by giving the record name and the field name 
separated by a period. Because different types of information have different storage require
ments, the fields are not all the same length. For each field the compiler mnst record an offset 
valne: the distance in memory from the start of the record as a whole to the start of the field. 
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type word = 
record 

end 

spelling: array[O . .  201 of character; 
next: pointer to word 

LIST 

IA ;JJIAARDVARttsi ABACUS;JJI
r-

____ � 

RING 
type day = 

record 
weekday: (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, 

SATURDAY, SUNDAY) 

next: pointer to day 
end 

type prime = 
record 

number: cardinal 
left, right: pointer to prime 

end 

THURSDAY 

TREE 

� 
� 

DYNAMIC DATA STRUCTURES can expand or contract or even be reorganized under the 
direction of the algorithmic part of the program. The structures are made up of nodes, which 
are generally records, that include pointers to other nodes (color); a pointer that points to noth
ing is given the special value lIiI. The simplest dynamic structure is the linked list, where each 
node has a pointer to the next one. The example shown here might form part of a dictionary. A 
list can be transformed into a ring by making the last element point to the first one. In a bina
ry tree each node has two pointers, which give the addresses of the left and right subnodes. 
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rather than trying to invent notations for 
all of them it is preferable to introduce 
a general facility for building arbitrary 
structures. Whereas the structure of an 
array, of a record or of a set remains 
constant during the execution of a pro
gram, the more elaborate structures can 
be allowed to grow, shrink or alter their 
topology. The basic structures are static, 
the derived ones dynamic. 

Because the size of a dynamic struc
ture is subject to change, it cannot be 
specified by an invariant declaration; it 
must be defined by the algorithmic part 
of the program. For the same reason the 
program, rather than the compiler, must 
allocate storage space for the structure. 
This would appear to be a treacher
ous situation, since the correctness of 
the structure cannot be checked during 
compilation. One property of the struc
ture does remain fixed, however, and 
therefore can be declared in advance, 
namely the types of the elements of 
which the structure is ultimately com
posed. Only the number of elements and 
the connections between them can vary 
during execution. 

The mechanism for creating dynamic 
structures consists of a way to generate 
basic components called nodes and a 
way to establish connections between 
nodes. The nodes are generally records; 
the connections are defined by variables 
called pointers. As the name suggests, a 
pointer points to an element of the dy
namic structure; it can also be assigned 
the special value nil, in which case it 
points to nothing. 

One dynamic structure that can readi
ly be created out of nodes and pointers is 
a lin.ked list. Each entry in the list is a 
record, one of whose fields is a pointer to 
the next record. The pointer in the last 
entry has a value of nil. To add a rec
ord the program allocates the neces
sary space in storage and changes the last 
pointer to point to the new data element. 
Making the last element point back to 
the first one converts the list into a ring. 
A tree is created by having each node 
include pointers to all its subnodes. Ex
amples of several dynamic structures 
are shown in the illustration at the left. 

The implementation of pointers is 
straightforward: the value of a point
er (unless it is nil) is the address of the 
node it points to. Why not simply call a 
pointer an address? The distinction is 
worth preserving because a pointer is 
declared to point to a variable of a 
known type, whereas an address could 
specify any location in memory. The 
compiler can thereby ascertain that 
each pointer is associated with an ob
ject of the right type. 

Adata structure is an essentially spa
tial concept; it can be reduced to a 

map of how information is organized in 
the computer's memory. An algorithm 
is the corresponding procedural element 
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in the structure of a program; it is a reci
pe for computation, 

The first algorithms were invented to 
solve numerical problems such as mul
tiplying numbers, finding the greatest 
common divisor, calculating trigono
metric functions and so on, Today non
numerical algorithms are of equal im
portance; they have been devised for 
tasks such as finding the smallest ele
ment in a sequence, searching for a giv
en word in a text, scheduling events and 
sorting data into some specified order. 

Nonnumerical algorithms operate on 
data that are not necessarily numbers; 
moreover, no deep mathematical con
cepts are needed to design or under
stand them, It does not follow, how
ever, that mathematics has no place in 
the study of such algorithms; on the 
contrary, rigorous, mathematical meth
ods are essential in finding the best so
lutions to nonnumerical problems, in 
proving the correctness of the solutions 
and in determining their effectiveness, 
Programming remains a highly mathe
matical discipline, The roles have been 
exchanged, however: whereas comput
ing methods were once employed to 
solve mathematical problems, mathe
matical methods are now applied to the 
solution of computing problems, 

Here I shall not attempt to give a gen
eral survey of the various categories 
of algorithms or even to discuss meth
ods for constructing new algorithms, In
stead I shall illustrate the modern ap
proach to reasoning about algorithms, 
Given an algorithm that purports to 
solve some problem, how can one un
derstand the algorithm, and in particu
lar how can one gain confidence in its 
correctness without resorting to a com
puter to "test a few cases"? 

If an algorithm is viewed as a tempo
ral series of operations, a fundamental 
issue is how the flow of operations is 
controlled, When the execution of a 
program has reached a particular state
ment, how does the computer determine 
which statement to execute next? 

It has been shown that just three con
trolling principles are sufficient to de
scribe any algorithm, The first principle 
is so obvious that it is often overlooked: 
it is the notion of sequence, Unless the 
computer is instructed otherwise, it exe
cutes the statements of a program se
quentially, The second principle is con
ditional execution, which is generally 
designated in the program text by an 
"if , , ,then" construction, In the state
ment "if B then S," B is a Boolean ex
pression, one with a value of either 
True or False, and S is any statement or 
group of statements, B is evaluated, 
and if it is True, S is executed; other
wise S is skipped, 

The third principle is repetition, 
which can be indicated by a "while , , , 
do" construction, "While B do S" tests 
the value of B and, if it is True, ex-

a : = x; b : = y; c : = 0 ; 

whileb of Odo 

end 

{assertion: a.b + c = x.y} 

{assertion: b of O} 

b : = b -1; c : = c + a 

{assertion: a.b + c = x.y and b = 0 yields c = 'X.y} 

OPER ATION 
x:= 7; y:= 13 

a '= 7' b '= 13' c:= 0 
b:=b'-i;c:':'c+a 
b'=b-l'c'=c+a 

�::�::1:�:�:; 
b:=b-l;c:=c+a 
b'=b-l' c:=c+a 
b:=b-l;c:=c+a 
b:=b-l;c:=c+a 
b:=b-1; c:=c+a 
b '=b-l' c:=c+a 
b:=b-l;c:=c+a 
b:=b-l;c:=c+a 
b:=b-l;c:=c+a 

a : = x; b: = y; c: = 0 ;  

whileb of Odo 

{assertion: a.b + c = x'y} 

{assertion: b of O} 
c : = C + a .  (b MOD 10); 

a: = 10 . a; 
b:= b DlV10 

end 

EVALUATION 

a = 7, b = 13, c = 0 
a = 7 b = 12 c = 7 
a = 7: b = 11: 'C = 14 
a = 7 b = 10 c = 21 
a = 7: b = 9: c = 28 
a = 7, b = 8, c = 35 
a = 7, b = 7, c = 42 
a = 7 b = 6 c = 49 
a = 7: b = 5: c = 56 
a = 7, b = 4, c = 63 
a = 7 b = 3 c = 70 
a = 7: b = 2: c = 77 
a=7 b= 1 c=84 
a = 7: b = 0: c = 91 

{assertion: a.b + c = x.y and b = 0 yields c = x'y} 

OPER ATION 
x:= 7; y:= 13 

a:= 7; b:= 13; c:= 0 

c : = c + a- (b MOD 10) 
a:= 10-a 
b:=b DIV10 

c : = c + a- (b MOD 10) 
a:= 10-a 
b:=b DIV10 

a : = x; b: = y; c: = 0 ;  

whileb of Odo 

{assertion: a.b + c = x.y} 

{assertion: b of O} 

EVALUATION 

a = 7, b = 13, c = 0 

c = 0 + 7 -3 = 21 
a = 10 -7 = 70 
b = 13 DIV10 = 1 

c = 21 + 70 -1 = 91 
a = 10 -70 = 700 
b = 1 DIV 10 = 0 

if Odd (b) then c : = C + a end; 

a:= 2-a; 
b:= b DIV2 

end 

{assertion: a.b + c = x.y and b = 0 yields c = x'y} 

OPER ATION 
x: = 7; y: = 13 

a:= 7; b:= 13; c:= 0 

if Odd (b) then c : = C + a end 
a:= 2' a 
b:= b DIV 2 

if Odd (b) then c: = C + a end 
a:= 2-a 
b:= b DIV 2 

EVALUATION 

a = 7, b = 13, c = 0 

c=0+7=7 
a=2'7=14 
b = 13 DIV2 = 6 

c = 7 
a = 2 -14 = 28 
b = 6 DIV2 = 3 

ifOdd(b)thenc:= c + a end c = 7 + 28 = 35 
a : = 2 -a a = 2· 28 = 56 
b : = b DIV 2 b = 3 DIV 2 = 1 

if Odd(b)thenc:=c + a end c=35+56=91 
a:=2-a a=2-56=112 
b : = b DIV 2 b = 1 DIV 2 = 0 

LOOP INVAR IANT 

7-13+ 0=7-13 
7-12+ 7=7-13 
7-11+14=7-13 
7-10+21 =7-13 
7 - 9 + 28 = 7 -13 
7 - 8 + 35 = 7 -13 
7 - 7 + 42 = 7 -13 
7 - 6 + 49 = 7 -13 
7 - 5 + 56 = 7 -13 
7 - 4 + 63 = 7 -13 
7 - 3 + 70 = 7 -13 
7- 2+77=7-13 
7- 1 +84=7-13 
7 - 0 + 91 = 7 -13 

LOOP INVAR IANT 

7-13+ 0=7-13 

70-1+21=7-13 

700-0+91 =7'13 

LOOP INVAR IANT 

7 -13 + 0 = 7-13 

14-6+ 7=7-13 

28 -3 + 7 = 7-13 

56-1 +35=7-13 

112-0 + 91 = 7-13 

GUARD 

b", 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b '" 0 
b = 0 

GUARD 

b", 0 

b '" 0 

b = 0 

GUARD 

b,* 0 

b", 0 

b '" 0 

b '" 0 

b = 0 

DEVELOPMENT OF AN ALGORITHM for multiplying two cardinal numbers proceeds 
through three stages_ The first algorithm (top) employs the method of repeated addition; its 
correctness can be verified through an assertion called a loop invariant, which must remain true 
at all stages of the calculation. A more efficient method (middle) is the one people generally use 
in doing multiplication by hand; it calls for dividing the multiplier by 10 instead of decrement
ing it by 1. In the example of 7 X 13 the faster algorithm reduces the number of passes through 
the loop from 13 to three. Because a digital computer uses binary and not decimal arithmetic, an 
algorithm based on division by 2 (bottolll) is still faster in spite of requiring more repetitions. 
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ecutes S; the two steps are repeated 
until a test of B yields False. In most 
cases a statement within S eventually 
changes the value of B, so that the loop 
does not continue indefinitely. In both 
the conditional and the looping con
structs B has the function of a "guard," 
an expression that allows S to be exe
cuted only if the condition defined by 
B is satisfied. 

Consider an algorithm for multiply
ing two cardinal numbers, x and y, 

by means of repeated addition. A for
mal statement of the algorithm is given 
in the illustration on the preceding page. 
The first step is to set up three variables: 
the multiplicand a, the multiplier band 

text: array[O .. M -11 of character 

a partial sum c, which ultimately be
comes the product. The variables are 
given their initial values in the three 
statements a:= x, b:= y and c:= 0. 
Here the symbol ": = " is an assignment 
operator; whereas an equal sign consti
tutes an assertion of equality, the assign
ment operator actually creates a condi
tion of equality, that is, it assigns to the 
symbol on the left the value of the ex
pression on the right. It can be read as 
"Let a become eq ual to x." 

The heart of the algorithm is a while 
loop in which the guard is the statement 
b =F 0. As long as b remains greater 
than ° two operations are carried out 
repeatedly. In the first operation b is 
decremented by 1; in the second opera-

j = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
textO] = P E T E R  P I P E R  P C K E D  A P E C K  

word: array[O .. N -11 of character 

i = 0 1 2 3 
word[i] = P I C  K 

i:= O;j:= 0; 

while (i < N)and (j < M-N)do 

i:= 0 

while (i < N) and word[il = text[j + il do i : = i + 1 end; 

if i < Nthenj:= j+l end 

end 

P 
® 
P 

E T E 
I C K 

CD C K 

R 

® I C K 

P P E R  

® I C K 
® I C K 

® I C K 
® I C K 

® I C K 
P CD C K 
P I © K 

® I C K 
® I C K 
P CD C K 

P 

® I C K 

C K E D  

® I C K 
® I C K 

® I C K 
P CD C K 
P I © K 
P I C ® 

P: Vi: (0 ,,; i < N): word[il = text[j + il 

Q: Vk: (0 ,,; k < j): 3i: {(O ,,; i < N): word[il} "" text[k + il 

R: P andQ and(J;;;. m-n or i=n) 

A P E C K 

SEARCH FOR A WORD IN A TEXT is done by a series of letter-by-letter comparisons. Both 
the text and the word are declared to be arrays of characters; in this case the text has 2S letters 
and the word has four. The first letter of the word is com pared with the first letter of the text; 
they happen to match (indicated here by a colored circle), and so the second letters are com
pared. This time the letters differ (indicated by a gray circle); the word is thus moved one char
acter position to the right and the testing of letter pairs begins anew at the start of the word. Only 
when all the letters match has the word been found. The conditions to be satisfied by the algo
rithm are specified by the three propositions in predicate calculus given at the bottom of the il
lustration. The first assertion (P) states that when the word is aligned at positionj in the text ar
ray, for all values of the word-array index i, the letter word[i] is the same as the letter text[j + i] . 
The second proposition (Q) states that there is no matching sequence for any smaller value of 

j; thus the first occurrence of the word in the text must be found. The third proposition, which 
must hold at the end of the search, states that P and Q will both be satisfied and either i will 
have the value n (indicating that a match was found at positionj) or j will have a value larger 
than that of any possible matching sequence (indicating that the word is not present in the text). 
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tion a is added to the current value of c. 
The operations are expressed formally 
in two assignment statements: 

b:=b-l;c:=c+a .  

The intent of the algorithm is obvious, 
and the proced ure is straightforward. 
With c initially equal to 0, a is added to 
it b times, which directly implements 
the definition of multiplication. 

How can one be sure, however, that 
a program written to express this intui
tively clear idea actually embodies the 
correct algorithm? One approach is to 
enter the program into a computer, 
compile it and test a few cases. That 
method can never lead to absolute confi
dence in the program's correctness, sim
ply because the number of potential test 
cases is infinite. A better answer is to 
include in the program "assertions," or 
statements of conditions that must be 
true (if the algorithm is correct), no mat
ter what path the computation has taken 
up to that point. In this case the assertion 
is a "loop invariant," a statement that 
holds no matter how many times the 
loop has been executed. 

What assertion about the quantities in 
the multiplication problem remains true 
throughout the execution of the pro
gram? Since a and b are initially set 
equal to x and y, it is clear that at the 
outset a * b must be equal to x' y. (The 
asterisk signifies multiplication, a con
vention in many programming lan
guages.) Similarly, when the calculation 
is finished, c is taken as the prod uct and 
so c must then also be eq ual to x * y. In 
the various stages between the start and 
the end of the proced ure, b is decreased 
by 1 each time c is increased by a. From 
this analysis it follows that the equation 
a * b + c = x * y holds throughout the 
calculation. That assertion is therefore 
the essential invariant of the while loop; 
together with the condition for termina
tion (b = 0) it establishes the desired re
sult (c  = x* y). 

In this instance the truth of the as
sertion employed to confirm the cor
rectness of the program is scarcely 
more obvious than the correctness of 
the program statements themselves. The 
algorithm, however, is a simple one. The 
power of assertions as a means of verify
ing program correctness becomes ap
parent when the algorithm is refined in 
order to make it more efficient. The as
sertion formulated in the simplest case 
remains valid even as the program be
comes more complicated. 

The loop in the algorithm for multi
plication by repeated addition must be 
executed y times. There are much faster 
methods. The algorithm for multiplica
tion taught in primary school is an ex
ample; it is based on the same principle, 
but b is reduced in larger steps. Instead 
of being decremented by 1, it is divided 
by 10, a particularly easy operation in 
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the decimal system. Indeed, in this con
text one generally does not even think of 
the process as division but rather as sim
ply separating the multiplier into its 
component digits. The isolation of digits 
can be done in algorithmic terms by ap
plying two mathematical operators, DIV 

and MOD, that yield respectively the 
integer part of the quotient and the re
mainder after division. 

The modification of the algorithm to 
exploit this more efficient procedure can 
be guided directly by the need to pre
serve the invariance of the assertion 
a * b + c = x':, y. The assignment state
ment b: = b - 1 in the original algo
rithm is to be replaced by b : = b DIV 10; 
preserving the invariance requires that a 

be multiplied by 10, and so the state
ment a: = a * l O is added to the pro
gram. If b is not a multiple of 10, the 
remainder (b MOD 10) is subtracted from 
b and, in order to preserve the invariant, 
a * (b MOD 10) is added to c. 

The factor of 10 in the multiplication 
proced ure is chosen because of its con
venience in the decimal number system. 
Since the computer uses binary numbers 
internally, it is advantageous to employ 
a factor of 2 instead. A simple substi
tution of 2 for 10  could be made, but 
further refinements are possible. The 
resulting algorithm is used in all com
puters. The gain in efficiency is substan
tial: the number of iterations of the 
loop is reduced from y to the logarithm 
of y to the base 2. Without this improve
ment computers would spend most of 
their time multiplying. 

Asecond example is drawn from the 
realm of nonnumerical algorithms. 

Given a text stored as a sequence of 
characters the task is to find within it the 
first occurrence of a word, which can be 
defined as any sequence of characters no 
longer than the text. Algorithms built on 
this model are important in many areas 
of computer science, perhaps most obvi
ously in word-processing programs. 

The first step in constructing the algo
rithm is to specify the precise result 
wanted. In the illustration on the oppo
site page that is done in a formal no
tation (the predicate calculus); here I 
shall give a verbal description. The two 
variables, the text and the word, can be 
declared as arrays of characters, so that 
any chosen character can be retrieved by 
giving a computed index value. Assume 
the text is an array of m characters and 
the word is an array of 11 characters, 
where 11 is less than or equal to m. (In 
most cases 11 is much smaller than m.) 

What condition is guaranteed to be 
satisfied when a matching sequence of 
characters has been found? The answer 
can be stated in terms of the index vari
ables i and j that specify positions in the 
word array and the text array respec
tively. A match exists if for every value 
of i from 0 to fl - 1 (that is, for the en-

P E T E R v 
P E C ® 

p E G ® 

LETTER DISTANCE 
A 4 
B 4 
C 1 
D 4 
E 2 
F 4 
G 4 
H 4 
I 4 

J 4 
K I\' 
L 4 
M 4 
N 4 
0 4 
R 3 
Q 4 

P P E R 

p E C® 
P E C ® 

P C K E D A 

P E C ® 
P E © K 
P ® C K 

P E C K 

I I 
I<E---l 

( 2 
( 3 

P E C ® 

P E C K 

P E C ® 
P E C ® 
P E © ' K 
P ® C K 

® E C K 

FASTER SEARCH ALGORITHM was devised in 1976 by Robert S. Boyer and J. Strother 
Moore, now at the University of Texas at Austin. The search begins at the start of the text, but 
in each stage the letters are compared starting at the end of the word. The program must main
tain a table giving the distance from the end of the word to the last occurrence of each letter in 
the word; if the letter is not included in the word, the table entry is the full length of the word. 
When a letter in the word fails to match a letter in the text, the table entry for the text letter is 
retrieved; the word is then moved to the right that many character positions. In the first com
parison a k in the word does not match an e in the text, and so the word is moved two spaces. 

tire allowed range of the index) the desig
nated character in the word array is the 
same as the character in the text array 
specified by an index value of j + i. The 
val ue of j for which this condition holds 
points to the first character in the match
ing seq uence, and it can serve as the re
sult returned by the search algorithm. 

Finding a matching sequence of char
acters is not all that was asked, however; 
the statement of the problem calls for 
the first matching sequence. Another 
condition must therefore be put on the 
algorithm: for all values of the text-ar
ray index j less than the value at which 
the matching sequence begins, the word 
array and the text array must differ in at 
least one character. The result is valid 
only if both conditions are met.  

One more possibility must be taken 
into account: the word may not be pres
ent in the text at all. Such an oversight 
is a common cause of program failure. 
It can be corrected by specifying that if 
the word is not found, the returned val
ue of j should be larger than the largest 
possible value for the start of a match
ing sequence, namely m - 11. 

The three conditions defined here
that the characters in the word and in the 
text correspond for all values of i and 
j + i. that there are no regions of corre
spondence for smaller values of j and 
that j is less than m - l1-represent as
sertions helpful in verifying the correct
ness of an algorithm. It turns out they 
are also useful as a framework for con
structing the algorithm itself. The obvi
ous approach to searching the text is by 

repetition. A while loop is set up with the 
first and third conditions as guards and 
with the second condition as a loop in
variant. The initial value of j is set equal 
to 0, so that the search begins with the 
start of the text. On each pass through 
the loop the guard conditions are tested, 
and if the word matches the text or if j 
is greater than m - 11. the program exits 
from the loop; otherwise j is increment
ed by 1 and the loop is repeated. 

What remains to be specified is how 
the match itself is detected, that is, how 
the characters in the text are compared 
with those of the word over the range of 
index values from i = 0 to i = 11 - 1. The 
answer is a loop within the main loop; 
for each value assigned to j the inner 
loop passes through tbe entire range of 
values of i. comparing the fl characters 
one at a time. At the first discrepancy the 
inner loop is aborted. The value of i on 
exit from the loop indicates whether or 
not a match was found: if i is less than II. 

the comparison ended prematurely be
cause of a mismatch. 

The text-search algorithm above is 
straightforward but relatively ineffi

cient. In essence the word and the text 
are superposed, starting at the beginning 
of both, and compared character by 
character. If a mismatch is detected, the 
word is shifted one position to the right 
and the comparison is repeated. This 
process continues until a match is found 
or the word has been shifted all the way 
to the end of the text. When there is no 
matching word in the text, a minimum 
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of m - n comparisons are needed, and 
the number is generally higher. 

For a task as fundamental as search
ing a text it may seem unlikely that any 
significantly better methods would be 
discovered after some 30 years of work 
in computer science. Nevertheless, in 
1976 Robert S. Boyer and J. Strother 
Moore II, now at the University of Tex
as at Austin, found a faster way. Their 
idea allows j to be incremented by more 
than 1 in the program's main loop. The 
comparison of the word with a segment 
of the text starts at the end of the word 
and proceeds toward the beginning. If a 
letter in the word fails to match the cor
responding letter in the text, the word is 
shifted forward to bring into alignment 
the next letter that does match at this 
position, which I shall call the pivot po
sition. If no letter in the word matches at 
the pivot position, the word is shifted 
forward so that its last letter is one space 
beyond the pivot. 

An immediate question raised by this 
procedure is how the next matching let
ter pair is found; if it must be done by 
comparing characters one at a time, 
nothing has been gained. There is anoth
er way: the program can maintain a ta
ble listing the distance from the end of 
the word to the last occurrence of each 
letter in the word. Of course time must 

procedure search (var t: TreeNode); 

jsearch for key x in t; if it is not found, insert it} 

begin 

if t = nil then {insert new node with key x} 

else if x < I. key then search (I. left) 

else if x> I. key then search (I. right) 

else {found: x.key = x} 

end {if} 

end {search} 

be invested in compiling the table, but it 
needs to be done only once; if the text is 
long enough, it is worth the effort. 

The Boyer and Moore algorithm may 
be faster, but can one have confidence in 
its correctness? In particular, how can 
one be certain in shifting the word sev
eral places to the right without mak
ing any comparisons that no matching 
alignments were passed over? An infor
mal argument is that a match requires 
identity of all the letter pairs, and the 
alignments passed over necessarily dif
fer in at least one position, namely the 
pivot position. 

Correctness and efficiency are the 
main concerns of programmers. I 

have shown that analytical methods can 
and must be used to establish correct
ness because an exhaustive empirical 
test would take too long even for simple 
problems. For precisely the same reason 
efficiency and performance cannot be 
measured empirically. The tool for their 
analysis is the calcul us of probabilities. 

Suppose one is given an array of n 
numbers and asked to find the maxi
mum value among them. The obvious 
method is to scan the array seq uentially, 
comparing each element with the largest 
one found up to that point. One might 
declare a variable named max and make 

x < I.key 

12 14 6 5 15 1 1  4 8 7 3 .. . 10 

RANDOM-INSERTION ALGORITHM is a single routine for maintaining a binary trec; it 
can both add information and retrieve it. The algorithm is a recursive procedure applied in ex
actly the same way at each node. Given a key value x, the algorithm compares it with the key 
of the node being examined; if x is less than the node's key, the left branch is searched, and if x 
is greater, the right branch is searched. If the value of x is equal to that of the key, the node being 
sought bas been found. If the key is lIif, the node does not exist and a new node is created at 
that position in the tree. In the example shown here a tree is searched for the key value x = 10. 

68 

its initial value that of the first element. 
In a while loop each subsequent element 
is compared with max, and if the ele
ment is larger, max is assigned the value 
of the element. 

It is evident that the loop must be re
peated 11 times, which sets a lower bound 
on the execution time of the procedure. 
How often is the assignment statement 
executed? If the first element happens to 
be the largest one, the assignment is 
done only once; on the other hand, if the 
sequence is an increasing one, max is 
assigned a new value 11 times. Hence 1 
and n are the extreme values, but what is 
the average? The question cannot be an
swered by experiment. There are n! pos
sible arrangements of the numbers, 
which is too many to examine even for 
small values of n. (With an array of just 
16 elements and a computer capable 
of checking a million arrangements per 
second, an exhaustive analysis would 
take more than half a year.) 

The analytical method of determining 
the average is quite simple. The initial 
assignment of a value is always executed 
once, and so the count of executions be
gins at 1. Assuming all permutations are 
equally likely, the probability that the 
second element is larger than the first is 
112; the probability that the third ele
ment is larger than either of the first two 
elements is 1/3. The analysis can be 
continued in this way, so that the av
erage number of assignments is equal 
to the sum 1 + 112 + 1/ 3 + ... + 1/ n, 
which is known as the harmonic series. 
The 18th-century Swiss mathematician 
Leonhard Euler showed that the sum of 
the series is approximately equal to the 
natural logarithm of n plus a constant, 
now called Euler's constant, with a val
ue of about .577. The logarithm of 11 

grows much slower than 1/ itself, and so 
the time spent assigning values to max is 
negligible compared with the time spent 
making comparisons and incrementing 
the array index. It is therefore reason
able to say that the effort needed to find 
the maximum among n numbers is pro
portional to n. 

Most practical problems do not yield 
so readily, and the analysis of algo
rithms is an active field of research. In 
many cases it is enough to know how the 
execution time varies as a function of 
some measure of the size of the prob
lem. For example, the time might in
crease in proportion to the size, or in 
proportion to the square of the size, or 
it might rise exponentially; exponential 
growth makes the algorithm all but use
less. The study of such issues is called 
complexity analysis. 

The methods of complexity analysis 
can be illustrated by an example: the 
construction of a binary tree, a data 
structure often adopted when the quick 
retrieval of information is important. 
The tree has two notable properties: 
each node can have at most two sub-
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nodes, and the keys that identify the 
nodes are arranged so that at any node 
the smaller key is in the left subtree. 
Searching for a particular key can be 
very efficient; a comparison at each 
node indicates whether to take the left 
branch or the right, and so the number 
of remaining possibilities is halved at 
each node. 

The efficiency is at a maximum when 
the tree is perfectly balanced, that is, 
when every node has exactly two sub
nodes. The average path length-the ex
pected number of key comparisons-is 
then equal to the logarithm to the base 
2 of the number of nodes. In the worst 
case, where the tree has degenerated to a 
simple list with just one subnode linked 
to each node, the average path length is 
one-half the number of nodes. From this 
result it appears one ought to take some 
care to keep the tree balanced as it 
grows. The balancing in itself requires a 
considerable effort, however, and so the 
question arises of whether the addition
al effort will pay off in faster searches. 
Surprisingly, in most cases it does not. 

Suppose n key values are read in ran
dom sequence and inserted into a 

tree, which is initially empty. The left
to-right ordering of the keys is estab
lished as they are placed, but no effort is 
made to balance the tree. A single proce
dure can be designed both to add a new 
key and to search for one that is already 
present; the procedure merely finds the 
place in the tree where the key belongs 
and inserts it if it is not there. An algo
rithm for this purpose is shown in the 
illustration on the opposite page. It is a 
recursive procedure, one that invokes it
self. At each node the algorithm takes 
one of four possible actions. If the value 
of the key at the node is nil, the new key 
is inserted there. If the value of the 
node's key is equal to that of the new 
key, a successful search is reported. If 
the new key is less than the one found, 
the procedure calls a new copy of itself 
to search the subnode to the left. If the 
new key is greater, the recursive search 
is directed to the right. 

What is the average path length in a 
tree constructed by such random inser
tion? Again empirical measurements are 
out of the question because there are n !  
possible insertion sequences, but a pro
babilistic estimate can be made. Assume 
that the keys are the integers I through 11 

and that all permutations of them are 
equally likely. Some key, i, must be the 
first to arrive and so it becomes the root 
of the tree. When the rest of the keys 
have been inserted, there will be i - I 
nodes to the left of the root and n - i 
nodes to the right. If i happens to be the 
midpoint of the range, the tree is per
fectly balanced at this highest level; if i 
is equal to 1 or to n, the first branches of 
the tree are completely unbalanced. 

The crucial idea in the analysis is that 

� � � 
[ ( i  - 1 ) (P.-. + 1 )  + 1 + (n - i ) (Po_; + 1 )] I n  

Po = 2(n + 1 ) [1 + Y2 + Y3 + Y4 . . .  ] / (n - 3) 

Po = 2 l n  n - 1 .845 

BALANCING A BINARY TREE turns out to offer only a moderate improvement in effi
ciency in the average case. A fully balanced tree with 1/ nodes (top left) has an average path 
length proportional to the logarithm of 1/. In the worst case, that of a tree degenerated to a list 
(top right), the average path length is 1/ 12. For a tree constructed by random insertion, the aver
age length must be determined by a probabilistic analysis. If the root of the tree is element i, the 
subtree to the left must include i - I  nodes and the subtree to the right 1/ - i nodes. The total av
erage path length is equal to the sum of the lengths for the two subtrees plus 1 for the root. The 
analysis can be repeated for each subtree, until ultimately the leaves of the tree are reached, 
where each subtree has a path length of either 0 or 1. Average path length in the random tree is 
a logarithmic function of 1/ some 38 percent larger than the function in the balanced tree. 

exactly the same reasoning can be ap
plied recursively to each subtree. If the 
second key to arrive is j and it is less than 
i, then when the tree is filled, there will 
be j - 1 nodes in the branch to the left 
of j and i - j nodes in the branch to the 
right. What is more, from this recursive 
description of the tree the average path 
length can be calculated by another re
cursive procedure. At the root the path 
length is equal to I (for the root node 
itself) plus the length of a subtree with 
i - I nodes plus the length of a subtree 
with 11 - i nodes. These lengths are 
not known, but they can be calculated 
by applying the same procedure at the 
next level in the tree. Ultimately the end 
of each branch is reached, where every 
node has a path length of either 0 or 1. 

The recursive definition of the path 
length must be averaged for all possible 
values of i from I through n. The result, 
shown in the illustration above, is an 
expression that again includes the har
monic series. The average path length 
of a tree constructed without concern 
for balancing is a logarithmic function 
of the number of nodes, and it differs 
from the optimum by a constant factor. 
The average case is much closer to the 
optimum than it is to the worst case: 
the path is longer by 38 percent. 

The programs I have discussed here 
are not trivial, but they are very 

short. In practical applications pro
grams tend to be long and intricate, and 

they seem to grow as fast as the mem
ory capacity of the computers availa
ble to run them. Can the methods of 
analysis I have outlined be applied to 
such programs? It is my conviction that 
they must, because complex systems re
quire exact reasoning even more urgent
ly than simple ones. 

Most large software systems rely on 
few "deep" algorithms; rather they are 
built up out of basic algorithms such as 
multiplication and searching, which ap
pear in many variations and combina
tions. The data structures, on the other 
hand, tend to be exceedingly complex. 
As a result the choice of the right data 
representation is often the key to suc
cessful programming, and it may have a 
greater influence on the program's per
formance than the details of the algo
rithm employed. 

It is unlikely there will ever be a gen
eral theory for choosing data structures. 
The best that can be done is' to under
stand the basic building blocks and the 
structures built up from them. The abili
ty to apply this knowledge in construct
ing large systems is above all a matter 
of engineering skill and experience. In 
gaining such skill the programmer must 
constantly fight complexity, refuse to 
rely on a method not fully understood 
and never give up the search for simpler, 
more elegant solutions. In this effort no 
modern tool of software engineering 
can replace the programmer's faculty of 
precise, constructive reasoning. 
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Programming Languages 

They offer a great diversity of ways to specify a computation. 

A language transforms the computer into a "virtual machine" 

whose features and capabllities are determined by the software 

�prOgramming language is more 
than a notation for giving in
structions to a computer. A lan

guage and the software that "under
stands" it can totally remake the com
puter, transforming it into a machine 
with an entirely different character. The 
hardware components of a typical com
puter are registers, memory cells, add
ers and so on, and when a programmer 
writes in the computer's native language 
those are the facilities he must keep 
in mind. A new language brings with it 
a new model of the machine. Although 
the hardware is unchanged, the pro
grammer can think in terms of variables 
rather than memory cells, of files of data 
rather than input and output channels 
and of algebraic formulas rather than 
registers and adders. A few languages 
even give the computer a split personali
ty: it becomes a collection of indepen
dent agencies that do their own calcula
tions and send messages to one another. 

Programming languages and their di
alects number at least several hundred, 
and possibly a few thousand. The natu
ral languages of human communication 
may be more numerous still, but in some 
respects programming languages are 
more diverse. Each language has its own 
distinctive grammar and syntax, its own 
manner of expressing ideas. In principle 
most computational tasks could be ac
complished with any of the languages, 
but the programs would look very dif
ferent; moreover, writing a program for 
a given task would be easier with some 
languages than with others. Here I shall 
describe some of the programming lan
guages in common use and attempt to 
give an impression both of the elements 
they have in common and of the fea
tures that distinguish them. 

The illustration on page 72 shows 
several stages in the development of a 
short program in Logo, a language de
vised in the late 1960's by Seymour 
Papert and his colleagues at the Massa
chusetts Institute of Technology. One 
interesting feature of Logo is the ability 
to control a "turtle," a small robotic de
vice that can move forward and back-
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ward, turn in place and raise or lower 
a pen that leaves a trace of the turtle's 
path. In many cases the turtle is not a 
real device but instead is simulated on 
a video display. 

The initial version of the program 
consists entirely of commands to the 
turtle. First the pen is lowered, then the 
two commands forward 50 and right 144 
are repeated five times and then the pen 
is raised. When the turtle follows the 
instructions, it draws a five-pointed star. 
The command forward 50 causes it to 
draw a straight line 50 units long; right 
144 specifies a clockwise turn through 
144 degrees, the change of heading at 
each vertex in a five-pointed star. 

If writing a list of commands to be 
executed serially were the only meth
od of conveying one's intentions to a 
computer, creating a complex program 
would be all but impossible. Actually 
Logo and other programming languages 
provide a number of facilities for sim
plifying and generalizing instructions. In 
this case the part of the program most 
conspicuously in need of improvement 
is the fivefold repetition of the forward 
and right statements. Whenever possible 
a programmer avoids writing anything 
more than once, and not just because the 
typing is onerous. If the program could 
be condensed, it would take up less 
space in memory. Furthermore, repeti
tion increases the likelihood of a typo
graphical error, particularly when the 
program is being revised. The repetition 
can be eliminated by replacing the five 
turtle-movement commands with the 
statement repeat 5 [forward 50 right 144]. 

Suppose now the programmer wants 
to draw a nine-pointed star with edges 
80 units long. That could be accom
plished by means of a statement such as 
repeat 9 [forward 80 right 160] but it is 
apparent the same basic program struc
ture is being duplicated, with differen
ces only in detail. A better solution is 
to define a more general proced ure in 
which the number of points and the 
length of a side are given as variable 
quantities. In Logo the word to intro
duces a procedure definition. Thus the 

phrase to star indicates the instructions 
that follow should be stored as the 
method for drawing a star. Thereafter 
star becomes a new command in the 
language, one that can be entered into a 
program just as the built-in commands 
forward and right would be. 

The variables in the star proced ure are 
of the kind called parameters, which are 
"passed" to the procedure at the time it 
is invoked. In Logo the name of a pa
rameter is preceded by a colon. Hence 
the procedure would be defined with a 
phrase such as to star :size :points; typ
ing star 80 9 would assign a value of 
80 to the parameter size and a value of 
9 to points, thereby generating a nine
pointed star 80 units on a side. 

One further refinement might be add
ed to the star proced ure. In Logo a de
fined procedure can be called not only 
by the programmer but also by another 
procedure. This is an important source 
of power, but it increases the hazard of a 
procedure's being given inappropriate 
parameters. For example, in the intrica
cy of a program one might not realize 
that the turtle would be asked to draw 
a star with only one or two points. The 
problem can be addressed by adding the 
clause if points> 2 to the program. The 
ifclause serves as a "guard" that allows 
the turtle to draw only if the number of 
points specified is greater than two. 

From the example above it can be seen 
that Logo has at least a superficial 

resemblance to a natural language such 
as English. It has a vocabulary of words, 
numbers and other symbols (collective
ly called tokens) that can be strung to
gether to form larger constructs analo
gous to sentences. Some of the tokens 
are "key words" with a fixed mean
ing; others are defined by the program
mer. Some of the tokens act as verbs; 
others function as nouns, modifiers or 
marks of punctuation. The rules gov
erning how tokens can be combined 
constitute a grammar. 

The sentences of a programming lan
guage are generally classified as declara
tions and statements. A declaration de-
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fines what something is, what it means 
or how it is structured. In the Logo pro
gram, to star :size :points is a declaration 
that defines star as the name of a proce
dure and defines size and points as vari
ables that serve as parameters to star. A 
statement, on the other hand, generally 
describes part of an algorithm; it spec
ifies some action to be taken. In most 
cases a statement has the form of an 
imperative: it begins with a verb, which 
is followed by an object or a modifier. 
In the repeat statement repeat itself is a 
verb, the number following it serves as 
an adverb and the material in brackets is 
the object of the verb. 

The vocabulary and the syntax of the 
star procedure are peculiar to Logo, but 
the mechanisms that control the flow of 
execution through the procedure can be 
found in the great majority of program
ming languages. In the absence of any 
explicit control statement, execution is 

• :rr,r�II�"�! tUr 1j�1 ... �drjIJntltr,.. 
>>> Begh e .. cuti.. . .. 
»> User halted exeutl .. 
»> Step c .. pletl 
»> Step ulplett 
»> Stop COl pi eto 

sequential. If one imagines the comput
er as reading the program, it reads the 
lines from top to bottom, so that unless 
the flow is altered each statement is exe
cuted exactly once. 

One program element that alters the 
flow of execution is the repeat statement, 
which is an example of a looping, or 
iterative, construct. When the comput
er encounters repeat n followed by a 
group of statements in brackets, it reads 
and executes the material in brackets n 
times. Another way of controlling the 
computer's progress through a program 
is conditional execution, which in Logo 
(as in many other languages) is embod
ied in the if statement. The statements 
governed by an if are executed only if 
some specified condition is met. 

There are many variations on the ba
sic ideas of iterative and conditional ex
ecution. The repeat statement is useful 
only if it is known before the loop is 

rrp[ 
Termlndex = 1 .. 100; 

entered how many times it is to be exe
cuted. Other constructs allow the termi
nation of the loop to be controlled by 
events within the loop itself; in essence a 
conditional expression is incorporated 
into the loop. In a number of languages 
a statement beginning with the key word 
while is repeated as long as a stated 
condition remains true. Another way 
of diverting program flow is an "un
conditional jump," or goto statement, 
which simply shifts execution to a new 
point in the program. In recent years the 
goto statement has been in some disre
pute among computer scientists on the 
grounds that programs with many such 
jumps are difficult to follow (for the hu
man reader, not for the computer). 

The notion of procedure definition it
self is a vital element of programming. It 
is the chief mechanism of abstraction, 
the process of converting specific in
stances (a five-pointed star 50 units on a 

TermArray = *RtAr [ Termlndex J OF integer; 

,n 
�yTerms : Ter�Array; 

II-�-""-'-_'-=""," __ +--"-..,.-_-:=,.......=-____ U
FU'CTIO' SumOdds (n : Termlndex; terms TermArrayl: Integer; 

,al [J�[:]������m!i��II��� I : Termlndex; 
su_ : integer; 

IUII ( Funo! ion Su"Odd. ) 
SUI!! := 0; 
FOt I : = 1 TI n DD 

,.. 1'10 U e 

IF oddctermsli J) un 
t3um := sumHermsll �; 

SumOdds : = sum 
�����������]E'D 

SUl'loddnUMbers : [prograM) 

t er�Y��ex 
n�M [Type] TY�� <"TYPE) 

ter",arra!:l : [t!:lPf!J TYPECTYPE> 
"'yterl'''s : [Yariabl.) TYPE<t.,.",array> 
sUl'lodds : [F'une t Ion] TYPE (PROC) 

SNAPSHOT OF A PROGRAM in execution is given by a program
development system called PECAN. Most of the source text, or original 
program, is displayed in the large window at the upper right; it is a 
program in the Pascal language for summing the odd terms in an ar
ray of integers. Commands controlling the execution of the program 
are given in the window at the upper left. Execution has been stopped 
at the statement where the actual calculation of the sum is done; the 

statement is enclosed in a box in the source-text-display window. Be
low the source text, part of a flow chart for the program is visible, and 
to the left of that is a binary tree showing the logical structure of the 
assignment statement. The nested boxes at the lower left indicate the 
scope of symbols in the program. The stack-display window gives a 
view of the program's data structures. PECAN was developed by Ste
ven P. Reiss of Brown University, who also created this illustration. 
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side) into general concepts (a star with 
any number of points and any size). A 
procedure is defined only once and is 
stored in memory only once, but it can 
be invoked from many places in a pro
gram, thereby allowing a product of 
mental labor to be used many times. 
Each time a proced ure is called, exe
cution transfers to the area in memory 
where it is stored; when the proced ure 
has been completed, execution resumes 
with the instruction immediately fol
lowing the call. A specialized kind of 
procedure, a function, returns a value of 
some kind to the calling program. The 
tangent function, for example, is given 
an angle as a parameter when it is called, 
and it returns a value equal to the tan
gent of the angle. 

Among the hundreds or thousands 
I\. of programming languages only a 
dozen or so are in widespread use. The 
illustrations on pages 74 through 76 
show the same problem programmed 

pendown 
forward 50 right 144 
forward 50 right 144 
forward 50 right 144 
forward 50 right 144 
forward 50 right 144 
penup 

pendown 
repeat 5 [forward 50 right 144) 
penup 

pendown 
repeat 9 [forward 80 right 160) 
penup 

to star :size :points 
pendown 

in six languages: BASIC, Pascal, COBOL, 

Forth, APL and Lisp. These six were cho
sen in part because they are well-estab
lished languages with a sizable popu
lation of programmers fluent in their 
use. They also illustrate well the great 
diversity of ways a single idea can be 
expressed. In each case an attempt has 
been made to write in a style that would 
be natural or comfortable to a program
mer accustomed to the language. 

The problem is not one of great intrin
sic interest. It was chosen because a so
lution can readily be programmed in 
all the languages and because it demon
strates the essential mechanisms for de
fining variables and procedures and for 
controlling iterative and conditional ex
ecution. The problem is to sum the odd 
numbers in a set of integers. 

The BASIC programming language 
was developed in 1965 by John G. Kem
eny and Thomas E. Kurtz of Dartmouth 
College, primarily as a language for in
trod uctory courses in computer science. 

star 50 5 

repeat :points [forward :size right 720/points) 
penup 

to star :size :points 
if :points > 2 

[pendown 
repeat :points [forward :size right 720/:points) 
penup) 

star 80 9 

DEVELOPMENT OF A PROGRAM IN LOGO is traced through five stages. The program 
gives instructions to a "turtle," a mechanical drawing device. In the first version of the pro
gram all the instructions for drawing a five-pointed star are given explicitly. The repeal state
ment in the second version condenses the program and reduces the likelihood of error. The 
third version has the same basic program structure but draws a larger star with nine points. In 
the fourth version a procedure is defined in which the length of a side and the number of points 
are variable quantities. In the final version of the program an if clause allows the procedure 
to execute only if the number of points specified is greater than two. The repeal and if state
ments are examples of control structures important in virtually all programming languages. 
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It has since fallen from favor somewhat 
in the academic world, but it has be
come popular in other contexts, nota
bly the programming of microcomput
ers. In BASIC every line is identified by a 
number, and the control of flow through 
the program is based largely on refer
ences to the line numbers. The heart of 
the sample program is a loop in which 
all the statements between a FOR state
ment and a NEXT statement are execut
ed repeatedly. The actual calculation is 
done in an assignment statement, which 
begins with the key word LET and gives 
a new value to a variable. 

Pascal was designed in about 1970 by 
N iklaus Wirth of the Swiss Federal In
stitute of Technology in Zurich. It is an
other language meant for teaching that 
has been adapted to many other purpos
es. Pascal, unlike BASIC, req uires the pro
grammer to declare each variable and to 
specify its type; in this case the variables 
are integers and arrays of integers. Pro
cedures and functions are referred to by 
name rather than by line number, which 
improves the readability of programs. 

Pascal has been particularly impor
tant as a progenitor of later languages. 
For example, Wirth has recently de
signed a language called Modula-2 that 
builds on many of the concepts intro
duced in Pascal but emphasizes the 
construction of a program as a set of 
independent modules. Ada, a language 
developed under the sponsorship of the 
Department of Defense, is also based 
largely on Pascal, although it is consid
erably more complex. 

COBOL was created in 1960 by a joint 
committee of computer manufacturers 
and users. The name is an acronym for 
Common Business-oriented Language, 
and COBOL has long been the principal 
language for large-scale data processing 
in government, banking, insurance and 
similar areas. A COBOL program is made 
up of four divisions, or parts: identifica
tion, environment, data and procedure. 
Only the data division, where variables 
are declared, and the procedure divi
sion, where algorithms are set forth, are 
shown in the bottom illustration on page 
74. Whereas many programming lan
guages are modeled on the notation of 
mathematics or formal logic, COBOL is 
modeled on the syntax of the English 
sentence; programs are highly readable 
but often verbose. 

Forth was invented in about 1970 by 
Charles H. Moore, who was then at 

the National Radio Astronomy Observa
tory. The aim was a language for proc
ess control, in particular the control of 
telescopes, but again the language has 
been extended to other domains. It has 
been adopted for many minicomputer 
and microcomputer applications, in part 
because Forth programs tend to take 
up little space in memory. In contrast 
to COBOL, Forth programs are difficult 
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n:= 4 
terms[2] : = 34 terms[3] : = 7 terms[4] : = 9 

terms[1] : = 23 

1 
sum: = 0 

i : = 1 

1 
YES 

STOP 
1> 4? 2 >4? 3> 4? 4> 4? 5> 4? 

NO NO NO NO YES 

1 1 1 1 
STOP 

NO Is 23 odd? Is 34 odd? Is 7 odd? Is 9 odd? 
YES NO YES YES 

1 1 1 
sum:= 0 + 23 sum:= 23 + 7 sum := 30 + 9 

= 23 = 30 = 39 

1 1 1 
i:= 1 + 1 i:= 2 + 1 i:= 3 + 1 i:= 4 + 1 

= 2 = 3 =4 = 5 

SAMPLE CALCULATION employed to illustrate the characteris
tics of several programming languages finds the sum of the odd ele
ments in an array of II integers. The algorithm outlined in the flow 
chart at the left is embodied directly in the Pascal, BASIC and COBOL 
programs shown on the next page. The heart of the algorithm is a 

. loop executed II times. On each passage through the loop a term of 

the array is examined; if it is an odd number, it is added to the run
ning total. At the right the successive values assumed by the variables 
in the procedure are traced as the calculation is done for an array of 
four numbers. The symbol ":=" gives to the variable on the left the 
value computed on the right. A number in brackets, as in terms[lj , is 
equivalent to a subscript: it identifies an element of the array terms. 

to read and extremely terse; several key 
words are mere marks of punctuation .. 

In Forth the central facility of the 
computer is the "stack," an area of 
memory organized like a stack of cafete
ria trays, so that the first item put on 
the stack is the last one removed. In the 
Forth version of the sample program it 
is assumed that the array of numbers 
and its size are at the top of the stack 
when the function is called; all calcula
tions are done on the stack, and the val
ue of the function is returned at the top 
of the stack. No variables are defined. 

APL has a syntax even more concise 
than that of Forth. The initials stand for 
A Programming Language, but in 196 1, 
when a book on APL was first published 
(by Kenneth E. Iverson of the Interna
tional Business Machines Corporation), 
the language was merely a notation for 
expressing problems in applied mathe
matics; implementation on a computer 
came later. A distinguishing feature of 
APL is that it can deal as easily with an 
entire array of numbers as with a single 
value; a command that adds two num
bers can be applied without change to 
arrays with thousands of elements. The 
sample APL program sums the odd ele
ments of an array in a single statement. 
Taking the remainder of each number 
modulo 2 identifies the odd elements, 
which are then extracted from the array 
and added. 

Lisp is in some respects the simplest 
of the languages considered here. It has 
only one kind of statement, namely a 
function call; its great source of power is 
that the value returned by a function can 
be another function. Lisp was developed 
in the late 1950's by John McCarthy, 
then at M.LT., and since then it has been 
the preeminent language of those pursu
ing the goal of artificial intelligence. The 
name is derived from "list processing"; 
both programs and data are structured 
as lists. 

The sample program could be written 
in Lisp as an iterative loop, but a Lisp 
programmer would be more likely to 
choose a recursive technique, in which 
a procedure calls on itself; the called 
procedure then issues another call to it
self, and so on. Some means of escape 
must be provided or the recursion will 
become an infinite regress. The usual 
means is a conditional statement within 
the procedure: when the condition is sat
isfied, execution returns to the next
higher leveL 

In the sample program the set of num
bers takes the form of a linked list. If 
the list is empty, the function returns 
a result of zero. Otherwise if the first 
element of the list is odd, it is added 
to the sum, and the function calls on it
self with an argument consisting of the 
list that remains after the first element 
is removed. Eventually all the elements 

are stripped off in this way, at which 
point the entire chain of pending calcu
lations is completed. 

In general computers are not built to 
"understand" Logo or BASIC or oth

er languages that operate at a similar lev
el of abstraction. The circuitry of the 
computer recognizes only the electronic 
embodiment of binary numbers. A pro
gram stored in a form that can be exe
cuted-the form called machine code
is a sequence of such numbers. Some of 
them represent instructions to the cen
tral processor, some of them are data 
and some are addresses in memory. 

It is possible to write a program di
rectly in machine code, but it is tedious, 
and the probability of completing even 
a small project without error is slight. 
(The computer has no trouble distin
guishing 0 1 10 100 1 from 0 10 1 100 1 and 
remembering what each code means, 
but the human eye and mind are not 
used to best advantage in such tasks.) 
In the late 1940's and early 1950's, in 
an attempt to reduce the toil of writ
ing machine code, programmers invent
ed a notation called assembly code. In
stead of writing down the binary digits 
for each machine instruction, the pro
grammer wrote a short word or abbre
viation, such as ADD, SUB or MOVE. Simi
larly, the address in memory where a 
variable is stored was replaced by a 
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program SumOddNumbers; 

type Termlndex = 1. .100; 
TermArray = array [Term Index] of integer; 

var myTerms: TermArray; 

function SumOdds(n: Termlndex; terms: TermArray): integer; 

var i: Termlndex; 
sum: integer; 

begin 
sum:= 0; 
for i : = 1 to n do 

if Odd(terms[i]) then 
sum: = sum + terms[i]; 

SumOdds : = sum; 
end; 

begin 
myTerms[l] : = 23; myTerms[2] : = 34 ; myTerms[3] . = 7; myTerms[4] . = 9; 
WriteLn(SumOdds(4. myTerms)) 

end. 

PASCAL PROGRAM for summing the odd numbers in an array employs a function named 
Sum Odds with two parameters: an integer II and an array terms. The function consists of the 
statements in the panel of color; the remainder of the program sets up a particular array on 
which Sum Odds operates. In Pascal every variable must be introduced in a declaration that 
gives the variable's type. Some types, such as illteger, are built into the programming language; 
others, such as TermIlldex, are defined by the programmer. The loop is designated by the 
for ... to ... do ... statement and the conditional is designated by the if ... thell ... statement. 

100 DIM T(100) 
200 READ N 
300 FOR I = 1 TO N 
400 READT(I) 
500 NEXT I 
600 GOSUB 1100 
700 PRINT S 
800 GOTO 2000 
900 DATA 4 

1000 DATA 23. 34. 7. 9 

1100 REM MAKE S THE SUM OF THE ODD ELEMENTS IN ARRAY T(1 .N) 
1200 LETS = 0 
1300 FOR I = 1 TO N 
1400 IF NOT ODD(T(I)) THEN GOTO 1600 
1500 LET S = S + T(I) 
1600 NEXT I 
1700 RETURN 

2000 END 

BASIC PROGRAM employs a subroutine to add up the odd terms in an array. The subroutine, 
indicated by the panel of color, has no name but must be referred to by line number; it is called 
by the GOSUB 1100 statement. A BASIC subroutine also has no parameters; values are assigned 
to "global" variables, which the subroutine can then access. A variable does not have to be de
clared in BASIC unless it has subscripts, as in an array; in this example the DIM (for "dimen
sion") declaration states that the array T can have as many as 100 elements. The FOR ... 
NEXT ... statement defines a loop and the IF ... THEN ... statement defines a conditional. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 NUMERIC-VARIABLES USAGE IS COMPUTATIONAL. 

02 TERMS PICTURE 9999 OCCURS 100 TIMES INDEXED BY I. 
02 N PICTURE 999. 
02 SUM PICTURE 999999. 
02 HALF-TERM PICTURE 9999. 
02 RMDR PICTURE 9. 

PROCEDURE DIVISION. 
EXAMPLE. 

MOVE 23 TO TERMS(1). 
MOVE 34 TO TERMS(2). 
MOVE 7 TO TERMS(3). 
MOVE 9 TO TERMS(4). 
MOVE 4TON. 
PERFORM SUM-ODDS. 

SUM-ODDS. 
MOVE 0 TO S UM. 
PERFORM CONSIDER-ONE-TERM VARYING I FROM 1 BY 1 UNTIL I > N. 

CONSIDER-ONE-TERM. 
DIVIDE 2 INTO TERMS(I) GIVING HALF-TERM REM AINDER RMDR. 

IF RMDR IS EQUAL TO 1; ADD TERMS(I) TO SUM. 

COBOL PROGRAM for the sum-of-the-odd-numbers calculation uses a procedure named 
SUM-ODDS that calls another procedure named CONSIDER-ONE-TERM. A COBOL proce
dure cannot have parameters, and so before SUM-ODDS is called by a PERFORM statement, 
values are assigned to N and to the first N elements of TERMS. The key words PER
FORM ... VARYING ... define the loop and IF ... introduces the conditional clause. In the data 
division the numbers 01 and 02 designate two levels in a hierarchy of data structures. PICTURE 
specifies how values are to be displayed. Only an excerpt from the complete program is shown. 
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name assigned to the variable. N umeri
cal values were expressed in decimal no
tation. The words representing instruc
tions were chosen to be more easily re
membered than binary values, and so 
they came to be known as mnemonics. 

At first the translation from assem
bly code to machine code was done by 
hand. It is a straightforward process: a 
table records the unchanging correspon
dence between instruction mnemonics 
and their binary codes, and a similar 
table can be constructed for the variable 
names appearing in a program. The proc
ess is clearly suitable for mechaniza
tion, and programs called assemblers 
were soon written to do the translation. 

Some programming is still done in as
sembly code, because it offers direct ac
cess to all the facilities of the computer. 
Carefully written assembly code is fast 
and efficient, and if a compromise must 
be made between speed of execution 
and program size, the programmer is in 
direct control of such decisions. Mod
ern assemblers are sophisticated trans
lation programs. N evertheless, there is 
still a rough one-to-one correspondence 
between lines of assembly code and 
machine instructions, so that programs 
tend to be quite long, and the possibil
ities for error are legion. The control 
structures available in most assembly 
codes are primitive. What is most im
portant, assembly code remains closer 
to the computer's language than to the 
programmer's. Algorithms must be ex
pressed in terms of what the machine 
is to do rather than in whatever terms 
might be natural to the problem at hand. 
(An assembly-code version of the odd
element-sum calculation is shown in the 
top illustration on page 77.) 

In planning the solution to a problem 
one is unlikely to think in terms of regis
ters and memory addresses; rather, the 
problem itself suggests the appropriate 
notation. If the problem is one in phys
ics, the design of a program might be
gin with an eq uation such as F = rna; in 
business the formula chosen might be 
profit = revenue - expenses. The opera
tions specified by the formula are then 
translated into explicit instructions to 
the machine. Early programmers recog
nized that this translation too might be 
mechanized. In that idea is the genesis of 
languages such as FORTRAN, BASIC and 
Pascal. For some years languages of this 
kind were called high-level languages; it 
now seems appropriate to refer to them 
simply as programming languages, be
cause machine code and assembly code 
do not really qualify as languages. 

Since 1960 most software has been 
written with the aid of programming 
languages. They have many advantages 
over lower-level representations. Be
cause one statement can give rise to 
many machine instructions, programs 
tend to be shorter, which both reduces 
the labor invested in writing them and 
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improves their clarity. Working with 
concepts pertinent to the problem rath
er than with those defined by the ma
chine also reduces the chance of error. 
Furthermore, it introduces the possibil
ity of "machine independence," of writ
ing a single program that can be run on 
many computers. 

I t is important to distinguish between a 
programming language and an im

plementation of the language. The lan
guage itself is the notation, the set of 
rules that define the syntax of a valid 
program. An implementation of a lan
guage is a program that converts the 
high-level notation into sequences of 
machine instructions. 

There are two main kinds of language 
implementation: compilers and inter
preters. A compiler translates the en
tire text of a high-level program in one 
continuous process, creating a complete 
machine-code program that can then be 
executed independently of the compiler. 
Working in a compiled language gener
ally has three stages: the program text is 
created with a text editor or word-proc
essing program, then the text is com
piled and finally the compiled program 
is executed. The term compiler was 
coined in 1951 by Grace Murray Hop
per, then at Remington-Rand Univac, to 
describe her first translator program. 
As part of the translation process the 
program retrieved standard seq uences 
of machine instructions from tables 
stored on magnetic tape and compiled 
them into a complete program. 

An interpreter executes a program 
one statement at a time, transforming 
each high-level construct into machine 
instructions on the fly. The difference 
between a compiler and an interpreter 
is analogous to the difference between 
a translator of literary works and a con
versational interpreter. The translator 
takes a completed manuscript and deliv
ers a new text in another language. The 
conversational interpreter renders each 
phrase or sentence as it is spoken. Actu
ally most interpreter programs do some 
initial processing of the text before exe
cution begins; key words are converted 
into shorter tokens and variable names 
are replaced by addresses. Still, the two 
kinds of implementation remain dis
tinct: for an interpreted program to be 
executed, the interpreter must be pres
ent in main memory, whereas once a 
program has been compiled the compil
er is no longer needed. 

In principle any programming lan
guage could be either interpreted or 
compiled, but in most cases custom has 
made one or the other kind of imple
mentation more common. FORTRAN, CO
BOL and Pascal are generally compiled; 
Logo, Forth and APL are almost always 
interpreted; BASIC and Lisp are widely 
available in both forms. The chief ad
vantage of compilation is speed; be-

cause an interpreter must determine a ment. Sections of a program can be writ-
suitable sequence of instructions each ten, tested and executed without leav-
time a statement is executed, an inter- ing the interpreter, and when an error is 
preted language IS almost inevitably found, it can be fixed immediately, with-
slower. On the other hand, an interpret- out the need to return to a text-edit-
ed language is often more convenient ing program and then compile the pro-
for the programmer; it is well suited to gram again. 
an interactive style of program develop- The inner mechanism of a compiler or 

: SUMODDS 
o S WAP 0 

DO 
S WAP DUP 2 MOD 

IF + 
ELSE DROP 
THEN 

LOOP 

2334 794 SUMODDS . 

WORD STACK COMMENT 

23 23 
34 23 34 
7 23 34 7 
9 23 34 7 9 
4 23 34 7 9 4 
SUMODDS 23 34 7 9 4 Call SUMO D DS. 
0 23 34 7 9 4 0 
SWAP 23 34 7 9 0 4 
0 23 34 7 9 0 4 0 
DO 23 34 7 9 0 Remove loop-control values. 
SWAP 23 34 7 0 9 
DUP 23 34 7 0 9 9 
2 23 34 7 0 9 9 2 
MOD 23 34 7 0 9 1 
IF 23 34 7 0 9 TOS = 1; do IF to ELSE. 
+ 23 34 7 9 
ELSE 23 34 7 9 Skip past THEN. 
DBOP 23 34 7 9 Skipped. 
THEN 23 34 7 9 Skipped. 
LOOP 23 34 7 9 Return to DO. 
DO 23 34 7 9 
SWAP 23 34 9 7 
DUP 23 34 9 7 7 
2 23 34 9 7 7 2 
MOD 23 34 9 7 1 
IF 23 34 9 7 TOS = 1; do IF to ELSE. 
+ 23 34 16 
ELSE 23 34 16 Skip past THEN. 
DROP 23 34 16 Skipped. 
THEN 23 34 16 Skipped. 
LOOP 23 34 16 Return to DO. 
DO 23 34 16 
SWAP 23 16 34 
DUP 23 16 34 34 
2 23 16 34 34 2 
MOD 23 16 34 0 
IF 23 16 34 TOS = 0; do ELSE to THEN. 
+ 23 16 34 Skipped. 
ELSE 23 16 34 
DROP 23 16 
THEN 23 16 
LOOP 23 16 Return to DO. 
DO 23 16 
SWAP 16 23 
DUP 16 23 23 
2 16 23 23 2 
MOD 16 23 1 
IF 16 23 TOS = 1; do IF to ELSE. 
+ 39 
ELSE 39 Skip past THEN. 
DROP 39 Skipped. 
THEN 39 Skipped. 
LOOP 39 No more iterations. 

39 Return from SUMO D DS. 
<empty stack> Print the result. 

FORTH PROGRAM for summiug the odd numbers in an array declares no variables or other 
data structures but works exclusively with values on a "pushdown stack." When SUMODDS is 
called, the elements of the array are expected to be on the stack, with the number of elements 
at the top. The line below the procedure definition would be typed to execute the program with 
an array of four elements. A complete trace of the program's execution is then given, showing 
the content of the stack after each word is executed. A numeric "word" such as 0 or 2 pushes 
the number onto the stack; SWAP exchanges the top two elements; DUP pushes a copy of the 
top element onto the stack; DROP discards the top element. Operators such as "+" and MOD 
replace the top two elements on the stack with the result of the operation. The loop construct 
DO removes two elements (say i and j) from the stack and executes the words up to LOOP 
a total of i - j times. The conditional IF executes the words between IF and ELSE when the 
top of the stack (TOS) is nonzero and otherwise executes the words between ELSE and THEN. 
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an interpreter is a subject too large to be 
covered here, but the structure of a typi
cal compiler can be described in outline. 
There are at least three phases in the 
compilation process. The first phase is a 
lexical analysis, in which the compiler 
identifies the various symbols in the text 
of the program and classifies them as 
key words, numerical values, variable 
names and so on. The next phase is pars
ing, in which the compiler determines 
the syntactic relations of the key words 
and builds a skeleton representation of 
the program's structure. Each if, for ex
ample, is associated with a subsequent 
then. In the third phase machine code 
corresponding to the parsed structure is 
generated. Some compilers add a fourth 
phase of optimization, in which the code 
is revised to improve its efficiency. 

Over the past 30 years much careful 
thought has been given to the design 
of compilers, and there is now a well
developed methodology for their con
struction. The first step is to define the 
language itself in a completely explicit 
form. It is now common practice to 

V'SUM <- SUMODDS TERMS 
[1] 

V'
SUM - + 1(2 I TERMS) ITERMS 

SUMO DDS 23 34 7 9 

TERMS <- 23 
(2 I TERMS) <- 1 

(2 I TERMS) ITERMS - 23 
+ 1(2 I TERMS) ITERMS - 23 

SUM <- 39 

34 
o 

+ 

7 9 
1 1 
7 9 
7 + 9 

specify the grammar in terms of "pro
duction rules" that can be applied recur
sively to generate all the possible state
ments of the language. The creation 
of the compiler is then a comparative
ly straightforward job of programming; 
there are even compiler compilers that 
can automate part of the task. 

The idea of a programming language 
has been around almost as long as 

there have been large-scale digital com
puters. In 1945 the German mathema
tician Konrad Zuse invented a nota
tion he called PlankalkOI. Statements in 
the language had a two-dimensional 
format: variables and their subscripts 
were aligned vertically and operations on 
them were laid out along the horizontal 
axis. Zuse wrote Plankalk 01 programs 
on paper-including one that made sim
ulated chess moves-but he did not im
plement the language. Many of the ideas 
he developed, however, have been intro
duced into modern languages. 

Surely the most influential of all pro
gramming languages was FORTRAN, 

Initial value assignment. 
Array of remainders. 
Compression of two arrays. 
Reduction by addition. 
Assignment of result. 

APL PROGRAM calculates the sum of the odd elements in an array with a function whose 
operation is specified in a single line. The function has one parameter, TERMS, an array that 
"knows" how many elements it has, so that N need not appear in the program. An APL state
ment is executed from right to left except where parentheses alter the order of evaluation. In 
this example the expression (21 TERMS) is evaluated first; it calculates the remainder left af
ter dividing each element of TERMS by 2 and creates an array of the same size as TERMS 

to hold the remainders. The symbol " /" can indicate two different operations, both of which 
appear in the example. In the expression (21 TERMS)/ TERMS, "/" is a "compression" op
erator that creates a new array in which each element of TERMS appears only if the corre
sponding element of (21 TERMS) is nonzero. In the symbol "+ / ," " /" is a "reduction" operator 
that reduces the array to a single nnmber by inserting a "+" between each pair of elements. 

(OEFUN SUMODDS 
(LAMBDA (TERMS) 

(CONO 
«NULL TERMS) 0) 
«ODD (CAR TERMS)) (PLUS (CAR TERMS) (SUMODDS (CDR TERMS)))) 
(T (SUMODDS (CDR TERMS)))))) 

(SUMODDS '(23 34 79)) 

(SUMODDS '(23 34 79)) 
= (PLUS 23 (SUMODDS '(34 79»)) 

= (PLUS 23 (SUMODDS '(79»)) 
= (PLUS 23 (PLUS 7 (SUMODDS '(9)))) 

= (PLUS 23 (PLUS 7 (PLUS 9 (SUMODDS '( »)))) 
= (PLUS 23 (PLUS 7 (PLUS 9 0»)) 

= (PLUS 23 (PLUS 7 9)) 
= (PLUS 23 16) 

= 39 

LISP PROGRAM calculates the odd-element sum by means of a function that calls on itself 
recursively. A Lisp function is a list, where the first element (called the CAR) is the name of the 
function and the remainder of the list (the CDR) gives the parameters. DEFU/I: is a function
defining function and LAMBDA precedes the names of the parameters; here the only parameter 
is the list of numbers TERMS. COND is a conditional function that evaluates the CAR of the 
lists that form its parameters. If the result is 1; or true, the CDR of the list is evaluated; other
wise COND goes on to the next list. Here there are three possibilities. If TERMS is an empty 
list, NULL is true and SUMODDS returns a value of zero. If the CAR of TERMS is odd, the 
CAR is added to the running total and SUMODDS is called to evaluate the CDR of TERMS. 

If neither of these conditions is true, the T clause (which must be true) is reached; it simply calls 
SUMODDS with (CDR (IERMS» as its parameter. Calculations are left pending during each call. 
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developed by John Backus and his col
leagues at IB M between 1954 and 1957. 
The name stands for "formula transla
tion," and the language was intended for 
scientific and numerical calculations, 
for which it is still in use. At the time the 
project was greeted with considerable 
skepticism. Computing machinery was 
then a scarce and valuable resource, 
with the result that much emphasis 
was put on program efficiency. It was 
assumed that a higher-level language 
would inevitably compromise efficien
cy, but Backus and his group performed 
an extraordinary feat: they created a 
compiler whose output was equal in 
quality to a hand-coded program. 

At about the same time, Hopper 
and her co-workers at Remington-Rand 
Univac developed a programming lan
guage called Flow-Matic for business 
data processing. It was less sophisticated 
than FORTRAN, but experience gained 
with it over a period of several years was 
the main inspiration for COBOL. Another 
major language introduced in the late 
1950's was Algol (which stands for "al
gorithmic language"). Algol-58, the first 
version, was designed by an internation
al committee that drew on both the 
pragmatic syntax of FORTRAN and the 
more elegant notation of Plankalk 01. 
The result was a language that is both 
readable and practical and that has had 
an important place in the genealogy of 
later languages, including Pascal. 

Quite a number of other languages 
trace their roots to the same era. COMIT 

was created for text analysis and APT for 
the control of machine tools. JOVIAL, a 
derivative of Algol, was the first widely 
used multipurpose language; it was suit
able for both scientific and business ap
plications. In the early 1960's Lisp ap
peared and so did the notation (but not 
an implementation) of APL. 

The rapid proliferation of languages 
troubled many observers. After all, 
most mathematics is done with a single, 
universally accepted notation. Imple
menting a new language is a major un
dertaking, and becoming comfortable as 
a programmer in it also takes time. Soon 
several projects were launched to design 
a new language so complete and versa
tile that it could serve as the universal 
argot of programming. All such endeav
ors have failed. The partial success of 
PL/I, developed under the sponsorship 
of IB M in 1965, made it clear that a 
language for all purposes is likely to be 
both hard to learn and hard to imple
ment. Moreover, as the techniques of 
computing became more diverse, peo
ple realized that new languages would 
continue to be needed to address special 
application areas. 

In a sense, all programming-language 
research since 1957 has been moti

vated by attempts to correct flaws in FOR

TRAN. Indeed, FORTRAN itself has been re-
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ASSEMBLY CODE 

MACHINE CODE LABELS INSTRUCTIONS COMMENTS 

00100100 01011111 
00100010 010 1 1 111 
00110010 0001111 1 
01000010 0 1000010 

SUMODD S MOVE.L (A 7) + ,A2 Pop return address from the stack into A2. 
Pop address of first term into A 1. 

01001110 111 1 10 10 00000000 0000 1 1 10 
00001000 0010 100 1 00000000 00000000 00000000 0000000 1 
01100111 00000010 
11010100 0101000 1 
01010100 0100100 1 
01010001 11001001 11111111 11110010 
00111110 100000 10 
01001110 11010010 

LOOP 

NEXT 
COUNT 

MACHINE CODE AND ASSEMBLY CODE specify the steps of 
the odd-element calculation in terms of the hardware resources of 
the computer. The code is necessarily specific to a particular ma
chine, in this case the Motorola 68000 microprocessor. The algorithm 
employed is much like that of the Pascal procedure SUl110dds, al
though it is more compact than the code that would be generated by 

MOVE.L (A7) +,A1 
MOVE.W (A7) + ,D2 
CLR.W D2 
JMP COUNT 
BTST Q,1(A1) 
BEQ.S NEXT 
ADO.w (A1),D2 
ADOQ.W #2,A1 
OBF D1,LOOP 
MOVE.W D2,�(A7) 
JMP (A2) 

Pop n into 01. 
Assign a value of 0 to the sum in D2. 
Jump to the end of the loop to test if n = O. 
If the term addressed by A 1 is even .. 
... then go to NEXT 
... otherwise add the term to the sum in D2. 
Set A 1 to the address of the next term. 
Decrement 0 1; unless it is � 1, go to LOOP. 
Push the sum from 02 onto the stack. 
Go to the return address. 

a Pascal compiler. Parameters are passed to the procedure on a stack 
and the result is returned on the stack; the address at which execu
tion is to resume when the procedure is finished is also on the stack. 
The assembly-code version of the program, in which instructions 
take the form of "mnemonic" abbreviations, can be translated direct
ly into the binary machine code executed by the microprocessor. 

vised several times. The original version 
put certain arbitrary constraints on the 
programmer-for example, a variable 
name could be no longer than six char
acters-and offered only limited capa
bilities for defining data structures. Per
haps the most serious deficiencies were 
in the facilities for controlling program 

flow. All branch points had to be defined 
by line numbers, and unless care was 
taken the function of a program could 
be made quite obscure by a tangle of 
GOTO statements. Later versions intro
duced control structures that encourage 
a more readable programming style. 

far can be classified as procedural, or 
prescriptive. A program written in such 
a language tells how to get a result; it 
says first do this, then do that, and so 
on. There are also nonprocedural, or 
descriptive, languages, and they are be
coming increasingly important. A de
scriptive program states what result is All the languages I have discussed so 

ORIG I N AL 
EXPRESSION 

LEXICAL 
A N ALYSIS 

PARSING 

CODE 
GENERATION 

MOVE 
VARIABLE 

TOO, 

a • x + (b - e) • y + z! 2 

a • x + (b - e). y + z! 2 

(((a. x) + ((b - e)' v)) + z! 2 ) 

(((ax.)((be -)y.) +) (z 2 1) +) 
ax.be - y. + z 2 ! + 

VARIABLE 

OPERATE 
ON DO-! 

A ND 0'_2 

CONSTANT 

OPERATION OF A COMPILER, or translator, for a programming 
language has at least three stages. They are shown here for the partic
ularly simple case of an arithmetic expression in Pascal. In lexical 
analysis the tokens, or symbols, that make up the program are identi
fied and categorized. Parsing defines the semantic relations among 
the tokens. In an arithmetic expression the major task of the parser is 
to determine which operands are associated with each operator. It is 
done here by comparing the precedence of adjacent operators (as-

INSTRU C TIONS COMMEN TS 

0 MOVE.W A, DO DO := a 1 

MOVE.W X , D1 D1 := x 2 

2 MUL.W D1, DO DO := DO • 01 1 

MOVE.W B, D1 01 := b 2 

2 MOVE.W C.D2 02 := C 3 

3 SUB .W D2, D1 01 := 01 - 02 2 

2 MOVE.W Y,D2 02 := y 3 

3 MUL.W 02, D1 01 := 01- 02 2 

MOVE 2 ADD.W 01,00 DO := DO + 01 
VALUE 

1 MOVE.W Z, D1 01 2 TOO; := Z 

2 MOVEQ.W #2,02 02 := 2 3 

3 DIV.W 02, D1 0 1  := D11D2 2 

2 ADD.W 01, DO 00:= DO + 01 

suming that multiplication precedes division, which precedes addi
tion, and so on); parentheses are added around the operation of high
er precedence. The expression is converted into "postfix" notation 
by exchanging the operator and the second operand in each sub
expression. The parentheses are then removed, yielding an expres
sion that can be evaluated from left to right. Code generation trans
forms the parsed expression into machine instrnctions, employing a 
simple algorithm for assigning each variable to a hardware register. 
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wanted without specifying how to get it. 
The program sets forth relations rather 
than the flow of control, and so the pro
grammer is relieved of responsibility for 
working out the steps of an algorithm 
and specifying their order. 

The most conspicuous nonprocedur
al languages are the spreadsheet pro
grams, such as VisiCalc and MultiPlan, 
that have become popular with the rise 
of personal computers. In MultiPlan a 
calculation is specified by writing for
mulas, much as in BASIC or FORTRAN. 

The order in which the formulas are to 
be evaluated, however, is determined by 
the implementation rather than by the 
programmer. To some extent temporal 
relations are replaced by spatial ones. In 
a conventional language the output of 
one procedure might serve as input to 
the next procedure; the analogous con
cept in a spreadsheet makes the value of 
one cell depend on the val ue of another. 

There is even less sense of defining 
procedures in the language Prolog, a de
rivative of Lisp that has lately attracted 
the attention of many workers in artifi
cial intelligence. In Prolog no formulas 
are written; instead relations between 
objects and quantities are defined. The 
language consists of declarations only 
and has no statements. Thus the relation 
(product height width area) describes the 
eq uality area = height X width, but it 
does not specify that the height and the 
width are the given quantities or that 
the area is to be computed. The same 
relation can serve to find the height 
when the width and the area are known. 

Another trend in the evolution of pro
I1. gramming languages is the growth 
of interest in notational systems called 
object-oriented languages. As men
tioned above, the statements of most 
programming languages are impera
tives: the

' 
entity being addressed is not 

named, simply because there is only one 
possibility, an abstract embodiment of 
the computer as a whole. In an object
oriented language the computer is con
ceptually divided into objects that can 

be addressed individually. Furthermore, 
the objects can communicate with one 
another by sending messages. 

The notion of software objects was 
introduced by Ole-Johan Dahl and Kris
ten Nygaard of the Norwegian Comput
ing Center in Oslo in Simula 67, a lan
guage derived from Algol 60. The idea 
did not attract widespread attention, 
however, until the development of the 
language Smalltalk in the 1970's by 
Alan Kay and a group of colleagues (of 
whom I was one) at the Xerox Palo Alto 
Research Center. Smalltalk consists ex
clusively of object-oriented constructs, 
which makes the language specification 
small and very general; on the other 
hand, because everything in the lan
guage is an object, some important data
structuring mechanisms cannot be im
plemented efficiently. 

A software object consists of both 
data structures and algorithms. Each 
object "knows" how to carry out opera
tions on its own data, but to the rest of 
the program the object can be treated 
as a black box whose internal workings 
are immaterial .  Indeed, various objects 
may employ quite different algorithms 
to accomplish tasks the programmer 
identifies by the same key word. Just as 
penguins, horses and centipedes clearly 
have different methods for the activity 
identified generically as walking, so ob
jects whose data consist of integers, ar
rays and complex numbers would em
ploy different methods for the operation 
of addition. 

My colleagues and I at Apple Com
puter, Inc., have developed a language 
called Clascal that adds the concept 
of classes of objects to the underlying 
structure of Pascal .  Clascal, Small talk, 
Simula and some other object-oriented 
languages allow the objects in a class 
to inherit properties from a superclass 
to which they belong, so that each class 
does not have to be built up from 
scratch. Only those traits that distin
guish the individual class need to be 
specified. Thus penguins, horses and 
centipedes share the concept of legs; 

add (Adam is-parent-of Cain) 
add (Adam is-parent-of Abe l )  
add ( Eve is-parent-of Cain) 
add ( Eve is-parent-of Abel)  
add ( Cain is-parent-of Enoch) 

add ( x  is-ancestor-of y if x is-parent-of y) 

which (x : x is-parent-of Abel)  
Adam 
Eve 
No (more) answers 

which (x . Eve is-parent-of x) 
Cain 
Abel 
No ( more ) answers 

add (x is-ancestor-of y if z is-parent-of y and x is-ancestor-of z )  

which ( x  : x is-ancestor-of Enoch) 
Cain 
Adam 
Eve 
No ( more ) answers 

which (x : Adam is-ancestor-of x) 
Cain 
Abel 
Enoch 
No ( more) answers 

NONPROCEDURAL LANGUAGE called Prolog has no statements but consists entirely of 
declarations. In other words, a Prolog program gives no explicit instructions to carry out an 
operation; it merely states relations and makes inferences based on them. The illustration 
shows a program in a dialect called Micro-Prolog. The first five declarations set forth certain 
parent-child relations. The system can then answer questions abont the established facts, for 
example identifying the parents of Abel and the children of Eve. Two rnles of logical inference 
are then introduced to define the relation "ancestor of " in terms of the relation "parent of." 
The system can apply the rules to find all the ancestors or all the descendants of an individual. 
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they differ in the number of legs and the 
details of the method of locomotion. In
heritance is another abstraction mecha
nism, allowing the properties of a class 
to be reused by many subclasses. 

Inheritance turns out to be particular
ly useful in the design of interactive 
graphics software, another realm where 
there is much current activity. Entire 
programming languages can be built out 
of graphic images. Indeed, even certain 
computer games that rely heavily on 
graphics have some of the character
istics of a programming language. A 
notable example is a game called Ro
bot Odyssey I, recently introduced by 
the Learning Company; "robots" pro
grammed by connecting electronic logic 
gates and other components on a video 
screen can incorporate the concepts of 
conditional execution and procedure 
definition. A complete visual program
ming language tentatively named Man
dala is now under development by Jaron 
Z. Lanier and his colleagues at VPL Re
search in Palo Alto. An example of what 
a Mandala program might look like is 
shown on the cover of this issue. 

Another direction in which program
ming languages are expanding is the 
exploitation of parallel computation in 
computer systems made up of multiple 
processors. It would seem that 100 proc
essing units ought to be able to solve a 
problem 100 times faster than a single 
processor of the same intrinsic speed, 
but the gain can be realized only if the 
software is able to break the problem 
into many pieces that can be worked on 
simultaneously. 

Some languages provide an explicit 
mechanism for designating tasks that 
can be done in parallel; an example is 
the language called Occam, developed 
by the British semiconductor manufac
turer Inmos. Other languages leave it 
to the compiler to analyze the program 
and discover opportunities for parallel 
execution. One such language is COMPEL 

(for "compute parallel"), on which I col
laborated with Horace J. Enea in 1969. 
A COMPEL program consists entirely of 
assignment statements, which are not 
necessarily executed in the sequence in 
which they are written; the compiler is 
expected to deduce which calculations 
must be completed first. No compiler 
for COMPEL programs was ever written, 
but languages with a similar mechanism 
(called data-flow languages) have since 
been implemented. 

The great diversity of programming 
languages makes it impossible to rank 
them on any single scale. There is no 
best programming language any more 
than there is a best natural language. "I  
speak Spanish to God, Italian to wom
en, French to men and German to my 
horse," said Charles V (presumably in 
French). A programming language too 
must be chosen according to the pur
pose intended. 
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StroDg medicine for 
feverish health-care costs. 

A new blood analysis system which embodies 
Kodak's expertise in chemistry, optics, physics, and 
electronics is helping clinical labs control costs. 
Its flexible software design is bringing new 
ease and reliability to the process of blood 
analysis. It can improve laboratory effi
ciency, increase productivity, and help 
to put health-care costs on the road to 
recovery. 

The new system incorporates numer
ous technological inventions with such 
intricate design and engineering that 
it can perform a full range of routine tests 
- including kinetic enzyme, as well as po
tentiometric and colorimetric analysis- in 
operator-preferred sequence. If this sounds like 
quite an accomplishment, it is. 

The Kodak Ektachem 700 analyzer incorpo
rates 20 megabytes of hard-disk memory, relies 
upon Kodak's dry layer-coated Ektachem clini
cal chemistry slides like the one shown,* and 

© Eastman Kodak Company, 1984 

it produces hard-copy results for physicians' eval
uation. In just 5 minutes! 

But its big advantage is selective testing. At 
the touch of a CRT screen, this analyzer per-

forms any combination of one to 26 assays 
and has the potential to report up to 7 

additional calculated results on a single 
patient sample. That's a big plus, because 
it helps to eliminate wasted tests and 

wasted time, and contributes to operat
ing economy. 

Surprised that we're so committed to 
health care? You shouldn't be. We've been 

serving diagnostic medicine with radiog
raphy products for more than 80 years. 

If you'd like technical papers dealing with the 
technology involved in Kodak Ektachem prod
ucts, write: Eastman Kodak Company, Dept. 
GBSA-1 0, 343 State Street, Rochester, NY 14650. 

Kodak. Where technology anticipates need. 

1 

'With Ektachem slides, complex sequential reactions can be 
carried out in ways not possible in solution chemistry Multilayer 
coatings offer domains for multiple reactions within the single· use 
slide. In some layers, interfering substances can be trapped or 
altered; in other layers, reactions can be run which produce 
measurable signals. 
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A BEASSUBI 

Every car maker has to meet the Federal 
requirements for safety and damageability. But Ford 
goes beyond those requirements in many important 
areas. 

For example, all our cars have bumpers that 
are four times as strong as the government 
demands. (A fact GM, Chrysler, even Mercedes 

and Volvo can't claim.) 
We were the first major U.S. manufacturer to 

put halogen headlamps and steel-belted radials as 
standard equipment on all our cars. And we were 
also the first to offer an optional package of 
occupant protection features, including seatbelts 
and padded instrument panels. 

You're going 

*Based on a survey of owner reported problems during the first three months of ownership of 1 983 vehicles. 
**Offered by participating dealers. 
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NG QUALIT� 

All of this, however, is just a small part of our 
commitment to build safe, reliable cars and trucks. 

We also he up to that commitment by 
building those cars and trucks very, very carefully. 

The fact is, a survey of thousands of new car 
and truck owners has shown that Ford is building 
the highest quality vehicles of any major U.S. 

manufacturer� 
To learn more about all our 1 984 models, and 

to get the details on the Lifetime Service Guarantee; * 

talk to your Ford or Lincoln-Mercury dealer. 
W� think that what you find out will be very 

reassunng. 

Quality is Job 1. 

F O R D · L I N C O L N · M E RC U RY · 
F O R D  T R U C K S · F O R D  T R A C T O R S  
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SCIENCE AND THE CITIZEN 
And the Poor Get Sicker 

Although a severe recession, such as 
.fl. the one that took place in the U.S. 

in 1981 and 1982, is generally 
thought of in economic terms, some of 
its direst consequences are not econom
ic but medical. After each economic set
back the health of individuals and of 
society deteriorates. 

According to a study by M. Harvey 
Brenner of the Johns Hopkins Universi
ty School of Hygiene and Public Health, 
in recent decades each increase of one
tenth in the fraction of the population 
that is unemployed (for example, a rise 
in unemployment from 10 to 11 per
cent) has been followed by an increase 
of 1.2 percent in overall mortality. 

Brenner's work, which was done for 
the Joint Economic Committee of the 
U.S. Congress, draws on economic and 
health data from 1950 through 1980. 
Brenner and his colleagues examined 
the changes in the unemployment rate 
and other economic indicators, includ
ing the business-failure rate and per 
capita income, that occurred during 
the three decades. The economic fluctua
tions were compared with such changes 
in measures of health as overall mortal
ity, mortality from cardiovascular and 
renal disease, the rate of first admis
sions to mental hospitals, the suicide 
rate, the rate of reported crime and the 
homicide rate. 

The investigators found that the un
employment rate correlated strongly 
with each indicator of medical or social 
pathology. In addition to being associat
ed with an increase in overall mortality, 
a rise of 10 percent in the unemploy
ment rate corresponds to a 1.7 percent 
increase in the number of deaths from 
cardiovascular and renal disease (about 
17,000 deaths based on the population 
of the U.S. in 1980), a .  7 percent increase 
in the number of suicides (about 200 
additional suicides), a 4.2 percent in
crease in the population of mental hos
pitals (about 6,000 new mental patients) 
and a 4 percent increase in the number 
of arrests (about 400,000 arrests). 

The medical and social consequences 
of a recession ripple out for a consider
able period after the initial economic 
shock. Most of the pathologies show 
three periods of peak incidence: one 
peak during the initial stage of econom
ic contraction, just before the deepest 
point of the recession, the second from 
two to three years after the deepest point 
of the recession and the third from sev
en to 15 years after the deepest point. 

In the case of the medical conditions 
the first peak could be due to the deaths 
of people with chronic syndromes made 
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acute by an economic setback. The lat
er peaks could be the result of the devel
opment of chronic syndromes related 
to economic loss. 

If the results of Brenner's study are 
applied to the sharp rise in unemploy
ment that occurred in the 1981-82 re
cession, it appears that this event could 
be associated with as many as 75,000 
additional deaths. Furthermore, the ad
verse health consequences are concen
trated among those least able to cope 
with them: the members of low-income 
and minority groups. 

Even during periods of prosperity 
members of low-income groups suffer a 
combination of stress, poor diet and in
adequate medical care, which Brenner 
notes is associated with a heightened 
incidence of disease. Economic distur
bances often intensify the disparity be
tween the living conditions of the rich 
and those of the poor. Hence it is not 
surprising that increasing rates of some 
of the most severe pathologies corre
spond to an increase in social inequality. 

For example, the economic measure 
that has the strongest association with 
the imprisonment rate is the ratio of 
unemployment among black males to 
unemployment among white males; 
the greater the disparity, the higher the 
overall imprisonment rate. The measure 
that has the strongest association with 
the homicide rate is the ratio of unem
ployment among males 15 through 24 
years old to the overall rate. 

The reduction of social services car
ried out by the Reagan Administration, 
the study suggests, may have exacerbat
ed the impact of the recent recession on 
the health of the poor. It was found that 
decreases in AFDC payments were asso
ciated with an immediate increase in the 
infant mortality rate. 

Rest Easy, Luddites 

What will happen to the demand 
for human labor as computer

based automation pervades the service 
and manufacturing sectors of the U.S. 
economy? 

A study, recently completed by the 
Institute for Economic Analysis (lEA) at 
New York University, suggests that lat
ter-day Luddites can rest easy. Automa
tion will not erode the total number of 
jobs. It will, however, swell the ranks 
of professional and technical workers 
while thinning the ranks of clerical 
workers. Manufacturing employment, 
the study predicts, will retain its propor
tionate share of the total labor force. 

In order to make this forecast the lEA 

investigators, led by Wassily Leontief 
and Faye Duchin, employed an input-

output model of the U.S. economy: 
a detailed description of the flows of 
goods and services among ind ustries. 
Within each of the 89 industrial sectors 
comprised by the model those quantities 
of labor, goods and services needed to 
sustain current production were distin
guished from resources needed for capi
tal expansion. 

As data for the model, the investi
gators used input-output tables of the 
economy prepared for 1963, 1967, 1972 
and 1977 by the Bureau of Economic 
Analysis in the Department of Com
merce. They supplemented this infor
mation with data on prices, capital 
stocks and flows, as well as figures on 
employment from the Bureau of Labor 
Statistics. 

The team subjected the model to three 
scenarios of technological change, as
sessing the impacts of each one on the 
demand for labor-divided for purposes 
of the study into 53 occupations-in 
each industry. The reference scenario, 
S 1, assumed no further introduction 
of new technology after 1980; S2 speci
fied a moderate pace of modernization, 
and S3 was an optimistic projection in 
which, for instance, electronic typewrit
ers and work stations completely re
place conventional typewriters by 1985. 
In each case modernization was as
sumed to take place within a context of 
steadily rising household and govern
ment demand for goods and services. 

The results, say Leontief, "prove that 
you can use detailed information and 
get a detailed result." A rapid introduc
tion of automation (S3) would enable 
the economy at the end of the century 
to produce the same quantity of goods 
using 10 percent less labor than is need
ed with today's technologies. The to
tal number of jobs would remain high, 
however, because the rise in consump
tion assumed in the study would offset 
the laborsaving effects of automation. 

The distribution of jobs, Leontief and 
Duchin report, will change dramatical
ly. The share of professionals in total 
employment will rise from the 1978 fig
ure of 15.6 percent to nearly 20 percent 
in the year 2000. Engineers and comput
er scientists will account for most of the 
increase. Clerical work, in contrast, will 
fall from the 1978 level of 17.8 percent 
of the labor force to 11.5 percent at the 
end of the century. Computerized office 
systems and telephone switchboards, 
automated teller machines and similar 
devices will account for the change. 

Middle managers also will be dis
placed as office computers take over 
their function of organizing and proc
essing information. In factories, robots 
and computerized machine tools will 
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UPDATE THE SCIENTIFIC METHOD! 
ENERGRAPHICS ON THE ,I8M·PC* 

3-DIMENSIONAL 
OBJECT DRAWING 
ZOOM, ROTATE, HIDDEN LINE 

2-DIMENSIONAL DRAWING 
CAPABILI TY 

• HARDWARE CONFIGURATION: 
IBM-PC; 728K; Dual Disk Drive; Graphics Adapter; 
Dot Matrix Printer; and/or XY Plotter. 

3-DIMENSIONAL 
S.URFACE DRAWINGS 

FLOWCHARTS 
ORGANIZATION CHARTS 

LOG-LOG 
SCALE GRAPHS 

DRAWING AND TEXT 
CAPABILI TY 
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SQction 
FI9 16.12 Vc;ntv.--L 

VisiCalc is a registered trademark of Visicorp . 

Lotus 723 is a trademark of Lotus Development Corp. 

Multiplan is a trademark of Microsoft Corporation. 

THE FIRST COMPLETE GRAPHICS PROGRAM DESIGNED FOR SCIENTISTS USING THE IBM-PC* 

GRAPHlcsm 
Dynamic and so eaSV"to·use, ENERGRAPHICS is already helping scientists and engineers in 
scientific research laboratories and universities around the country. ENERGRAPHICS can plot, 
analvze, research, graph, project and report with the best looking professional graphics 
available on the 18M·PC and other compatibles. ENERGRAPHICS interfaces with 
VisiCalcfJ Muitipian™ and Lotus 123™ for maximum integration with spreadsheet programs. 

Call 800-325-0174 
(except in Missouri) 

for our detailed 
ENERGRAPHICS brochure 

ENERTRONICS 
Enertronics Research, Inc. 
150 N. Meramec • Suite 207 • St. Louis, MO 63105 • (314) 725-5566 
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UNIX™ System V from AT&T is 
setting new standards-and solv
ing old problems for thiMIS 
manager. It's the softw: re system 
that allows your comp to take 
advantage of new techno gy. 
Without sacrificing your invest
ment in computer s and applica
tions software. 

It's another reason why good 
business decisions are based on 
UNIX System V. 

How does today's MIS manager 
develop and implement a long-term 
information management plan-with 
minimal disruption and expense? By 
choosing software and hardware 

products based on UNIX V 
from AT&T. 

Its unique capabilities help your data 
processing system evolve smoothly. 

The profits of portability 
UNIX System V software is portable 

from micros to mainframes. That's of 
critical financial and technological 
importance to you. Your software 
investment will soon be greater than 
your hardware investment. 

Your software library can grow, too. 
Because software that is based on 
UNIX System V is hardware indepen
dent, you won't have to start your soft
ware library from scratch when you 
invest in new machines. 

Portability also means you won't 
have to retrain your office s,very 

time you buy a new computer. Your 
people can continue to use the same 
familiar software. 

Gaining hardware independence 
UNIX System V executes on a wide 

variety of hardware. That means 
greater leverage with your vendors. 
And greater potential for system 
growth. Even if the machines you're 
buying are of different generations. 

You'll be able to add hardware more 
technologically advanced than your 
installed base-without disrupting 
that base. 

UNIX System V is fully supported 
by AT&T and backed by a multimillion
dollar research and development pro
gram at AT&T Bell Laboratories. You 
can be assured that UNIX Sy m V is 
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a stable, fully documented, fully ser
viced platform that will continue to pro
vide software portability. 

"Is it based on UNIX System V?" 
A generation of computer science 

graduates is ready, willing,and able to 
work with UNIX Systems and the C 
language. Their familiarity will make 
turnover in your technical staff far less 
disrurtive and less expensive. 

It s another indication of the bottom 
line si£llificance of UNIX System V
something that's becoming more 
and more obvious even to non-technical 
management. That's why so many are 
taking the time to ask, "Is it based 
on UNIX System V?" when it's time to 
invest in new software or hardware 
products for tht company. 
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eliminate some production-line jobs, 
and the machines' superior accuracy 
will reduce the need for checkers and 
inspectors. 

Increased automation will, the model 
predicts, retard a major trend that has 
characterized the postwar decades: the 
shift of jobs from the manufacturing 
to the service sector of the economy. 
The rising demand for computers and 
computerized tools will create new 
manufacturing jobs even as automated 
equipment eliminates other jobs else
where in industry. 

The report's optimism on the ques
tion of technological unemployment 
is guarded. The investigators measured 
the effects of incremental improvements 
in present technology; they did not 
take into account the introduction of 
such devices as voice-input typewriters. 
Moreover, the study was confined to the 
impact of computer-based automation; 
advances in other technologies such as 
agriculture or materials could affect the 
availability of jobs. Even if the number 
of jobs remains high, their changing 
distribution may_ mean that consider
able training efforts will be necessary if 
the U.S. economy is to avoid a surfeit 
of labor in traditional jobs and a dearth 
of labor in newer ones. 

Master Builder 

How is it that a porpoise, a frog, a 
human being or a fruit fly achieves 

its characteristic appearance? What ge
netic mechanisms guide the develop
ment of a fertilized ovum so that it dif-

ferentiates into the internal organs and 
physical structures that give an indi
vidual member of a species form and 
function? 

Some significant answers have begun 
to emerge from studies of the DNA of 
the fruit fly Drosophila melanogaster. 
Two clusters of genes figure importantly 
in the work. One is the bithorax com
plex, first identified by Edward B. Lewis 
of the California Institute of Technolo
gy. This complex controls the devel
opment of the thoracic and abdominal 
segments. Another cluster, the Anten
napedia complex, identified by Thomas 
Kaufman and his colleagues at Indiana 
University, shares in the control of tho
rax development and promotes the de
velopment of the head. 

Lewis, Kaufman and their colleagues 
discovered the role of each complex by 
inducing mutations with X rays and by 
observing natural mutations. Mutations 
in the two gene clusters produce a con
dition termed homeosis, in which one 
body part is substituted for another. For 
example, a mutation in the Antenna
pedia complex can give rise to an in
dividual that sports legs in the place 
of antennae. 

How is such an effect produced? Lew
is hypothesized that the genes of the bi
thorax complex, working as a group 
to construct each segment of the devel
oping insect, are expressed sequential
ly. The combination of genes expressed 
in the development of each segment 
specifies its form. A homeotic muta
tion alters the seq uence that is expressed, 
causing the segment to assume the form 

/11 a /IIutatioll of development-regulatillg gelles, leglike 
structures replace alltellllae 011 the head of a fruit fly. 

820 

corresponding to the changed sequence; 
for example, legs appear instead of an
tennae. 

By sequencing portions of the bitho
rax and Antennapedia complexes, Wil
liam McGinnis, Walter J. Gehring and 
their colleagues at the University of Ba
sel and Matthew P. Scott and Amy J. 
Weiner at Indiana found a common fea
ture that may be a key to the way home
otic genes work. It is a section of DNA, 
180 base pairs in length, that is present 
in at least six of the homeotic genes. 
Gehring has named the seq uence, which 
differs by no more than 25 percent from 
gene to gene, the homeo box. 

The homeo box is also found at an
other locus, the site of the /tz gene (so 
called because of the mutation that oc
curs there: /ushi tarazu, Japanese for 
"not enough segments"). The /tz gene, 
part of the Antennapedia complex, 
seems to specify the number of seg
ments in the developing embryo. 

What role does the homeo box play? 
The Basel group and Allen Laughon 
of the University of Colorado at Boul
der, working with Scott (who recently 
moved there from Indiana), have deter
mined the amino acid sequence encoded 
by the homeo box. It closely resembles 
DNA-binding proteins, synthesized by 
species of yeast and bacteria, which can 
regulate the expression of genes. The 
finding raises the possibility that home
otic genes act as developmental master 
switches, using the homeo box to pro
duce DNA-binding proteins that control 
other genes, which in turn specify the 
diversity of tissues within each segment. 

This mode of developmental regu
lation may operate in other species. 
The Basel group has found that the ho- . 
meo box is also present in the genomes 
of earthworms, beetles, frogs, chickens, 
mice and men. 

Topping Out 

The top, or t, quark, long sought by 
physicists in order to complete a list 

of particles generally thought to be the 
elementary constituents of matter, has 
probably been found. 

At CERN, the European laboratory for 
particle physics, a computational search 
has culled nine unusual events from 
among some two million high-energy in
teractions recorded by the UA 1 detector 
at the Super Proton-Antiproton Syn
chrotron between November, 1982, and 
July, 1983. Each event appears to signal 
the decay of a bound system formed by 
a top quark and the antiquark of another 
quark called the bottom, or b, quark. If 
the evidence is confirmed, the top quark 
is the sixth to be detected. The six 
quarks, together with the electron, the 
muon, the tau particle, three kinds of 
neutrino and the antiparticles of each 
particle, bring the number of known ele
mentary particles to 24. Moreover, the 
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newly discovered top quark is one of the 
most massive particles known: the e,ner
gy eq uivalent to its mass is between 30 
and 50 GeV (billion electron volts). 

Quarks were proposed in 1964 by 
Murray Gell-Mann and, independently, 
by George Zweig, both of the California 
Institute of Technology. The proposal 
was put forward in part to account for 
the proliferation of hadrons seen among 
the by-prod ucts of collisions in high-en
ergy accelerators. The proton, the neu
tron and more than 100 other particles 
are classified as hadrons. In the original 
version of the quark-model only three 
quarks-the up, or JI, the down, or d, and 
the strange, or s, quarks�and their anti
quarks were needed' to explain the had
rons that were then catalogued, A major 
consequence of the quark model was 
therefore to restore parsimony to the 
,fundamental understanding of matter. 
Since that time two new quarks, the 
charmed, or c. quark and the bottom 
quark, have been introduced in order 
to account for newly discovered had
rons. The discovery of a sixth quark 
suggests the quarks themselves are be
ginning to proliferate. 

An Inherently Safe Reactor? 

The safety of the light-water reactors 
that currently generate power in the 

U.S. is ensured by high-performance 
materials, redundant cooling systems, 
containment structures and carefully 
engineered controls. Such safeguards, 
numerous and costly, are needed to less
en the ever present danger of a core 
meltdown and the release of radioactivi
ty into the environment. Is it possible to 
design an inherently safe reactor? 

In a recent article in Science, Alvin M. 
Weinberg and Irving Spiewak of the In
stitute for Energy Analysis at Oak Ridge 
describe two reactor designs whose safe
ty lies not in emergency backup systems 
but in the "immutable and well-under
stood laws of physics and chemistry" ac
cording to which the reactors operate. In 
such "inherently safe" reactors, say the 
authors, a core meltdown is essentially a 
physical impossibility, 

The authors suggest that fundamen
tally safer reactor designs may be neces
sary if nuclear power is to emerge into a 
new period of growth, Since the Three 
Mile Island incident in 1979, numerous 
safeguards have been incorporated into 
U.S. reactors, Today, the authors report, 
the probability of a core meltdown 
stands at less than 10-4 per reactor-year, 
Yet in a future world heavily depend
ent on nuclear power, in which 5,000 
or more reactors might be operating
more than 10 times today's number-the 
probable frequency of a core meltdown 
somewhere in the world would be one 
every two years. Although only a frac
tion of such incidents would release sub
stantial amounts of radiation, Weinberg 
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11/ the PIUS reactor coolant circulatioll lIormally excludes pool water from the 
core; durillg cooling-system failure, cOIll'ectioll floods the core with pool water. 

and Spiewak judge the rate to be unac
ceptably high, 

One reactor design inherently resis
tant to such an accident is known as 
the modular High-Temperature Gas 
(HTG) reactor. Proposed, inslightlydiffer
ent forms, by American and German 
companies, it consists of a small graph
ite core cooled by helium gas circulat
ing within the pressure vessel; a 1,000-
megawatt generating station might con
sist of 10 such modules. 

The HTG reactor's safety is a conse
quence of both design and size. Because 
the gas does not circulate through exter
nal piping, the chance of a coolant loss is 
low. In the event of a cooling failure the 
core temperature would rise and fission 
would cease, as it would in a conven
tional reactor. 

In a conventional reactor crippled by 
a loss of coolant, the heat released by 
the radioactive decay of fission products 
can melt the core even after the chain 
reaction comes to a halt. The very high 
surface-to-volume ratio of the small 
HTG core, in contrast, would allow the 
afterheat to radiate to the environ
ment, stabilizing the core temperature 
at a safe level. Gas-cooled reactors in
corporating some of the features the 
authors recommend have been in oper
ation since 1956. 

The other design to which the authors 
refer is untested. A Swedish concept, it 
is known as the Process Inherent Ulti
mately Safe (PIUS) reactor. Its novelty 
lies in the pressurized pool of boric acid 
solution that would fill the reactor ves
sel, immersing the core and its pressur
ized-water cooling system. The pool and 
the cooling system would be intercon
nected at several sets of baffles. Only 
the dynamic pressure developed by the 
coolant pumps would prevent the borat
ed water from entering the cooling cir
cuit; if the pumps or the cooling circuit 
were to fail, water from the pool would 

flood the core. The boron in the solu
tion, an efficient absorber of neutrons, 
would halt the chain reaction; the influx 
of water would carry off residual heat. 

Ambiguous Protection 

Anew way to protect computer soft
ware from piracy has been suggest

ed by Adi Shamir of the Weizmann In
stitute of Science in Israel and two of 
his students. Shamir's software-protec
tion method would enable a program to 
determine-as part of its normal func
tion-whether it is on an illegally copied 
disk. An illegally copied program then 
either would cease to function or would 
self-destruct. 

Many software manufacturers now 
protect their programs by selling them 
on unconventionally formatted disk
ettes; the format of a diskette defines 
the pattern in which the bits (binary 
units of information) representing vari
ous files are laid out on the disk sur
face. Arranging files in unconventional 
ways normally baffles a standard copy
ing program, because the program must 
find an entire file before transferring 
the information onto a new diskette. Pi
rates have been able to circumvent this 
strategy by using programs that read 
each bit on the source disk and place 
the same bit at the exactly analogous 
location on the copy disk, 

In an unpublished note Shamir sug
gests marking each legitimately sold 
diskette with ambiguous bits. An am
biguous bit can be formed by creat
ing a region on a disk where the mag
netic field strength is between the two 
strengths normally read as 0 and 1, the 
two binary bits, Owing to electrical 
noise and mechanical vibration in the 
reading device, such a region would ap
pear to the user's computer, entirely un
predictably and at random, sometimes 
as a 0 and sometimes as a 1. On being 
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told to copy such a, section of disk, the 
user's hardware will scan that section 
once, decide whether to call' it a 0 or 
a 1 and make the corresponding copy, 
thereby losing the ambiguity. 

Somewhere in the program itself 
there will be an instruction that tells the 
computer to read the section of the disk 
containing the ambiguous bits several 
times. If the computer reads the same 
value each time instead of the random 

.values prod uced by ambiguous bits, the 
program either will refuse to run or will 
instruct the user's computer to erase the 
entire diskette. 

Shamir points out that any protection 
method can be defeated. He says, how
ever, that "the. real problem is not to 
create a foolproof system but to make 
sure that for'most users it makes more 
economic sense to rent or buy- the soft
ware than to try to steal. it. ',' 

The Stuff of Memories 

How are memories stored in the . 
brain? The mechanism' remains 

elusive. Still, the storage must be accom
panied by a lasting change in the brain: 
a change that affects the way the brain 
processes ·information. Such processing 
depends on the cell-to-cell transmission 
of signals across the intercell ular con
tacts called synapses. Moreover, the 
ability to commit even fleeting events to 
memory suggests that the change can be 
induced by brief events in the brain. 

Gary Lynch and Michel Baudry of 
the University of California at Irvine 
have a candidate for what they de
scribe as "the biochemical processes 
involved in memory storage." They ob
served the results of the processes in the 
hippocampus. 

It was known that the excitation of 
certain circuits of nerve cells in the hip
pocampus can render the cells more sen
sitive to further signaling over periods 
of months; the phenomenon is called 
long-term potentiation, or L TP. Here, 
then, is a lasting functional change pro
duced by a brief event. The question is 

what biochemical and structural chang
es underlie the altered function. 

One clue was that the hippocampal 
circuits exhibiting long-term potentia
tion employ an amino acid as their neu
rotransmitter: their synaptic messenger 
substance. The acid is thought to be glu
tamate. Accordingly Lynch and .Baudry 
prepared slices of hippocampal tissue 
from rats,. applied electrical stimulation 
to bring on long"term. potentiation and 
then (five minutes to an hour later) as
sayed fractions of synaptic membrane. 
They found that the number of glu
tamate receptor sites had increased. 
Meanwhile electron microscopy of hip
pocampal tissue in which long-term po
tentiation had been induced revealed 
some structural changes. Dendritic 
spines, the thorn-shaped protrusions at 
which the extensions of a nerve cell re
ceive synaptic signals from other cells, 
looked rounder. In addition the number 
of synapses on the main shaft of the 
nerve cell's dendritic extensions had in
creased by as much as 30 percent. 

A further clue was that long-term po
tentiation seems to depend on the avail
ability of calcium. The increase in the 
number of glutamate receptors proved 
to depend on calcium too. Hence Lynch 
and Baudry searched for-and found
an enzyme, bound to nerve-cell mem
brane and activated by calcium, that 
irreversibly "uncovers glutamate recep
tors." They found, moreover, that the 
enzyme (one of the class of enzymes 
called calpains) acts on the protein 
called fodrin, which lines the inner face 
of nerve-cell membrane. The disrup
tion of the fodrin could conceivably ac
count for the uncovering of receptors 
and also the change in the shape of den
dritic spines. 

Lynch and Baudry propose the fol
lowing sequence. Bursts of neural sig
naling increase the flow of calcium ions 
into the nerve cells receiving the signals. 
There the calcium activates a mem
brane-bound calpain enzyme; the en
zyme disrupts the membrane, and the 
disruption opens blocked glutamate re-
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ceptors, making the synapse more re
sponsive to future signals. On a broader 
scale, the disruption changes the shape 
of dendritic spines. The sequence seems 
to be independent of the biochemical 
mechanisms serving the "everyday" ac
tivity of the brain. Moreover, drugs are 
available that block calpain. Thus the 
hypothesis should be testable. 

AIDS: In the Blood 

To indict a microorganism as the 
cause of a disease it must be shown 

to be present in essentially all cases of 
the disease; it must be isolated and 
grown in culture; it must give rise to the 
disease when inoculated into a suscepti
ble animal or human volunteer, and it 
must subsequently be recovered from 
the inoculated individual. 

For the acquired immunodeficiency 
syndrome (AIDS) , identification and iso
lation of a retrovirus (in France last year 
and in the U.S. four months ago) closely 
associated with the disease effectively 
fulfilled the first two postulates. A major 
step toward satisfying the other criteria 
has been reported in Science by a group 
of investigators. They state that a direct 
cause-and-effect relation between the vi
rus and the disease has been demonstrat
ed by medical accident. 

Paul M. Feorino and his co-workers 
in a group headed by Donald P. Francis 
at the Centers for Disease Control in 
Atlanta have documented the first clear 
instance of a one-to-one transmission of 
AIDS between a donor and a previously 
uninfected recipient. 

The recipient was a woman given a 
transfusion of packed red blood cells 
during an operation. Two months after 
surgery one of the donors of the red cells 
was found to be a homosexual male who 
had been hospitalized for AIDS. A year 
after surgery the woman, who had been 
exposed in no other way to the disease, 
was diagnosed as having AIDS. The di
agnosis was confirmed when both she 
and the donor were shown to have anti
bodies to lymphadenopathy-associated 
virus (LAY) , and the virus itself was iso
lated from the lymphocytes (immune
system cells) of both patients. LAY is 
the suspected AIDS agent discovered last 
year at the Pasteur Institute in Paris. 

As HTLY-1I1 (human T-Ieukemia/lym
phoma virus) was not available to them 
the investigators were unable to test spe
cifically for the presence of this organ
ism, which was isolated by Robert C. 
Gallo's group at the National Cancer 
Institute (see "Science and the Citizen," 
July). Still, as Feorino and his col
leagues point out, "the most likely ex
planation for the parallel evidence for 
HTLY-1I1 and LAY being the cause of AIDS 

is that the two viruses are the same." 
Before that likely proposItIOn is 

proved, the first public-health benefits of 
the discovery of the AIDS agent should 
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about my th and reality, about no
ble deeds and scurrilous dealings. 
Above all, it is a story of ordinary 
people pursuing their day -to-day 
goals, making decisions that were 
to have tragic and unimagined 
consequences in later genera
tions.· . 

Available at fme bookstores. 
everywhere, or order from 

the publisher: 
I_ . W. H. FREEMAN AND COMPANY 

. 4419 West 1980 South 
• Salt Lake City, Utah 84104 

If ordering by mail, please add $1.50 for postage and handling; 
New York, California, and Utah residents add appropriate sales tax. 
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be apparent. A major group at risk are 
recipients of transfusions of blood and 
blood products. At least 100 individuals 
have contracted AIDS in this way. The 
need for a screening procedure is clear, 
and five groups have been licensed to 
develop test kits to detect antibodies to 
HTL V-III in blood samples. The first use 
of such kits will surely be to screen 
blood donations in an effort to prevent 
such cases as the one reported by Feori
no and his colleagues. 

A Fine Madness 

T�e brown hare (Lepus c�pensis) en
JOYs an extended breedmg season. 

During its course a single female may 
bear several litters, each comprising as 
many as seven young. Nevertheless, it 
has long been thought by biologists and 
lay people alike that males of the species 
are particularly randy in March, when 
they are said to chase one another fre
netically and box in a mad competition 
for estrous females. 

Diligent observation by a British ama
teur naturalist appears to put this inter
pretation of hare madness in error. Since 
1977 Anthony J. F. Holley, a solicitor 
from Brent Knoll in Somerset, has spent 
more than 1,500 hours observing brown 
hares from the roof of his house, which 
he deliberately built for this purpose 
amidst fields well populated with the an
imals. Aided by a telescope, Holley has 
often been able to distinguish males 
from females and even to recognize 
individual hares by their scars and fa
cial markings. 

Writing in Nature, he and Paul J. 
Greenwood of the University of Dur
ham report that male brown hares are 
apt to chase each other at any time dur
ing the January-through-August breed
ing season. Boxing, in which one hare 
typically rises on its hind legs and lunges 
at another with its forepaws, also takes 
place throughout that period. 

Boxing among hares, Holley and 
Greenwood report, is not a male sport: 
in each of the 17 bouts in which Holley 
was able to discern the sex of the com
batants, a male was pitted against a fe
male. Apparently boxing is not a way 
for two males to decide which one will 
get a female but rather the means by 
which the larger and heavier female re
jects an unwanted suitor. 

Why then has the March male-mad
ness myth persisted for so long? Holley 
and Greenwood point out that brown 
hares are nocturnal animals and in the 
winter generally do not emerge from 
their burrows until after sunset. On long 
summer evenings they do come out 
while it is still light but by then tall grass 
often conceals them (unless one watches 
from a rooftop). Their peculiarities are 
thus most apparent in early spring, when 
the days, but not the grass, have started 
to grow longer. 
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Operating Systems 
A computer operating system spans multiple layers of complexity, 

from commands entered at a keyboard to the details of electronic 

switching. The system is organized as a hierarchy of abstractions 

by Peter J. Denning and Robert L. Brown 

j\a terminal connected to a comput
er system you type the command 
date and press the key marked 

Return. Almost instantly the message 
September 15, 1984, appears on the dis
play screen. Asking for the current date 
would seem to be among the simpler 
demands one might make of a comput
er, and yet it sets in motion a complex 
series of events calling into action many 
of the hardware and software resources 
of the system. Coordinating the events 
and managing the resources are among 
the responsibilities of the collection of 
programs called the computer operating 
system. The operating system provides 
facilities and services needed by almost 
all other software. 

Consider what must happen in order 
to answer a request for the date. As each 
character of the command is typed, the 
keyboard transmits a code to the com
puter, where it is received by a circuit 
board charged with handling commu
nication with the terminal. The board 
stores each character code in a reserved 
area of memory called a buffer and is
sues a signal that "interrupts" the cen
tral processing unit of the computer, 
activating a program called the termi
nal driver. The terminal driver echoes a 
copy of the code back to the terminal fot 
display on the screen. 

When the code for the Return key is 
received, signifying that the typing of 
the command is complete, the terminal 
driver activates another program called 
the listener (because it attends to re
quests from users). The listener reads 
the characters d a t e  from the keyboard 
buffer, searches a magnetic-disk memo
ry for a program called date, loads the 
program into main memory and starts 
its execution. The date program in turn 
consults a clock built into the hardware, 
which maintains a count of the millisec
onds that have passed since some fixed 
starting date. From the count the pro
gram calculates the month, day and year 
and expresses the information as the 
string of characters September 15, 1984. 
The string is passed to the terminal-driv
er program, which transmits the binary 
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code for each character to the terminal, 
where it appears on the display screen. 

Each of these events could be de
scribed in even finer detail. For exam
ple, before the listener can load the date 

program, it must first search a directory 
of commands to find out where on the 
disk the program is stored; indeed, the 
directory itself must be read from the 
disk. The disk is organized in concentric 
tracks, and each track is divided into 
sectors; hence instructions must be is
sued to position the disk head over the 
appropriate track and to read the bina
ry data when the selected sectors pass 
under the head. The resulting stream 
of bits is stored temporarily in a buf
fer. When the program is loaded, space 
in main memory must be allocated to 
it; when it has finished executing, the 
space must be reclaimed. The seq uence 
of events is still more complicated in a 
computer dealing with several programs 
at once. In that case one program may 
have to be suspended momentarily 
while the central processor attends to 
another; then the first program must re
sume exactly as if there had been no 
interruption. 

It can be seen from this example that 
an operating system spans the entire 
range of complexity found in computer 
systems. Some parts of the operating 
system interact directly with the hard
ware of the computer, where events 
(such as the switching of individual logic 
gates) can have a time scale as brief as a 
few billionths of a second. At the other 
end of the spectrum, parts of the operat
ing system communicate with the user, 
who issues commands at a much more 
leisurely pace, perhaps one every few 
seconds. A single keystroke at the termi
nal might result in 10 calls on the operat
ing-system programs, in the execution 
of 1,000 machine instructions and in 10 
million changes of state in logic gates. 

The strategy adopted for managing 
this complexity is one that has proved to 
be of crucial importance in virtually all 
areas of computer science. The basic 
idea is to create a hierarchy of levels of 
abstraction so that at any level one can 

ignore the details of what is going on 
at all lower levels. Thus when the listen
er program loads a program from disk 
storage, the listener need not specify the 
positioning of the disk head; such me
chanical operations are done by a pro
gram at a lower level in the hierarchy. 
At the highest level of all is the user 
of the system, who ideally is insulated 
from everything except what he aims to 
accomplish. 

The first operating systems were cre
ated for the first electronic comput

ers in the late 1940's. They were sets 
of simple routines for input and output, 
such as a program for storing binary 
codes read from a punched paper tape 
into successive memory locations. The 
entire operating system consisted of a 
few hundred machine instructions. 

By the mid-1950's most computers 
were being run in "batch mode." An op
erating system collected programs sub
mitted by many individuals and execut
ed them in rapid succession, thereby 
eliminating the delays entailed in manu
ally loading one program at a time. Op
erating systems of this kind were called 
supervisors or monitors. In addition to 
their primary function of program load
ing they managed secondary storage de
vices (such as magnetic disks, drums and 
tapes), allocated main memory and han
dled input and output. In most cases 
they also included a software "library" 
of commonly needed routines. For ex
ample, many computer applications call 
for the sorting of information; if a versa
tile sorting routine is part of the library, 
the operating system can load it along 
with each program that needs it. 

By 1960 the first time-sharing systems 
were being designed. In this method of 
operating a computer the attention of 
the central ,processor is switched rapidly 
among several user programs, giving all 
the users the illusion that their programs 
are executing simultaneously. In con
structing such systems the problems of 
sharing the processor, the memory and 
the various software resources had to be 
addressed. Solving those problems gave 
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D 
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2 date cr 
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148.608.043.200.000 
CLOCK 

·148.608.043.202.000 
DI SK DRIVER 
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6 September 15. 1984 

EXECUTION OF A COMMAND sets in motion events at several 
levels in the hierarchy of programs that make up the operating sys
tem. The command is simply a request for the date. As each character 
is typed at a keyboard (I) it is received by a terminal-driver program, 
which echoes it to the display screen. When a carriage return is en
tered, the terminal driver passes the string of characters d a I e to the 
listener program (2), which interprets it as the name of a command. 
The listener asks the directory manager to search the directory of 
commands for dale. The directory manager in turn asks the disk driv
er to copy the directory into a buffer in the directory manager's stor-

148.608.043.202.002 

148.608.043.202.027 

148.608.043.202.104 

age space (3). When the command has been found, the listener di
rects the file manager to load the binary code for the dale program 
into memory; to do this the file manager again uses the disk driver (4). 
The listener then activates the date program, which reads a "clock" 
(5), a hardware device that keeps a count of the milliseconds that have 
passed since some fixed starting time, in this case midnight of Jan
uary 1, 1980. From this number the program calculates the current 
date and displays it through the terminal driver as September 15, 
1984 (6). The listener and the various drivers and managers constitute 
part of the "kernel" of the operating system; date is a utility program. 

95 
© 1984 SCIENTIFIC AMERICAN, INC



10,000,000 

1,000,000 

w 100,000 

N 
iii 

10,000 

1,000 

• 
ED SAC 

• 

Multics T (KERNEL + UTILITIES) 
I 
I 
I 

O S/360 (21) I 

. " ....... 
.... 

..... 

....
....

.... 

O S/360 (1) 

• 

• 
SCOPE 

I .MV S 
I • 

Multics VMS 
(KERNEL) • 

• 
Unix (BSD 4.2) 

V SO S 205 

• 
/

/ 
Unix (7.5) 

/ 
/ 

/ / 
// RC4000 // 

• ". e<" 
CTSS • 

MS-DOS 

Atlas THE Unix (1) 
• 

CP/M 

100 � ________ �� ________ �� ______ �� ________ �� ______ �� 
1940 1950 1960 1970 1980 1990 

EVOLUTION OF OPERATING SYSTEMS suggests a tendency toward exponential growth, 
but some smaller systems have been introduced recently for microcomputers. The size is given 
in units that correspond to "words" of machine storage or to ass em bly-Ianguage instructions. 
EDSAC was developed at the University of Cambridge, Atlas at the University of Manchester, 
ass at the Massachusetts Institute of Technology, THE at the Eindhoven University of Tech
nology and Rc4000 at the University of Denmark. Scope is a product of the Control Data Cor
poration, and so is vsos 205; 05/360, �IVS and V�IS are products of the International Busi
ness Machines Corporation. Multics was developed jointly by M.I.T. and Bell Laboratories, 
Unix by Bell Laboratories alone. cphl and �IS-DOS are microcomputer operating systems 
introduced respectively by Digital Research, Inc., and the Microsoft Corporation. The systems 
within the band of color are single-machine kernels, probably of the minimum possible size. 

LEVEL NAME OBJECTS EXAMPLE OPERATIONS 
13 SHELL USER PROGRAMMING STATEMENTS IN SHELL 

ENVIRONMENT L A NGUAGE 

12 USER PROCESSES USER PROCESSES QUIT, KILL, SU SPEND, RESUME 

11 DIRECTORIES DIRECTORIES CREATE, DESTROY, ATTACH, 
DETACH, SEARCH, LIST 

10 DEVICES EXTERNA L  DEVICES SUCH CREATE, DESTROY, OPEN, 
A S  PRINTERS, DI SPLAY S CLOSE, READ, WRITE 
AND KEY BOARDS 

9 FILE SY STEM FILES CREATE. DESTROY, OPEN, 
CLOSE, READ. WRITE 

8 COMMUNICATIONS PIPES CREATE, DESTROY, OPEN, 
CLOSE. READ, WRITE 

7 VIRTU A L  MEMORY MEMORY SEGMENT S READ, WRITE, FETCH 

6 LOCAL SECONDARY BLOCK S OF D ATA . READ. WRITE, 
STORAGE DEVICE CHA NNELS A LLOC ATE, FREE 

5 PRIMITIVE PRIMITIVE PROCESSES, WA IT, SIGNA L, SUSPEND, 
PROCESSES SEMAPHORES, READY LIST RESUME 

4 INTERRUPTS FAULT-HA NDLING PROGRA M S  INVOKE, M A SK, UNM A SK, 
RETRY 

3 PROCEDURES PROCEDURE SEGMENT S, M A RK STACK, C A LL, RETURN. 
C A LL STACK, DISPLAY 

2 INSTRUCTION SET EVALUATION STACK,' LOAD, STORE, BRA NCH, 
MICROPROGRA M  INTERPRETER, ADD, SUBTRACT 
SC A L A R  D ATA , A RRAY DATA 

1 ELECTRONIC REGISTER S, GATES, BUSES, ETC. CLEAR, TRA N SFER, 
CIRCUITS ACTIVATE, COMPLEMENT 

HIERARCHY OF ABSTRACTIONS is the essential organizing principle of an operating sys
tem. Each level is the manager of certain "objects," which can be hardware or software. A pro
gram at a given level has access only to operations defiued at lower levels; furthermore, the in
ternal details of those operations are hidden. The first seven levels concern operations within a 
single machine; higher levels can draw on the resources ·of multiple computers in a network. 
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rise to a number of important conceptu
al advances, including parallel-process 
synchronization, virtual memory, de
vice-independent input and output and 
interactive command languages, all of 
which we shall discuss below:' 

As operating systems became more 
elaborate they also grew larger. The 
Compatible Time Sharing System, put 
into operation at the Massachusetts In
stitute of Technology in 1963, consisted 
of approximately 32,000 36-bit words 
of storage. 05/360, introd uced a year 
later by the International Business Ma
chines Corporation, had more than a 
million machine instructions. By 1975 
the Multics system, developed by M.l.T. 
and Bell Laboratories, had grown to 
more than 20 million instructions. 

By then, however, a countervailing in
fluence was being felt: minicomputers 
had entered the marketplace and micro
computers (including personal comput
ers) were beginning to appear. These 
machines were slower and had a smaller 
memory capacity than the mainframe 
machines of the time, but they extended 
access to computing to a much broad
er range of potential users. In order 
to squeeze operating systems into the 
smaller accommodations of mini- and 
microcomputers the functions of th<Y 
system were divided. Services needed by 
almost all programs, such as input and 
output routines, were put in a "kernel" 
that remains in the main memory of the 
computer whenever it is running. Other 
programs, called system utilities, are 
stored on disk and read into main mem
ory only when they are needed. Judging 
from the operating systems introd uced 
in the past several years, it appears the 
minimum kernel needed to manage the 
resources of a single computer consists 
of a few tens of thousands of instruc
tions. The available utilities and librar
ies of software are continuing to grow 
almost exponentially, straining the ca
pacity of secondary-storage facilities. 

The evolution of operating systems 
has not ended. A new population of 

users, including many who do not make 
computing a full-time occupation, has 
placed new demands on software. One 
response has been the development of 
interactive graphic displays. With such 
a display one might delete a file not by 
typing the command de/ere but by point
ing to a drawing of a trash can. New 
ways of organizing a computer system 
have also evolved. Instead of having 
a single large computer connected to 
many terminals, each user can be given 
a work station that has its own processor 
and comm unicates with other work sta
tions by means of a high-speed network. 
It is the operating-system software that 
must coordinate the actions of the var
ious computers in such a distributed
processing network. 

The hierarchical structure of a mod-
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ern operating system separates its [unc
tions according to their complexity, 
their characteristic time scale and their 
level of abstraction. The bottom illus
tration on page 96 shows an organiza
tion spanning I J levels. It is not a model 
o[ any particular operating system but 
rather incorporates ideas from several 
systems; facilities for distributed proc
essing are included. Each level is the 
manager of a set of "objects," which can 
be hardware or software and whose na
ture varies greatly from level to level. 
Each level also defines the operations 
that can be carried out on those objects. 

The lowest levels include the hard
ware of the system. Level I is that of 
electronic circuits, where the objects are 
registers, memory cells, logic gates and 
so on. The operations defined on these 
objects are actions such as clearing a 
register or reading a memory location. 
Level 2 is that of the processor's instruc
tion set, which can deal with somewhat 

2800 
STACK 

.. 
2600 

co 
C/) C/) 

2400 UJ DATA u 0 a: 
Il.. 

more abstract cntities, such as an cvalu
ation stack (a seq uence of registers or 
memory cells where numerical values 
are held pending some operation to be 
carried out on them). The operations at 
this level are the instructions the proces
sor itself can execute, such as add, sub

tract, load and store. 

Level 3 adds the concept of a pro
cedure, or subroutine, a self-contained 
program fragment that can be called on 
within a larger program and that returns 
control to the point at which it was 
called. Level 4 in trod uces interrupts, 
which cause the processor to save a 
record of its current state and then turn 
to a new task. Events that trigger an in
terrupt include error conditions, such 
as the overflow of an arithmetic reg
ister, and more commonplace events, 
such as the receipt of a character code 
from a terminal. 

The first four levels together corre
spond roughly to the basic machine as it 
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PRIMITIVE PROCESS represents a single program in the course of execution. Here two 
primitive processes are shown loaded into a segment of main memory. Process B is executing. 
The instruction pointer, one of the computer's hardware registers, indicates the address of the 
next instruction; the stack pointer indicates the top item in the temporary storage area called 
the stack, A real computer would have many more general-purpose registers, but here only one 
register is shown. Process A has been suspended, but the contents of all the registers at the mo
ment of suspension were recorded in a reserved area called the state word. The operating system 
can readily switch between processes. The current contents of tbe registers are put in the state 
word of process B, and the registers are reloaded with the values from process A's state word. 
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is received from the manufacturer, al
though there are close interactions with 
some elements of the operating-system 
kernel. For example, interrupts are gen
erated by a hardware component, but 
the routines invoked when the processor 
is interrupted are part of the kernel. 

Concepts associated explicitly with 
the coordination of multiple tasks 

first appear at level 5, which is identi
fied as the level of "primitive processes," 
or single programs in the course of ex
ecution. Because a primitive process 
may be interrupted at any time, a mecha
nism is needed to suspend a process and 
then resume it. The mechanism consists 
of the "state word," a data structure that 
can hold the contents of all the registers 
in the central processor, and a "context 
switch" operation. When a process is to 
be suspended, the context-switch opera
tion copies the register values into the 
state word for that process; on resump
tion it restores the registers to their for
mer values. 

If all the activities going on within a 
computer were completely independent 
of one another, little more than the no
tion of a state word would be needed 
to create a multiple-process operating 
system. Actually one process often de
pends on results from another, so that 
the processes must be synchronized. A 
program that requires data from a file 
on disk, for example, cannot proceed 
until the data have been read and made 
available in main memory. It is not pos
sible for the programmer to know be
forehand how long the disk-reading op
eration will take, and so there must be a 
way to make one program wait until an
other signals it is ready. 

The concept,that provides the key to 
synchronization is the semaphore; it oc
cupies a central place in the.theory of 
operating systems. In the simplest case 
it is helpful to think of a semaphore as 
being directly analogous to a railroad 
signal, with green and red lights that in
dicate whether or not it is "safe" for a 
process to continue. At the point where 
a process must be synchronized with 
some external routine, the programmer 
inserts an instruction such as wait(sem

aphore A). Each time that point in the 
program is reached. the semaphore is in
spected. If it is in the red state, execution 
of the process is suspended; if it is green, 
the process continues but the semaphore 
is set to red. When the second process 
issues a signal(semaphore A) instruction, 
the semaphore is reset to green and the 
first process resumes execution if it has 
been waiting. 

Actually, because multiple processes 
may be controlled by the same sema
phore, the implementation of the sem
aphore must be somewhat more com
plicated: it must maintain a counter 
and a queue of waiting processes. For 
each wait instruction the counter is dec-
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remented and for each signal instruc-
tion it is incremented. If the value of 1 

ing a wait instruction is put in the queue; 
the counter is negative, any process issu-

r-I ---------------l 
when the next signal instruction is re- F====9 
ceived, the first process in the queue is L-_---:)� [ [ [ [ If-----:)� C I D [ B 1------' 
transferred to the "ready list" of proc- SUSPENDED LIST --'-R-E--ALD--yc-'LLIS:CT='---' 
esses available for execution. The two SEMAPHORE 
operations defined on semaphores are 
powerful enough to synchronize paral-
lel processes in a variety of contexts, r-2 _____________ ---l: 

� 
from the need to stop a process when an 

I B E:  

input buffer is empty or an output buffer 
is full to the need to allow only one proc- I I ess at a time to manipulate shared data. )_-.l..�L..L--1_j-----:)� ��I�AL 

0 I---...,:)�_---'_....LI_A__'_I_c__'_I _D_'II----' 

Tevel 6 in the operating-system hierar
L chy handles access to the second
ary-storage devices of a particular ma
chine. The programs at this level are 
responsible for operations such as po
sitioning the head of a disk drive and 
reading a block of data. Software at a 
higher level merely determines the posi
tion of the data on the disk and places 
a request for it in the device's queue 
of pending work. The requesting proc
ess then waits at a semaphore until the 
transfer has been completed. 

The function of level 7 is virtual mem
ory, a scheme for managing the comput
er's main and secondary memories that 
gives the programmer the illusion of 
having a main memory large enough to 
hold a program and all its data even if 
the available capacity of main memory 
is much smaller. Addresses can be arbi
trarily large, and programs running con
currently can employ the same addres
ses without conflict; the operating sys
tem translates each virtual address into 
a hardware address. If an attempted 
translation fails because the information 
called for is not in main memory, the 
virtual-memory manager automatically 
fetches it from disk storage. Before do
ing so it may have to make room in main 
memory by removing other data. As in 
other similar circumstances the request
ing process is interrupted until the need
ed information is made available. 

Up to level 7 the operating system 
deals exclusively with the resources of a 
single machine. Beginning with the next 
level the programs of the operating sys
tem encompass a larger world including 
peripheral devices such as terminals and 
printers and also other computers at
tached to the network. 

Level 8 deals explicitly with commu
nication between processes, which can 
be arranged through a single mecha
nism called a pipe. A pipe is a one
way channel: a stream of data flows 
into one end and out of the other. The 
stream has a write pointer, which keeps 
track of the number of items written 
into the pipe, and a read pointer, which 
records the number of items read at the 
other end. A request to read more items 
is delayed until they are actually pres
ent. A pipe can connect two processes 

4 D 

SIGNAL 
WAIT ) B A C 1------' 

SOFTWARE SEMAPHORE is a mechanism for controlling primitive processes that must be 
synchronized. Here processes A, Band C all depend on a result from process D. For each wait 
instruction the semaphore decrements a counter and for each sigllal instruction it increments 
it. A waiting process is allowed to pass the semaphore only if the value of the counter is greater 
than zero. Initially (1) process A is running, B, D and C are ready and the semaphore count of 
+ 1 indicates that one of D's results is available. When A issues a wait instruction, it therefore 
immediately passes the semaphore and rejoins the ready list. Then Bruns (2), eventually issues 
a wait instruction and is suspended, allowing D to run (3). When D completes a new result, it is

sues a sigllal instruction, which allows B to move to the ready list (4). D rejoins the ready list and 
C begins to run (5) but is suspended when it issues a wait instruction; in the same way A and C 
run and are suspended, allowing D to resume execution (6). When D has a result, it issues a sig
lIal, .transferring C to the ready list (7); later cycles of D will release A and B from suspension. 
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root 

hosts passwd laser plotter clock tty? 

mbox project3 mail Is rm mv 

user I' £ NAME TYPE OTHER POINTER 
sell dir --

parent dir 

pjd dir 

rib dir 

pjd I 

-' NAME TYPE OTHER paiN'::) 
sell dir 

parent dir 

mbox file 

projects dir 

TREE OF FILES AND DIRECTORIES organizes the resonrces of a computer system. The 
root of the tree and the intermediate nodes are directories that can list either files or subordinate 
directories. The "bin" directory, for example, holds the binary code of system utility programs, 
such as programs for electronic mail and for listing, moving or removing files. Similarly, the 
"dev" directory lists devices and the "etc" directory holds miscellaneous information such as the 
host computers available and the encrypted passwords of users. The structure of the "user" di
rectory, where each user of the computer system keeps his own files, is shown in somewhat 
greater detail in the lower part of the illustration. Each directory has a pointer to itself and to its 
parent. The directory structure represented here is based on that of the U nix operating system. 

ARGS 

CODE FOR F :1 
UJ PORTS U STACK it 0 DEFAULT INPUT 
(f) DEFAULT OUTPUT � 
a: DATA · 0 · 

� · 

STATE WORD CONTEXT 

USER PROCESS is a virtual compnter: a simulated machine that appears to be dedicated to 
executing a single program. A user process incorporates the elements of a primitive process (the 
executable code, the work space and the state word) as well as a list of arguments supplied when 
the program was started, a list of ports for input and output and a description of the program's 
context. The arguments are parameters typed after the command name; they are entered into 
successive slots of the ARGS array. The ports include two for "default" input and output, which 
serve unless other ports are specified. The context lists such items as the working directory. 
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executing on a single machine, as when 
the output of one program is designated 
the input of another. A pipe can equally 
well transmit information between com
puters; indeed, a set of pipes linking 
processes in all the machines of a net
work can serve as a broadcast facility, 
which is useful for finding resources that 
might be anywhere in the network. 

The file system, which provides for 
the long-term storage of named files, is 
implemented at level 9. Whereas level 6 
deals with disk storage in terms of tracks 
and sectors-the fixed-size divisions of 
the hardware itself-level 9 addresses 
more abstract entities of variable length, 
whose boundaries do not necessarily 
correspond to those of physical tracks 
and sectors. Indeed, a file may be scat
tered over many noncontiguous sectors. 

The create and destroy operations set 
up a new file and discard an old one; 
open and close make and break the con
nection between a file and a process. For 
the content of a file to be examined 
it must be copied into an area of virtu
al memory, and for information to be 
saved it must be copied from virtual 
memory into a file; the copying is done 
by read and write operations. If a file 
is kept in a different machine, level-9 
software can, by using level 8, create a 
pipe to the file's home machine. (The 
best way of accomplishing this is still 
an open question.) 

Level 10 provides access to external 
input and output devices, including the 
time-of-day clock, printers, plotters and 
the keyboards and display screens of ter
minals. The operations defined on these 
objects are again create and destroy. open 

and close. read and write; again a pipe can 
be created to gain access to a device at
tached to another machine. 

Tevel II manages a hierarchy of direc
L tories that catalogue the hardware 
and software objects to which access 
must be controlled: pipes, fiies, devices 
and the directories themselves. The cen
tral element of a directory is a table that 
matches the external name of an object 
(that is, the name known to and sup
plied by the user, such as "addresslist") 
to an internal name employed by the 
operating system to find the object. A 
hierarchy arises because a directory 
can include among its entries the names 
of subordinate directories. 

Each directory is a list of entries giv
ing an object's external name (stored as 
a string of characters), the internal name 
(stored as a binary code), an indicator 
of its type (file, device and so on) and 
certain other information. For exam
ple, the directory entry commonly re
veals whether the object can be read 
from or written to or, in the case of pro
gram files, executed; each kind of access 
might be allowed for some users but 
not for others. 

The directory level is responsible only 

© 1984 SCIENTIFIC AMERICAN, INC



Step into Toyota's 1984 Cressida, 
and let the luxury begin. 

Inside: seats with a rich velour 
fabric, or a soft full-grain leather. 

Cruise control for relaxed driving. 
And now, as standard equipment, 
power windows, power door locks, 
an electronic AM/FM/MPX stereo 
with 4 speakers, cassette, seven 
band graphic equalizer, and auto
matic power antenna. 

Outside, more luxury. Classic, 
elegant lines. A sloping hood that 
reduces aerodynamic interfer
ence for quieter motoring. Roof 
height precisely scaled to allow 
plentiful headroom. 

Cressida's luxury soothes you, 
but its performance excites you. 
Its 2.8 liter electronically fuel
injected TWin cam engine pro
duces 143 horsepower at your 
command. Its independent rear 

suspension makes 
for superb handling. 

. Its Electronically 
Controlled 4-speed auto
matic overdrive transmis-

sion with lock-up torque converter 
lets you choose at the touch of a 
button a "Normal;' "Power" or 

"Economy" mode of driving. This 
"thinking" transmission adjusts to 
suit changing driving conditions. 

And on 
and on 
and on. 
There is 
no end to 
the wonders 
of Cressida. 
Ahhh what a feeling. The Cressida 
Luxury Sedan. 

BUCKLE UP-ITS A GOOD FEELING! 

CRESSIDA. LUXURY THAT SOOTHES THE SOUL. 
PERFORMANCE THAT LIFTS THE SPIRIT. 
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Exxon research is 
todays cars by I<eeping 

New fuels and lubr icants 
must ant icipate 
advancing technology 
and increasing 
performance demands. 

Turbochargers, electronics, advanced 
transmissions, knock sensors, fuel injec
tors and other sophisticated devices are 
being rapidly incorporated into today's 
automobiles. While they permit more pre
cisely controlled and optimized vehicle 
operation, they also place greater de
mands on fuels and lubricants. Keeping 
ahead of the changing requirements 
has challenged scientists and engineers 
at Exxon Research and Engineering 
Company (ER&E), and their Exxon col
leagues at three major affiliated labora
tories outside the U.S. 

Hotter Engines 
Today's engines are smaller. They 

operate at temperatures some 50° to 
75°F hotter than their older V-8 counter-

hotter. Higher temperatures can cause 
motor oils to oxidize faster, producing 
sludge and varnish deposits which thick
en the oil. This in turn can lead to greater 
friction and increased engine wear. 

In the 1970's, ER&E scientists and 
engineers discovered an additive tech
nology which resu�ed i� the first fu�I-. 
saving motor oil uSing oll-solubl.e friction 
modifiers. Today, they are creating new 
oils for the hotter engines and subjecting 
the most promising formulations to gruel
ing tests. 

For example, a fleet of New York taxi 
cabs runs on Uniflo® motor oil test formu
lations for 50,000 miles, using oil drain 
intervals more than twice those recom
mended. The taxi engines are dis
mantled before and after each test to 
measure wear on critical parts in mi
crons, and to examine engine deposits. 

MOFT 
Balancing friction and antiwear prop

erties of an oil is a delicate task. LONer 
viscosity reduces friction, improves fuel 

efficiency and aids start!3.bility, bu� too 
ION viscosity may resutt In excessive 
engine wear. 

Minimum Oil Film Thickness (MOFT), 
a patented technique developed at 
ER&E, electronically measures the pro
tective lubricant film between the 
bearings and crankshaft of a running 
engine-sometimes only a fraction of a 
micron thick. These measurements per
mit researchers to compare different 
oil and additive formulations in their 
search for better wear protection and 
fuel mileage. 

FWD Transaxles 
The heat and wear demands of 

"sealed for life" constant velocity joints in 
front-wheel transaxles posed other chal
lenges for ER&E scientists in lubricant 
research. Their response, a lithium
based grease, 5191, can be found in 
many U.S. front-wheel-drive vehicles, 

parts. Turbocharged engines run even ---"':'---.-...r--;-.�..-�-tr-:-1I'�71W�""""�IT-rr-lI--rrjqrA 
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I<eeping ahead of 
an eye on tomorrow's. 
withstanding temperatures up to 300°F 
and lasting for aver 100,000 miles. 

Electronic Knock Sensors 
Pioneering research at ER&E demon

strated the concept of electronic knock 
sensors which are nON being installed in 
many of today's cars. These sensors 
detect engine knock and feed the infor
mation to an on-board computer which 
corrects spark timing to match gasoline 
octane. This makes higher compression 
ratios feasible at any given octane level, 
resu�ing in more efficient engines. 

Changing Fuels 
for Changing Engines 

The continuing replacement of carbu
retors with fuel injection systems places 
increasing importance on fuel quality. 
Gum, vamish, and dirt deposits can 

even distribution to some cylinders and 
reduced engine performance. Ongoing 
work at ER&E is defining the cleanliness 
needs of these and future systems and, 
in parallel, developing fuel quality fea
tures to meet those requirements. 

Exxon Research and 
Engineering Company 

Impraving products for the transporta
tion industry is just one example of the 
research programs under way at ER&E. 
A wholly ONned subsidiary of Exxon 
Corporation, ER&E employs more than 
2,000 scientists and engineers working 
on petroleum products and processing, 
pioneering science and the engineering 
required to develop and apply new tech-

clog the very f ine holes through which 
the fuel is sprayed. This resu�s in un- l7�l(,C1ll 

_ l � vum l ' "'-U�"'Do�C�n���O����,IPM 
T aJjff !.ftc!!.) W 

;1 upto / OO '..-f � 

niques to the manufacture of fuels and 
other products. For more information on 
automotive products research or ER&E, 
write Dr. E. E. David, Jr., President, Exxon 
Research and Engineering Company, 
Room 200, Po. Box 101, Florham Park, 
New Jersey 07932. 
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Fellowships 
in Science 
Broadcast 
Journalism 
WGBH-Boston, a major producer of 
radio and television programs for public 
broadcasting, including NOVA, seeks 
indications of interest from proven 
science writers who want to learn the 
skills and move into science broadcast 
reporting. We are creating six year-long 
fellowships for experienced science 
journalists willing to risk their talents on 
a major career change. 

Fellows will undergo an intensive training 
program in the art and craft of producing 
and writing science programs for radio 
and television, in a working professional 
environment. 

If you have a track record in writing about 
science in a clear and vital way for a 
general audience, please send a letter 
and resume for further information to: 

David Kuhn 
Director, Science Fellowships 
WGBH 
125 Western Ave. 
Boston, MA 02134 

Aha ••• :tt 
� Li1J 

CAMES FOR THINKERS 
An exciting, new way to learn creative 
problem solving! Games designed by uni· 
versity professors improve thinking skills 
using fun, strategy and challenging com· 
petition. Like chess, each game can be 
played at many levels from young chil· 
dren to intelligent adults. Fascinating for 
everyone! 

Write for free catalOg and studies that 
show how WFF 'N PROOF Games can: 
• double math achievement 
• cut school absenteeism by ,/, and 
• raise I.Q. scores by 20 points 

ORDER YOUR GAMES FOR THINKERS TODAYI 
WFFN PROOF (logiC) 
QUERIES 'N THEORIES (sci. method) . 
EQUATIONS (creative mathematiCS) 
ON·SETS (set theory) 
ON·WORDS (word structures) . 
PROPAGANDA (social studies) 
CONFIGURATIONS (geometry) . 

Complete 7-game Special 

516.00 
16.00 
13.00 
13.00 
13.00 
13.00 

7.75 

79_95 
All prices include postage and handling. 

Satisfaction .Guararlteed 

Order from WFF 'N PROOF 
1 490-FE South Blvd., Ann Arbor, MI48 104 
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for recording the associatIOn between 
the external and the internal names of 
objects; other levels manage the objects 
themselves.  Hence when a directory 
of devices is searched for the string 
"clock," the result returned to the call
ing program is merely the internal name 
of the time-of-day clock. The internal 
name is then passed to a program at lev
el 10, which does the actual reading of 
the clock. 

Level 12 implements user processes, 
which are entire virtual machines exe
cuting programs. It is important to dis
tinguish the user process from the primi
tive process of level 5. All the informa
tion needed to define a primitive process 
can be expressed in the state word that 
records the contents of registers in the 
central processing unit. A user process 
includes a primitive process, but it en
compasses much else as well: a virtual 
memory containing the program and its 
work space, information supplied by the 
user when the program was started 
and a list of other objects with which 
the process can communicate. A user 
process is much more powerful than a 
primitive process. 

Level 13  is the "shell," so called be-

cause it separates the user from the 
rest of the operating system. It is the in
terpreter of a high-level command lan
guage, through which the user gives 
instructions to the system. The shell in
corporates the listener program that re
sponds to the terminal keyboard; it pars
es each line of input to identify program 
names and other information; it creates 
and invokes a user process for each pro
gram and connects it as needed to pipes, 
files and devices. 

An important principle adopted in the 
I\.. hypothetical operating system we 
are describing here is input-output inde
pendence. At levels 8, 9 and 10 the same 
fundamental operations (namely create, 
destroy, open, close, read and write) are 
defined for pipes, files and devices. Writ
ing a block of data into a disk file calls 
for a sequence of events quite different 
from the one needed to transmit the 
same data to a printer or to supply it to 
the input of another program, but nei
ther the author nor the user of the pro
gram needs to be. concerned with those 
d ifferences. All read and write state
ments in the program can refer to input 
and output "ports. "  The ports are at-

��� ________ 

F 

______ ��� F 

F F<A 

FILE 

B 

F F >B 

A B 

F F<A>B 

SOFTWARE PART, or component, is a program with a single input stream and a single output 
stream, a structure that helps in combining programs and devices in various ways. If no other 
source and destination are specified, a program is connected by default to the user's keyboard 
and display. The " <" sign designates a source of input and the " > " sign a destination for out
put. The "I" sign creates a "pipe" linking the output of one program to the input of another. 
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Introducing Filevisiori for Macintosh: 
The fine art of filing by pictures. 

Filevision. The first software that 
combines a practical filing system with 
a simple-to-use, object-oriented drawing 
system. It lets you file things the way 
you see them. And quickly visualize 
your data in pictures. Instead of sorting 
through tedious line-by-line listings. 

To use Filevision, you simply place 
objects in a picture, or choose from the 
ready-made symbol menu to represent 
the pieces of information you wish to file. 

In the click of a mouse, you can re
trieve the data behind each object in your 
picture. You can even select the objects 

in your pictures based on the data 
in your files. 

Each object in your picture is 
automatically connected to the 
information about that object. 

lllustrate anatomy and study PhysiolDgy. 
Map sales territories and track volume. 
Seat a convention and highlight non
smokers. Filevision pops requests right 
off the screen. In the click of a mouse. 

Filevision is a trademark of Telos Software Products. 
Telos is a trademark of Telos Corporation. 
Macintosh is a trademark licensed to Apple Computer Inc. 

Each object is automatically connected 
to a data form. Which you custom design, 
quick as a click. 

For a change, it's simple 
to modify my files. 

Updating your files is just as easy. 
Whenever the best-laid plans of 
mouse and man 
need a little 
replanning, 
you're just a 
click or two 
away from 
reperfecting 
your files. 
Create new sym
bols, and add them 
to your picture. 
Make a data form for any new object, 
and all objects of that type will have the 
same form. Automatically. 

Modify a symbol, and all matching 
symbols in your picture will be modified. 
Automatically. 

Change an existing form, and all forms 
of that type will change. Automatically. 

The possibilities are endless. 
Filevision can study anatomy while 
fleshing out the physiology, peek at the 
population behind a map, show a 
business person just what's in stock, or 
lay out an office and see who's got what. 
In fact, if you can see it, you can file it 
visually with Filevision. And retrieve it 
visually, too. 

Filevision. The unique filing system 
for Macintosh that lets you store and 

work with information in pictures, 
as well as numbers and text. 

SOFTWARE PRODUCTS Software for the real world. 
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In the battle between 
the mM PC, there can be 

Hear the guns? 
It's a battle for your desktop. Apple" versus IBM." 

The easy-to-use Macintosh against the serious business 
computer from Big Blue. 

And the winner? Epson." That's right, Epson. Because 
for the person who simply wants to buy one relatively 
perfect personal computer, the Epson offers an opportunity 
for peace in our time. 

A computer that is easy to use, like the Mac, but also 
nms all sorts of business software, like the Pc. 

And aren't those two computers exactly the one you need? 

An easier way to be easy . . .  
A more serious way to be serious. 

The Epson is easy because 
its keyboard works in English, 
not computerese. And only 

the Epson comes with Va/docs,'" a powerful integrated 
software system that takes you step-by-step through the five 
most important business functions: word processing, 
business graphics, telecommunications, electronic filing 
and daily scheduler. 

As a result, while IBM owners are still pondering their 
manuals, and Macintosh owners are still drawing sneakers, 
Epson owners are churning out productive work with 
electronic speed and accuracy. 

The Epson also opens the doors of your disk drives 
to the largest collection of software in captivity In fact, the 
Epson runs more business programs than the IBM pe 

To start, the Epson is available !"ith an optional 16 bit 
co-processor so you can use almost any MS"'-DOS program, 
including SuperCalc " 3 and Lotus" 1 -2-3.'" 

The Epson also comes with Microsoft" BASIC and 
CP/M-SO'" 2.2 .  

The CP/M library is impressive. It includes the 
most popular, most powerful business 
programs like WordStar" and dBase If'" 
Plus about a thousand other business 
programs, everything from fixed asset 
accounting to pipe network analysis. 

With MS-DOS, Valdocs and CP/M, the 
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the Apple Macintosh and only one winner. The Epson 
Epson should be able to handle any future busi
ness need. And that should make you feel velY 
good about siding with Epson today. 

The ultimate technical 
specification: value. 

The Epson QX-I0 comes complete 
with a 12 " high resolution monitor, 600 x 
400 Pixels, driven by one of the most 
powerful graphic processors available. 
With screen resolution this good, text 
and graphics will leap off the screen. 
And when you add a graphics pro
gram, like Q-plotter,'" you can 
produce presentation graphics of 
the highest ordet: 

Standard issue on the Epson 
also includes 256K memory, plus 

380K Epson-made disk drives, a 

option slots for some real options. 
Best of all, everything is Epson quality, 

the same quality that has made Epson the 
number one manufacturer of computer 
printers, worldwide. And when you consider 

that Epson gives you a complete com
puter system at a price a thousand dol

lars less than either Apple or IBM, 
you understand why this computer 

can not only bring peace to your 
desktop, but to your budget, as well. 

"W"" optional MS·OOS boa<d. _. the _ logo. IBM. Epson. Superl:aic 3. 
lotus 1-2-3, CPIM-SO, Microsoft, WlrdStar and dBase g ere registered � 

01 Apple CooIputers, Inc., IBM, Epson Corp., SorClm, l<tus, Digital Research, 
�osoft, Micropro and Ashton-Tale respectivef¥ YaIdocs. MS, Q-pktter 

are tra:lernarks ol Risiog � Microsofl and MetroSoftware 

,"""""'" 

128K resident video memory, dual EPSON CMOS Realtime Clock/Calendar with .J:D.'-. :1(!>'-'" 
battery backup, a I -year warranty, an 
RS-232C port and a parallel port; thlls 
freeing the five - that's right, five -
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l04D 

, DSI 

Mentorize this syntbol. 
It ntight help keep you front ntaking 

a tnillion dollar ntistake 
in Contputer-Integrated Manufacturing. 

If you want to find out more about the intelligent approach to eIM, 
write us at our North American Headquarters. 

Or see us at Booth #2646 at the International Machine Tool Show September 5-13. 

MANUFACTURING DATA SYSTEMS INCORPORATED 

North American Headquarters 
425 1 Plymouth Road, P.O. Box 986 
Ann Arbor, Michigan 48 106 
U.S.A. 
'Telephone: 3 13-995·6000 
TWX: 810/2236039 

European Headquarters 
Hahnstrasse 70 
Lyoner Stem 
D-6000 Frankfurt/Main 7 1  
West Germany 
Telephone: 49.61 1 .66.41 .420 
'Telex: 8411413591 

Asian Headquarters 
Koito Building 8F 
12-4 Nishi-Shinjuku, 6-Chome 
Shinjuku-ku, Tokyo 160 
Japan 
'Telephone: 8 1 .3.348.45.01 
'Telex: 781102324413 
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tached to particular files, p ipes or devic
es only when the program is executed.  

This strategy, called delayed binding, 
can greatly increase the versatility of a 
program. A sorting routine, for exam
ple, could take its input e ither from a file 
or directly from a terminal and could 
send its output to another file, to a ter
minal or to a printer. Without delayed 
binding a separate routine might be 
needed for each possible combination of 
source and destination. 

Another principle observed in the 
construction of the operating system has 
the enigmatic name "information hid
ing ."  Each level builds on the levels be
low but hides all the internal details of 
its operations from the levels above . For 
example, the primitive-process manager 
at level S creates the illusion that all the 
primitive processes on the ready list 
are executing in parallel; the details of 
queuing, interrupts and so on are invisi
ble to higher levels. A program that 
makes use of primitive processes deals 
with only a small set of external com
mands for creating and destroying proc
esses, suspending and resuming their 
execution and sending and receiving 
messages. Similarly, the user-process 
manager at level 12 gives the illusion 
that each program operates in its own 
machine; the creation of the primitive 
process, the work space and connections 
to input and output ports are hidden. 

J ust as no level has access to the inter
nal workings of lower levels, so no lev
el depends on assumptions about high
er levels. The virtual-memory manager 
(level 7) m ust have access to the inter
r upt system (level 4) and the -secondary
storage system (level 6), but it knows 
nothing of the file structure (level 9). 
The stratification of the operating sys
tem aids in its construction because the 
levels can be installed and tested one at a 
time from the bottom up. 

The description of an operating sys
tem given so far is static: the parts 

have been listed, but how they work 
has not been demonstrated.  The state 
of the system changes as commands 
are executed.  The following examples 
of system dynamics are based on the 
Unix operating system, which incorpo
rates many features of the hypothetical 
system discussed above. 

The user sees a computer as a large 
system with many useful resources. 
Some of the resources are programs 
stored as binary code that can be execut
ed merely by giving a file name. In a 
Unix system this category might include 
the date program, compilers for high
level languages, and programs for pre
paring documents, including formatting 
programs for tables, equations and or
dinary text. Other elements of the sys
tem are data files, perhaps holding doc
uments of various kinds, including the 
"source code" of programs. Hardware 

Software development .. .  
another good reason 
to thinliof Westico. 

Westico is the place to get all the 
latest Digital Research programs. 
We carry a complete line of Digital 
Research language processors, de
velopment tools and operating sys
tems, including Concurrent DOS™ 
with windows. In fact , we ' re the 
only source for their CB-68KTM 
Compiler and GSX-86™ Program
mer's Toolkit . 

And with Westico, you get more 
than just the technical expertise 
built into every Digital Research 

program. You get all the support you 
need. Fast, reliable delivery. Expert 
technical assistance .  Plus, outstand
ing dealer discounts to keep every 
independent software vendor smil
ing. Westico offers hundreds of 
other software programs in for
mats for over a hundred personal 
computers. 

So when you' re thinking devel
opment software,  think Westico. For 
a Westico software catalog and com
plete information, call or write today. 

C Cl':K;CU/ In .I. + 86, C ClLM.<OUJ'V" 
PUI-86, DR Assembler 
Compiler, PascallMT + , 

[j]] DIGITAL 
RESEARCH· 
We make computers work. � 

_ __ ''-___ I Manager, PascalIMT + 
CB-86, CP/M-68K, '"'v ..... ... . 

Access .... '"J/' .... O.".,_>' 

'YFS I ICO 
The Software Express ServiceTllf 
25 Van Zant Street , Norwalk, CT 06855 

Telephone (203 ) 853-6880. Telex 64-3788.  

Access Manager. CBASIC Compiler, CBASIC·86, CB·80, CB·86, CP/M-6BK, CB-68K Compiler, Concurrent DOS, 
Concurrent PC DOS, Display Manager, Digital Research C,  Dr. Logo, DR Graph, DR Draw, FORTRAN 77, GSX-80, 

GSX-68K, GSX·86, PascaUMT + ,  PascaUMT + 86, PascaUMT + 68K, Personal BASIC, PUI-80, PUI·86, DR Assembler 
Tools are trademarks of Digital Research Inc. 
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devices such as terminals, the clock and 
printers are also accessible . 

The directories listing all these re
sources are arranged in an inverted tree, 
with the highest-level directory at the 
root. Some directories are reserved for 
the use of the system; they might include 
d irectories of devices, of commands and 
of files holding miscellaneous data such 
as the passwords of authorized users. A 
d irectory labeled "user" has a subdirec
tory for each person who has an account 
on the system, and each user in turn can 
create a tree of further subdirectories 
in which to store all the files, pipes and 
devices he has created.  

Most users of the system spend most 
of their time employing existing pro
grams, not writing new ones. The de
sign of the operating system, and in par
ticular the principle of input-output 
independence, encourages this style of 
computing. Most of the programs in 
the system libraries are "software parts" 
that can work interchangeably with var
ious sources of input and destinations 
for output. 

When a user "logs in," generally by 
giving a password, the operating system 
creates a user process that includes a 
copy of the shell program. The input to 
the shell is connected to the keyboard of 
the user's terminal and the output to the 
same terminal's d isplay. The shell "lis
tens," without taking any action, until a 
full line of input has been typed, sig
naled by the receipt of the carriage-re
turn character. The line is then scanned 
to pick out the names of programs being 
invoked and the values to be passed as 
arguments to those programs. For each 
program called up in this way the shell 
creates a user process, including a copy 
of the executable code for the pro
gram and a work space. The processes 

ARGS 

are connected according to the data flow 
specified in the command line. 

Operations of substantial complexity 
can be specified in the command lan
guage of the Unix shell. For example, 
a sequence of operations that formats a 
file named "text" could be set in motion 
by the command line 

tbl < text l eqn I lptroff > output 

Here the first program invoked is fbi, 
whose function is to search a file for 
descriptions of tables of information 
and insert the formatting commands. 
The " < "  symbol indicates that fbi is to 
take its input from the file "text. " The 
output of fbi is d irected by a pipe (the 
" I "  symbol) to the input of eqn, which 
supplies formatting commands for any 
descriptions of equations. The output 
of eqn is then piped to IpfrojJ, another 
formatting program that prepares the 
rest of the text for printing; the name 
of the program is shorthand for "laser
printer typesetter r unoff." Finally, the 
" > "  symbol indicates that the format
ted document is written in a file named 
"output ." It  is ready to be sent to a laser 
printer, a high-q uality printer that works 
much like a photocopying machine . 

If the formatting and printing of doc
uments is to be done often, typing such 
an elaborate command would soon be
come tedious. Unix encourages the user 
to store complicated commands in exe
cutable files called shell scripts that be
come simpler commands. A file named 
Ip might be created with the contents 

tbl < $ l l eqn l lptroff > $2 . 

Here the names of the input and output 
files have been replaced by the variables 
$ 1  and $2. When the command Ip is in-

tbl <text I eqn I lptrofl -rns -Fern -02 -6 >output 
ARGS 

G �§ B �§ 1 1Ptrofi I 

PORTS PORTS 

D D 0 

D 
I READ I I WRITE I I READ I IWRITE I I READ I 

TEXT PIPE 1 PIPE 2 

voked, the variables are replaced in turn 
by the arguments that follow the com
mand. For example, typing 

lp text output 

would substitute "text" for $ 1  and "out
p ut" for $2  and so would have exactly 
the same effect as' the longer command 
given above . 

One more small but essential piece of 
the operating system needs to be 

d iscussed. Given that various compo
nents of the operating system have re
sponsibility for loading all programs 
into the machine, the question naturally 
arises of how the operating system itself 
is loaded and started .  The answer is a 
"bootstrap sequence."  The sequence be
gins with a program of j ust two instruc
tions permanently inscribed in read
only memory and hence present even 
when the power is off. This small pro
gram initiates the loading of a some
what larger program from d isk, which 
then takes control and loads the operat
ing system itself. 

The hierarchical principle we have 
applied here to the organization of an 
operating system is one that has proved 
to be of great utility throughout the nat
ural sciences. After all, structures and 
events in the natural world span many 
orders of magnitude in space and time 
and cannot be grasped all at once: it is 
not possible to comprehend the evolu
tion of a galaxy by plotting the trajecto
ries of its constituent atoms. Of all man
made objects computer systems have 
the greatest d isparity between the small
est and the largest components. The de
signers of operating systems have begun 
to cope with that vast range of scales by 
creating a hierarchy of abstractions. 

ARGS 
1� 
2 -Fern 
3 -02 - 6  

PORTS 
0 
1 
2 

IWRITE I 

OUTPUT ms MACRO FILE 

PROCESS PIPELINE brings together three programs, two pipes and 
three files to prepare a text for printing. The first program, tbl, takes 
its input from the file nam ed "text" and inserts formatting commands 

for tabular matter. The output of tbl is piped to eqll, which does simi
lar formatting of equations. The second pipe carries the text to lptroff, 
which completes the formatting; the name of the program stands for 

"laser-printer typesetter runoff." Three options to lptroff are given as 
arguments in the command line:  -IUS instructs the program to open a 
"macro" file called "ms" in order to expand abbreviated format codes 
found in the text, -FeIU specifies a type font nam ed Computer Mod
ern and -02-6 indicates that only pages 2 through 6 of the output 
are to be generated. The output is directed to a file for later printing. 
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• �on 
a fraction 

puter. 
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Now theres Macintosh 
For the rest of us. 

In the olden days, before 1984, 
not vel)' many people used computers. 

For a vel)' good reason. 

complicated you'd have to be a computer 
to understand them. 

Then, on a particularly bright day 
---..., in Cupertino, California, some 

particularly bright engineers 
had a particularly bright idea: 
since computers are so smart, 
wouldn't it make more sense 

Some particularly bright engineers.' "--_"--II to teach computers about 
Not vel)' many people knew how people, instead of teaching people about 
And not vel)' many people wanted computers? 

to learn. So it was that those vel)' engineers 
After all, in those days, it meant worked long days and late nights and 

listening to your stomach growl through a few legal holidays, teaching tiny 
computer seminars. Falling asleep over silicon chips all about people. How they 
computer manuals. And staying awake make mistake; and change their minds. 
nights to memorize commands so How they refer to file folders and save 

old phone numbers. How they labor for 
their livelihoods, and doodle in their 
spare time. 

For the first time in recorded 
computer history, hardware engineers 

actually talked to software engineers 
in moderate tone; of VOice, and both 
were united by a common goal: to build 
the most powerful, most portable, most 
flexible, most versatile computer not-vel)'
much-money could buy 

And when the engineers were 
finally finished, they showed us a 
personal computer so personable, it can 
practically shake hands. 

And so easy to use, most people 
already know how 

They didn't call it the QZ190, 'or 
the Zipchip 5000. 

They called it Macintosh�" 
And now we'd like to show it 

to you. 
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3 palettes dbplay availahle tools, line 
lI'idtbs, and patterns. 

Point. Click. 
Th tell Macintosh what you want to 

do, all you have to do is point and click. 
You move the pointer on the screen 

by moving the mouse on your desktop. 
When you get to the item you want to 
use-click once, and you've selected 
that item to work with. 

In this case, the pointer appears 
as the pencil you've selected to put some 
finishing touches on an illustration 
you'd like to include in a memo. 

}bu're not limited to tlJe work area 
you see here. }bu can scroll up and 
down, Irji and right. 

71Je pOinter beromes whatever tool 
)IOU select to work witb - in tbis case, 
'a penCil 
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'Pull-down menu" displays atlyoul' 
options. 

C l e a r  

I n u e rt 

To select wbatever you want "cut" 
.from tbe screen, just put a rectangle 
around it. 

Trac e E d g e s  
F l i p  H o ri z o n t a l  
F l i p  U e rt i c a l  
R o t a t e  

Cut. 
Once you've completed your illus

tration, you need to cut it out of the 
document you created it on, so that you 
can put it into the word processing 
program you used to write your memo. 

To do thiS, you simply use the mouse 
to draw a box around the illustration, 
which tells Macintosh this is the area 
you want to cut. 

Then you move the pointer 
to the top of the screen where it 
says "Edit: ' Hold the mouse 
button down and Edit will then 
show you a list, or "pull-down 
menu" of all the editorial com
mands available. Then pull the 
pointer down this menu and 
point to the command," Cut; ' high
lighted by a black bar. 

Release the mouse button and, zap, 
it's done. 

Macintosb stores tbe image you've ' 'cut" 
out on a "clipboard" in its memory 
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Macintosh automatically makes room 
Jor your illustration in the text. 

��'�lIit ..... �� up your people ill marketing, I wanted tv 
make !Zapata I the hottest sell ing aU-sport 

y.;.)) 1 43-page report at your le1sure, but 
th Is really g Ives you everyth ing you need to know. 

Paste. 
And now, to finish your memo, 

bring up MacWrite;" Macintosh's word 
processing program. Just pick a place 
for your illustration. 

In the meantime, your illustration 
has been conveniently stored in another 
part of Macintosh's ample memory. 

To paste the illustration in
to your memo, move the mouse 
pointer once again to the Edit 
menu at the top of the screen. 

This time, you pull the mouse 
down until "Paste" is highlighted 
by a black bar. Release the mouse 
button and, once again, zap. 
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Witb Macintosb, you can 
print out your own Q/fice forms 
or stationery in addition to 
whatever you print on tbem. Athen./Sport MEMO 

From: Nancy Aronson 

To: Chris Jordan 

Subject: Launching IZapatal 

CONFIDENTIAL 

Now that you're gearing up your people in marketing. I wanted to 
bottom line what's goJng to make IZapata' the h.ottest seiling all-sport 

shoe in our Hne. 

You can read the attached l -'O-page report at your leisure, but 

thIs really gives 

And print. 
You tell a Macintosh Personal 

Computer to print the same way you tell 
it to do everything else-move the 
mouse pointer to "File" and pull it down 
until "Print" is highlighted in a black bar. 
And, provided you have a printer, you' ll 
immediately see your work in print. 

Your work, all your work, and 
nothing but your work. Because with 
Macintosh's companion printer, Image
writer, you can print out everything you 
can put on a Macintosh's screen. 
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!fyou can 2oin� 
you can use a Macintosh. 

You do i t  at baseball games. At the premise that a computer is a lot more 
counter in groce!), stores. And eve!)' useful if it's easy to use. 
time you let your fingers do the walking. So, 

By now, you should be pretty first of all, li�!1 II·: . L :11 

and move these objects around. 
We put a pointer on the screen, 

I D good at pointing. we made 
And having mastered the the screen 

Mac intosh C lock Trash Can MacPaint MacWri te DoclJlleOl 

oldest known method of making layout resemble a desktop, displaying 
yourself understood, you've also pictures of objects you'll have no trouble 
mastered using the most sophisticated recognizing. File folders. Clipboards. 
personal computer yet developed. Even a trash can. 

Macintosh. Designed on the simple Then, we developed a natural way 
,"._�I!II!!'� ........... for you to pick up, hold, 

and attached the pointer to a small, 
rolling box called a "  mouse:'. The 
mouse fits in your hand, and as you 
move the mouse around your desktop, 
you move the pointer on the screen. 

Th tell a Macintosh Personal Com
puter what you want to do, you simply 
move the mouse until you're pointing 
to the object or function you want. Then 
click the button on top of the mouse, 
and you instantly begin working with 
that object. Open a file folder. Review 
the papers inside. Read a 

memo. Use a calculator. And so on. 
And whether you're working with 

numbers, words or even pictures, 
Macintosh works the same basic way. 
In other words, once you've learned 
to use one Macintosh program, you've 
learned to use them all. 

If Macintosh seems extraordinarily 
simple, it's probably because conven
tional computers are extraordinarily 
complicated. 
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If you have a desk, 
you need a Macintosh. 

Macintosh was designed for anyone dormitory, Macintosh isn't just a tool, 
who handles, collects, distributes, but a learning tool. For doing everything 
interprets, organizes, files, comprehends, from problem sets in Astrophysics 538 
generates, duplicates, or otherwise futzes to term papers in Art Appreciation 10l . 
with information. Not to mention perfecting skills in 

Any information. Whether it's words, programming languages like Macintosh 
numbers or pictures. BASIC and Macintosh Pascal. Which 

We've narrowed it down to anyone explains why colleges and universities 
who sits at a desk. across the country are ordering Mac-

If, for example, your desk is in a intoshes by the campus-full. 
If you own your own business, 

owning your own Macintosh Personal 
Computer could mean the difference 
between getting home before dark, and 
getting home before Christmas. With 
software programs like MacWrite, 
MacProject,'" MaCIerminal;" MacDraw,'" 
MacPaint;"data base managers, business 
graphics programs and other personal 
productivity tools available from leading 
software developers, you can spend more 
time running your business, and less 
time chasing after it. 

�� .. -=.. 

And even if you work for a company 
big enough to have its own mainframe 
or minicomputer, Macintosh can fit right 
in. It's fluent in DEC®VnOO, Vf52 and 
plain old TTY With additional hardware, 
it can talk to IBM® mainframes in their 
very own 3278 protocols. 

If your company has a subsidiary 
abroad, your colleagues there can use 
all the same tools. Because Macintosh 
will be available in international versions 
with local conventions (alphabets, 
currencies, dates, etc. ) .  

In other words, wherever there's a 
desk, there's a need for a Macintosh. 

And the less you can see of your 
desktop, the more you could use one. 
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An ordinary personal computer 
maKes Macintosh 

even easier to understand. 

In 1977, Apple set the first standard 
for the personal computer industry with 
the first generation Apple II. 

In 1981, IBM set the second standard 
with their Pc. 

And in 1984, Macintosh will set the 
third industry standard, redefining the 
term "personal computer:' 

To give you an idea just how far 
the technology has advanced over the 
past three years, we're going to compare, 
screen-to-screen, the way IBM's PC and 
Macintosh perform five typical personal 
computer functions. 

Take word processing, for example. 
Any computer worth its weight in 

silicon does an adequate job of shuffling 
words. Provided, of course, you know all 
the keystroke "command sequences" 
to make it happen. And the IBM PC is 

no exception. 
Macintosh, on the other hand, is 

quite an exception. 
Using Macintosh's word processing 

program, MaCMite, anything and 
everything you might want to do with 
words can be done with a point-and
click of the mouse. 

Mac\Xtite not only shuffles words, 
it can shuffle them in many different 
type styles and sizes (not to mention 
boldface, italics and underlining). So 
you can create documents that look like 
they came from a typesetter, not a 
computer. For your foreign correspond
ence or scientific documents, the 
Macintosh keyboard gives you 217 char
acters including accented letters and 
mathematical symbols. 

But what really separates Macintosh 

� pUll Mwn menue a 
commands you will tiVfl'" 
you can US<!> MacWriu 
anotb .... wor" glmply Ul4 

Menu 

from the blue suits is its extraordinary 
ability to mix text with graphics. You can 
actually illustrate your words, memos 
and letters with tables, charts and free
hand illustrations composed on other 
graphics programs. All by cutting and 
pasting with the mouse. 

That capability alone makes Mac
intosh its very own foim of communica
tion. A new medium that allows you 
to supplement the power of the written 
word with the clarity of illustrations. 
In other words, if you can't make your 
point with a Macintosh, you may not 
have a point to make. 

Actually, the difference between 
Macintosh and the IBM PC becomes 
obvious the minute you twn both of 
them on. 

The two screens top right show you 
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precisely how each of them greets you. 
Notice the IBM presents you with a 
laundry list of files available for accessing. 
And multiple steps are required to "get 
at" the particular file you choose to 
work with. 

Macintosh, on the other hand, 
shows you everything you've saved 
(charts, graphs, illustrations and docu
ments), pretty much the same way 
you'd see them arranged on your desk. 
Choose one with the mouse, click, and 
you're ready to work. 

Even comparing a program as 

pr�ing program tor Macilltosll 
ports, etc. Cbarl.$, tables, grapbs aDd 
g (31l be pasWd Inw MacWrlt. 
(31l be empllaSlud by t�i'q 

• or changing sizes. 

. wp ot the display contain au tbe 
r you (31l point, ctlcx, rut and paste, 
in8ta.ne&, W reptace � word wltb 

named �. trom the �. 

commonplace as the electronic spread
sheet clearly shows you that Macintosh 
is anything but commonplace. 

Microsoft's® Multiplan" for Macintosh 
has been designed to take full advantage 
of Macintosh's built-in Lisa 'Technology 
-clumsy cursor keys are replaced by a 

point-and-click of the mouse. 
Let's say you want to change the 

width of a column in your spreadsheet. 
On the IBM PC, that's a 4-key command 
sequence. On Macintosh, you simply 
move the pointer and click. 

Should you need to make a few 
quick computations before entering new 
spreadsheet figures, you can use the 
built-in desk calculator, for example. 

When it comes to business graphics, 
in all fairness, IBM has color and bar 

the additional cost to add the color card 
and separate color monitor required to 
make use of them. 

When you compare the actual unit 
you purchase initially with our Mac
intosh, the IBM PC not only comes up 
short a few bar and pie charts, it draws 
a complete blank. 

Macintosh uses its graphics program, 
Microsoft's Chart, to tum numbers no
body understands into charts and graphs 
that everybody understands. With it, 
you can "cut" numbers you want charted 
from another Macintosh program and 

Business graphics bifore Madntosb. 

"paste" them directly into Chart. Just 
choose the style of chart you want from 
a "pull-down" selection of pie and 
bar charts, line and scatter graphs. Then 
customize your graph with legends 
and labels in whatever type style your 
little chart requires. 

There is one thing that the IBM PC 
manages to do as well as Macintosh: 
IBM 3278 terminal emulation, so you 
can communicate with heftier IBM's. 

But with MaCThrrni.nal software, 
your Macintosh can also fully emulate 
all the popular DEC terminals. 

Madntosb's Finder 

Microsqft's Multiplan for Madntosb. 

Microsqft's Cbart for Madntosb. 

charts to spare. Provided you can spare Tenninal emulation bifore Madntosb. Matrerrninal 

Comparisons made using standard conjiguration Madntosb and IBM PC (5150 2-disk unit, 256K bytes RAM, 5151 lIIonitor). Not/ember 5, 19H3 
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And heres where 
ordinarY. personal computers 

draw a blank. 
You've just seen some of the logic, 

the technology, the engineering genius 
and the software wizardry that separates 
Macintosh from conventional computers. 

virtually any image the human hand 
can create. Because the mouse allows the 
human hand to create it. 

MacPaint gives you total freedom 

able by enlarging MacPaint illustrations 
or making transparencies for overhead 
projection. Or clarify a memo or report 
by " cutting out" your illustration and 

---------------------..... "pasting" it into your text. 

MacPaint proiuces uiltualO! any image the human hand can create. 

Now, we'd like to show you some to doodle. To cross-hatch. To spray paint. 
of the magic. To fill-in. To erase. 

First, there's MacPaint. A program And even if you're not a terrific 
that transforms Macintosh into a artist, MacPaint includes special tools 
combination architect's drafting table, for designing everything from office 
artist's easel and illustrator's sketch pad. forms to technical illustrations. Plus 

WIth MacPaint, for the first time, type styles to create captions, labels and 
a personal computer can produce headlines. 

So you can have custom-designed 
graphics without hiring a design studio. 
Make your presentations more present-

What MacPaint does 
for helping you visualize 
your wildest imaginings, 
MacProject does for help
ing you visualize the 
unforeseen. 

You simply enter all 
the tasks and resources 
involved in a project
whether it's opening a 
new office or producing 
a brochure-and 
MacProject will chart the 

"critical path" to com
pletion, calculating dates 
and deadlines. If there's 
a single change in any 
phase of the project, it 
will automatically recal
culate every phase. 

So with MacProject, 
you can generate business 
plans and status reports 
that reflect the realities 

of the job, not the limitations of your 
computer. 

But more important than the 
practical benefits of programs like 
MacPaint and MacProject, they represent 
the very tangible difference an attitude 
can make. 

An attitude that the only thing 
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limiting what a computer can do, is the 
imagination of the people creating it. 

Not just the engineers who design it, 
but software developers like Lotus® 
Development Corporation, currently 
developing a Macintosh version of their 
1 -2-3'"program. 

And Software Publishing Corp. , 
with a newpfs:® filing program as easy to 
use as the Macintosh it was designed for. 

And Microsoft, with Productivity
Tools, like Multiplan, Chart, File andWord. 

MacProjf£t does for project management what 
VisiCaIc® did.fOr spreadsheets. 

If Macintosh has an extraordinary 
future ahead of it, it's because of the 
extraordinary people behind it. 

" lbcreatea newstand
ard takes something 
that's not just a little 
bit different It takes 
something that's really 
new and captures 
poople's imaginations. 
Macintosh meets that 
standard" - Bill 
Gates, Chairman if 
the Board & CEO 
MicrQ5qft Corporation. 

\ 

"Macinta5h is much sets a whole new 
more natural, intuitive standard, and we want 
and in line with how oor products to take 
people think and advantage if this." -
work . . .  this is going to Mitch Kapor, PrfSident 
change the way people & CEO, Lotus Develop-
think aboot personal ment Corporation. 
_ Madnimh / 

"If yoo were to put 
machine 'x"  on the 
table and a Macinta5h 
on the table beside It, 
and then put pj sqft
ware on both macbines 
. . .  like a taste test . .  
we think Macinta5b's 
bentifits W()U/d be pretty 
obvious." -Fred 
Gibbons, President, 
Sqftware Publishing 
CorporatiOn. 

MacPaint can create both .freehand sketches and 
pr££ise tf£hnical illustrations 

----------------� 

ABCDEFGHIjKLMNOPQRSTU 
abcdefghijklmnopqrstuvwxyz ABCDE 
....,....jl.I .... ........-.-MfZ- .... 'tlD'GK:l� 
abcdefghijklml'lOPQrstuvwxyz ABCD 
... kft: .. i.I ...... t.sl . • ..,' l.-.c:t ........ 
'*'IIfltIM- E b .  ee 

If yoo don't see a lJPiface yoo like here, 
Macinta5h leJs yoo dfSign yoor own. 

Microsqft's Cbart dispklys a more graphic 
approach to business graphics. 

Using insets with MacPaint, yoo can even 
illustrate your illustrations. 

-------, 

With Macinta5h's unlimited graphics, there'll soon 
be no limit to the games it can pkly 
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What makes Macintosh tick. 
And, someday, talk. 

Macintosh has a lot in common 
with that most uncommon computer, 
the Lisa'"personal office system. 

The garden vari
ety 16-bzt 8088 
microprocessor. 

i 

i'" .. . . .... "" ... _ ... r (' 

Macintosh's 32-bit MC68000 microprocessor. 

Its brain is the same blindingly
fast 32-bit Mc68000 microprocessor
far more powerful than the 16-bit 8088 
found in current generation computers. 

Its heart is the same Lisa Thch
nology of windows, icons, pull-down 
menus and mouse commands -all of 
which makes that 32-bit power far more 
useful by making Macintosh far easier 
to use than current generation computers. 

And, thanks to its size, if you can't 
bring the problem to a Madntosh, 
you can always bring a MaCintosh to 

the problem. (MaCintosh actually 
weighs 9 pounds less than the most 
popular "portable ' )  

Small potprint 
Macintosh is 
1/3 the size 
and volume if 
the IBMPC 

Another miracle of miniaturization 
is Macintosh's built-in 31h /I microfloppy 
drive. Its 31h /I disks store more than 
conventional 5 1h /I floppies-400K So 
while they're big enough to hold a desk
full of work, they're small enough to fit 
in a shirt pocket. 

And speaking of talking, Macintosh 
has a built-in polyphonic sound generator 
capable of produdng high quality speech 
or music. 

Standard 5 -1/4" 
jkJppy disk. 

Macintosh's 400K On the back of the machine, you'll 
3-1/2" disk. find built-in RS232 and RS422 AppleBus 

--,..---- serial communications ports. Which 
means you can connect printers, 

The inside story -a rotating 
ball and optical sensors trans
late movements o/the mouse 
to Macintosh's screen pointer 
with pin -point accuracy. 

modems and other peripherals without 
adding $150 cards. It also means that 
Macintosh is ready to hook in to a local 
area network. (WIth AppleBus, you can 
interconnect up to 16 different Apple ® 
computers and peripherals. ) 

Should you wish to double 
Macintosh's storage with an external disk 
drive, you can do so without paying 
extra for a disk controller card -that 
connector's built-in, too. 

And, of course, there's a built-in 
connector for Madntosh's mouse, 
a feature that costs up to $300 on 
computers that can't even run mouse
controlled software. 

Of course, the real genius of 
Macintosh isn't its serial ports or its 
polyphonic sound generator. 

The real genius is that you don't 
have to be a genius to use a Madntosh. 

You just have to be smart ..-::::�;ijijiii"" 
enough to buy one. 

© 1984 SCIENTIFIC AMERICAN, INC



13.5" 

'. \ 

- 10.9"--

9" high resolution 
512 x 342 
pixel bit-mapped 
display 

Brightness 
control 

128K bytes RAM 

Buili-in 3-1/2" 
disk drive. 

-- 9 7"
-

Ultra compact, switching -type 
power supply and high 
resolution video 
circuitry. 

Keyboard connector 
-a telephone-type jack you 
already know how to use. 

I� 

ronnector. 

AppI. 1Ind 1M APSU logo ... , ... t.t.tecI l,ildefMl'UofAppleCor!oputef,lnc 

Polyphonic sound port. 

RS232, RS422 AppleBus serial 
communications ports for printers, 
modems and other periphe.rals. 

Built-in handle for getting 
carried away 

Thanks to cleve.r venting, 
Madntosh requires no 
internal jim 

32-bit Motorola MC68000 
microprocessor 

Macintosh's digital 
board - the processing 
powe.r qf an entire 32 -bit 
digital graphics rompute.r 
in 80 square inches. 
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What to give the computer 
that 11as eve 

· g. 
Macintosh comes well outfitted. 

111e �tem includes the main unit 
(computer, display, built-in disk drive 
and firmware), a detached keyboard 
you can put wherever it feels most com
fortable, the mouse, a System Disk 
(Finder and Desk Accessories), a Guided 

Tour of Macintosh tutorial disk and audio 
cassette, and one (count it), one manual. 

Everything you'll need to start doing 
everything you'll need to do. 

But, should your needs suddenly 
expand, so can Macintosh. As easily as 
putting a plug in a socket. 

. 1 J J J J .1 I j J J 

Security Kit. Being ffansporf£lhle is one if Macintosb s 
many advantages. Provided it doesn't go anywhere 
without you. This specially designed secun'ty kit makes 
sure it doesn't Metal plmes snap into tbe main unit 
and keyboard Then, a sffong, steel cable loops through 
and locks to your desk. 

Apple Imagewriter Printer. Imagewriter 
produces bighjidelity printed copy 
if everything you see on a Macinta;b 
screen. Multiple fonts. Pictures. Pro
portional tm. Mixed tm and grapbics. 
And it prints on both sheetfed and 
ffaawfed�per. nsf�, qwd and 
inexpensive. 

Apple Numeric KeJpad. 
Patterned ajer the 
standard acmuntants 
cal.culatw 10-key pad, the 
Numeric Keypad speeds 
up doing spreodsheets, 
acmunting, any number 
if number-related tasks. 
It plugs dittdly into tbe 
keyboard, and works with 
Macintash applications . 

( 
.-J 

Apple Modem. Using MaCf'erminal, a 
standard telephone and tbe Apple Modem, 
you can plug yourselfinto electronic 
infwmation services like Dow jones News/ 
Rdneval,'" The Source'" and CompuServe.® 
Or communicate with other computers. 
It operates completely automatically, with 
both auto-dial and auto-answer, and 
COliles in 300 and 300/1200 baud models. 
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Macintosb £A1ernal Disk Drive. By 
adding a second bigb-capacity (400K 
bytes) 3-1/2"disk drive like tbe one 
already budt into your Macintosb, 
you can access more documents and 
programs witbout swapping disks. It 
also speeds 
making back
up copies if 
your infor
mation 

Sqfl Carrying Case. At less 
tban 20 pounds in weigbt, 
Macintosb is easily canied 
}rom bere to tbere. But bandies 
always belp. Tbis durable, 
water-resistant carrying case 
is tbickly padded so tbe 
Macintosb main unit, 
keyboard, mouse, manual 
and disks}it snugly inside. 
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AWie, the AWie �, Ma<.\\lite, MacPaint, MaCJenninal, 
MacProj<a, MacDraw and U\a are trademarks of AWie 
Computer, Inc. 
Macinu.h is a trademarl< licmsed to AWie Computer. Inc. 

DlM is a regisIfred trademark of Intematiooal Busine!s pi;, is a reg;.ered trademark of Software P\Jblishing 
Machine; Capocation. (.apor.nioo. 

1-2-3 and Wus are tr:ukmarks of Wus 1lM1'1Jf11"" VisiCalc is a reg;.ered trademarl< ofV.iCap. Capocation. 

Da.v jones NeIIs/Re!riMl is a trademark of Da.v jones & 
Compan� Inc. 
CompuSe!w is a reg;.ered trademark of ComJ'lSe!w Cap. 

The Soorre is a S<lViC611ark of Soorre 1eleComputing _ is a trademark of MimJPro lntematiooal Capor.uioo. 
DEC is a regisIfred trademarl< of Digital Equipment Capor.uioo. MiaUlOft 0; a regisIfred trademarl< ofMiau;o!i Capor.uioo. Capocation, a sut.idiruyofThe Reader.; Dige;t A=iatloo, Inc. 

Printed in l&\. 
Multiplan is a trademarl< of Miau;o!i Capocation. 

We could, as they say in com
puterese, dump another Gigabyte (write 
another 50,000 or so pages) on 
Macintosh. 

But you really can't appreciate how 
insanely great Macintosh is until you 
bring your index finger to an authorized 
Apple dealer. 

Over 1,500 of them are eagerly 
waiting to put a mouse in your hand. 
1b prove that, if you can pOint, you can 

-' -' '" - � 
use a Macintosh. 

And if you can 
fill out a credit 
application, in most 

cases you can take one home the very 
same day. With the help of an Apple 
credit card. 

Which makes owning the world's 
newest computer just as easy as using it. 

Soon there'll be just two kinds 
of people. Those who use computers. 

And those who use Apples. 
I.. 

For an authon'zed Apple dealer nearest you call (800) 538 ·9696 In Canada, call (800) 268 -7796 or (800) 268-7637. © 1984 Apple Computer Inc. 
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It's called Macintosh. And it 
has a lot of our personality. 

We're called Microsoft: And 
our part of Macintosh is five new 
programs that are bright, intuitive, 
outgoing, understanding and 
born to perform. 

Microsoft BASIC Our pride, vour J·O'1. on Apple's new Macintosh , ' , .. 

Taking advantage of Macintosh's mouse and rich 
graphics, we've designed 
software that works like 
you, even thinks like you. 

All our programs share .. lIiiiiiiiiiiiiiiiiiiiill 

the same plain English Microsoft Multiplan Microsoft Chad 

commands. So what once took days to learn, now takes 
hours or minutes to learn with Macintosh. 

Meet the fatnily. 
Our financial whiz is MULTIPlAN� an electronic 

spreadsheet that actually remembers how you work. Even 
offers suggestions on spreadsheet set-up. 

When it comes to writing, nothing will travel faster than 

Mic rosofr and Multiplan are registered trademarks of Microsoft Corporation. Apple is (l registered trademark and Macintosh is a trademark licensed to Apple Compu(er, Inc .  
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our best features. 
our WORD, available this Fall. Using the mouse, it will 
let you select commands faster than you can say "cheese:' 

Our most artistic child will be CHARI Available 
late this Summer. 

It gives you 42 presentation--quality chart and graphic 
styles to choose from. 

Later this year, we'll offer our . most manageable 
child, FILE, an advanced personal MICROSOFt 
record management program. The High Performance Software 

And BASIC, the language spoken by nine out of ten 
. .  � '  .. . - --'-.::._- --' - . microcomputers world--
�j!���� · wide, is the granddaddy 

IJlJ/q Itft:ll -.ripl Uld ...,w::ripC. d:bpk,.,._ Ue  ..... � 

f th all .�-===-IO�_lMtIIiIiIJIo_1na l..:kila'.fHa. .. 

• ... ' .... ,··,"", __ tl .. --.-. .... 1llpI. 
', , '  0 em plU ......... fOnI:5 U1d.iza. . ...... : f::: ........ _ • 

• ��\O"..:.uddlldl:Jo'paiIIlbotoentt tkt . ..... n , 1 745"''' '''' 101( 

nh ed _1 _ :�.:-.. -:':�"'-�==:':' :�i;' •. :.�1'::.:r�':., Now e anc to taKe 
Microsoft Word Microsoft File full advantage of the 

Macintosh mouse, windows and graphics. 
So call 800--426--9400 (in Washington State, Alaska 

and Hawaii call 206--828--8088) for the name of your 
nearest Microsoft dealer. 
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The sonata is tough for her to play on the violin. 

SPECIFIER: THE 

SUBJECT: NUMBER: SINGULAR 

PREDICATE: 'sonata' 

TENSE: PRESENT 

PREDICATE: 'be «IADJECTIVAL COMPLEMENT» ' 

SUBJECT 

PREDICATE: 'tough < (I SENTENTIAL COMPLEMENT) >' 

SUBJECT: PREDICATE: 'her' 

ADJECTIVAL 
COMPLEMENT: 

SENTENTIAL 
COMPLEMENT: 

TO: + 

INFINITIVE: + 

PREDICATE: 

OBJECT 

PREPOSITIONAL CASE: ON 

ON: 

REPRESENTATION OF A SENTENCE in a way that makes ex
plicit the linguistic relations among its parts has been a goal of the sci
ence of linguistics; it is also a necessary aspect of the effort to design 
computer software that "understands" lauguage, or at any rate can 
draw inferences from linguistic input. In this illustration a sentence is 
given in "functional structure" form, which has the property that 

130 

OBJECT: 

SPECIFIER: THE 

NUMBER: SINGULAR 

PREDICATE: 'violin' 

when part of a sentence plays a role in another part, the former is 
"nested" in the latter. The nesting is shown by placing one box in 
another, or (in three places) by a "string." The sentence was analyzed 
by Ronald M. Kaplan and Joan Bresnan of Stanford University and 
the Xerox Corporation's Palo Alto Research Center. Another func
tional-structure diagram appears in the illustration on pages 142-143. 
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Computer Software 
for Working with Language 

Programs can manipulate linguistic symbols with great facility, 

as in word-processing software, but attempts to have computers 

deal with meaning are vexed by ambiguity in human languages 

In the popular mythology the comput
er is a mathematics machine: it is 
designed to do numerical calcula

tions. Yet it is really a language ma
chine: its fundamental power lies in its 
ability to manipulate linguistic tokens
symbols to which meaning has been as
signed. Indeed, "natural language" (the 
language people speak and write, as 
distinguished from the "artificial" lan
guages in which computer programs are 
written) is central to computer science. 
Much of the earliest work in the field 
was aimed at breaking military codes, 
and in the 1950's efforts to have com
puters translate text from one natural 
language into another led to crucial 
advances, even though the goal itself 
was not achieved. Work continues on 
the still more ambitious project of mak
ing natural language a medium in which 
to communicate with computers. 

Today investigators are developing 
unified theories of computation that em
brace both natural and artificial lan
guages. Here I shall concentrate on the 
former, that is, on the language of every
day human communication. Within that 
realm there is a vast range of software to 
be considered. Some of it is mundane 
and successful. A multitude of micro
computers have invaded homes, offices 
and schools, and most of them are used 
at least in part for "word processing." 
Other applications are' speCUlative and 
far from realization. Science fiction is 
populated by robots that converse as if 
they were human, with barely a mechan
ical tinge to their voice. Real attempts to 
get computers to converse have run up 
against great difficulties, and the best of 
the laboratory prototypes are still a pale 
reflection of the linguistic competence 
of the average child. 

The range of computer software for 
processing language precludes a com
prehensive survey; instead I shall look 
at four types of program. The pro
grams deal with machine translation, 
with word processing, with question an-

by Terry Winograd 

swering and with the adjuncts to elec
tronic mail known as coordination sys
tems. In each case the key to what is 
possible lies in analyzing the nature of 
linguistic competence and how that com
petence is related to the formal rule 
structures that are the theoretical basis 
of all computer software. 

The prospect that text might be trans
lated by a computer arose well be

fore commercial computers were first 
manufactured. In 1949, when the few 
working computers were all in military 
laboratories, the mathematician Warren 
Weaver, one of the pioneers of com
munication theory, pointed out that the 
techniques developed for code break
ing might be applicable to machine 
translation. 

At first the task appears to be straight
forward. Given a sentence in a source 
language, two basic operations yield the 
corresponding sentellce in a target lan
guage. First the individual words are 
replaced by their translations; then the 
translated words are reordered and ad
justed in detail. Take the translation of 
"Did you see- a white cow?" into the 
Spanish "/ fl:iste una vaca blanca?" First 
one needs to know the word correspon
dences: "vaca" for "cow" and so on. 
Then one needs to know the structural 
details of Spanish. The words "did" and 
"you" are not translated directly but 
are expressed through the form of the 
verb "viste." The adjective "blanca" fol
lows the noun instead of preceding it as 
it does in English. Finally, "una" and 
"blanca" are in the feminine form corre
sponding to "vaca." Much of the early 
study of machine translation dwelt on 
the technical problem of putting a large 
dictionary into computer storage and 
empowering the computer to search ef
ficiently in it. Meanwhile the software 
for dealing with grammar was based on 
the then current theories of the struc
ture of language, augmented by rough
and-ready rules. 

The programs yielded translations so 
bad that they were incomprehensible. 
The problem is that natural language 
does not embody meaning in the same 
way that a cryptographic code embodies 
a message. The meaning of a sentence in 
a natural language is dependent not only 
on the form of the sentence but also on 
the context. One can see this most clear
ly through examples of ambiguity. 

In the simplest form of ambiguity, 
known as lexical ambiguity, a single 
word has more than one possible mean
ing. Thus "Stay away from the bank" 
might be advice to an investor or to a 
child too close to a river. In translating it 
into Spanish one would need to choose 
between "orilla "and "banco," and noth
ing in the sentence itself reveals which is 
intended. Attempts to deal with lexical 
ambiguity in translation software have 
included the insertion of all the possibil
ities into the translated text and the sta
tistical analysis of the source text in an 
effort to decide which translation is ap
propriate. For example, "orilla" is likely 
to be the correct choice if words related 
to rivers and water are nearby in the 
source text. The first strategy leads to 
complex, unreadable text; the second 
yields the correct choice in many cases 
but the wrong one in many others. 

In structural ambiguity the problem 
goes beyond a single word. Consid

er the sentence "He saw that gasoline 
can explode." It has two interpretations 
based on quite different uses of "that" 
and "can." Hence the sentence has 
two possible grammatical structures, 
and the translator must choose between 
them [see bottom illustration on page 133]. 

An ambiguity of "deep structure" is 
subtler still: two readings of a sentence 
can have the same apparent grammati
cal structure but nonetheless differ in 
meaning. "The chickens are ready to 
eat" implies that something is about to 
eat something, but which are the chick
ens? One of the advances in linguistic 

13 1 
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theory since the 1950's has been the de
velopment of a formalism in which the 
deep structure of language can be repre
sented, but the formalism is of little help 
in deducing the intended deep structure 
of a particular sentence. 

A fourth kind of ambiguity-semantic 
ambiguity-results when a phrase can 
play different roles in the overall mean
ing of a sentence. The sentence "David 
wants to marry a Norwegian" is an ex
ample. In one meaning of the sentence 
the phrase "a Norwegian" is referential. 
David intends to marry a particular per
son, and the speaker of the sentence has 
chosen an attribute of the person-her 
being from Norway-in order to de
scribe her. In another meaning of the 
sentence the phrase is attributive. Nei
ther David nor the speaker has a partic
ular person in mind; the sentence simply 
means that David hopes to marry some
one of Norwegian nationality. 

A fifth kind of ambiguity might be 
called pragmatic ambiguity. It arises 
from the use of pronouns and special 
nouns such as "one" and "another." 
Take the sentence "When a bright moon 
ends a dark day, a brighter one will 
follow." A brighter day or a brighter 
moon? At times it is possible for trans
lation software to simply translate the 
ambiguous pronoun or noun, thereby 
preserving the ambiguity in the transla
tion. In many cases, however, this strat
egy is not available. In a Spanish trans
lation of "She dropped the plate on the 
table and broke it," one must choose ei
ther the masculine "10" or the feminine 
"Ia" to render "it." The choice forces 
the translator to decide whether the 
masculine "plato" (plate) or the femi
nine "mesa" (table) was broken. 

In many ambiguous sentences the 
meaning is obvious to a human reader, 

Did you see 

a 1 1 1 - tu ver 

b 1/ 
i Viste 

C 1 
i Viste 

but only because the reader brings to the 
task an understanding of context. Thus 
"The porridge is ready to eat" is unam
biguous because one knows porridge is 
inanimate. "There's a man in the room 
with a green hat on" is unambiguous 
because one knows rooms do not wear 
hats. Without such knowledge virtually 
any s�ntence is ambiguous. 

Although fully automatic, high-quality 
n machine translation is not feasible, 
software is available to facilitate trans
lation. One example is the computeriza
tion of translation aids such as diction
aries and phrase books. These vary from 
elaborate systems meant for technical 
translators, in which the function of 
"looking a word up" is made a part of a 
multilingual word-processing program, 
to hand-held computerized libraries of 
phrases for use by tourists. Another 
strategy is to process text by hand to 
make it suitable for machine transla
tion. A person working as a "pre-editor" 
takes a text in the source language and 
creates a second text, still in the source 
language, that is simplified in ways fa
cilitating machine translation. Words 
with multiple meanings can be eliminat
ed, along with grammatical construc
tions that complicate syntactic analysis. 
Conjunctions that cause ambiguity can 
be suppressed, or the ambiguity can be 
resolved by inserting special punc
tuation, as in "the [old men] and [wom
en]." After the machine translation a 
"post-editor" can check for blunders 
and smooth the translated text. 

The effort is sometimes cost-effective. 
In the first place, the pre-editor and post
editor need not be bilingual, as a transla
tor would have to be. Then too, if a sin
gle text (say an instruction manual) is to 
be translated into several languages, a 

a 

1 
un 

1 
un 

1 
una 

white cow ? 

1 1 
blanco vaca? 

X 
vaca blanco? 

1 1 
vaca blanca? 

MACHINE TRANSLATION of text from one language into another was thought to be quite 
feasible in the 1950's, when the effort was undertaken. In the first step of the process (a) the 
computer would search a bilingual dictionary to find translations of the individual words in a 
source sentence (in this case Spanish equivalents of the words in the sentence "Did you see a 
white cow? "). Next the translated words would be rearranged according to the grammar of the 
target language (b). The changes at this stage could include excision or addition of words. Final
ly, the morphology of the translation (for example the endings of words) would be adjusted (c). 

1 3 2  

large investment i n  pre-editing may be 
justified because it will serve for all the 
translations. If the author of the text 
can be taught the less ambiguous form 
of the source language, no pre-editor 
is needed. Finally, software can help in 
checking the pre-edited text to make cer
tain it meets the specifications for input 
to the translation system (although this 
is no guarantee that the translation will 
be acceptable). 

A machine-translation system em
ploying pre- and post-editing has been 
in use since 1980 at the Pan-American 
Health Organization, where it has trans
lated more than a million words of text 
from Spanish into English. A new sys
tem is being developed for the European 
Economic Community, with the goal of 
translating documents among the offi
cial languages of the community: Dan
ish, Dutch, English, French, German, 
Greek and Italian. Meanwhile the the
oretical work on syntax and meaning 
has continued, but there have been no 
breakthroughs in machine translation. 
The ambiguity pervading natural lan
guage continues to limit the possibili
ties, for reasons I shall examine more 
fully below. 

I turn next to word processing, that is, 
to software that aids in the prepara

tion, formatting and printing of text. 
Word processors deal only with the 
manipulation and display of strings of 
characters and hence only with superfi
cial aspects of the structure of language. 
Even so, they pose technical problems 
quite central to the design of computer 
software. In some cases the end prod
uct of a word-processing program is no 
more than a sequence of lines of text. 
In others it is a complex layout ·of ty
pographic elements, sometimes with 
drawings intercalated. In still others it 
is a structured document, with chapter 
headings, section numbers and so on, 
and with a table of contents and an in
dex compiled by the program. 

The key problems in designing word
processing software center on issues 
of representation and interaction. Rep
resentation is the task of devising data 
structures that can be manipulated con
veniently by the software but stilI make 
provision for the things that concern the 
user of the system, say the layout of the 
printed page. Interaction tj:lkes up the 
issue of how the user expresses instruc
tions and how the system responds. 

Consider the fundamental problem of 
employing the data-storage devices of a 
computer to hold an encoded sequence 
of natural-language characters. The first 
devices that encoded text were card
punch and teletype machines, and so the 
earliest text-encoding schemes were tai
lored to those devices. The teletype ma
chine is essentially a typewriter that con
verts key presses into numerical codes 
that can be transmitted electronically; 
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'ijBASE Ilgave us something 
that money can't buy." 

Richard Sommers 
Lead Programmer/Analyst 

at a major health 
maintenance organization. 

"dBASE II gave us time. 
"And in the research 

battle against breast cancer, 
time is an invaluable 
weapon. 

"Our research people 
are not computer people. 
They're doctors and nurses. 
So I had to write a customized 
1ayman's' application for them very fast�' 
liMy program development speed 

even impressed me�' 
"Using dBASE II, the relational 

database management system (DBMS) 
from Ashton-Tate, I was able to quickly 
develop a very large and sophisticated 
program for research data storage and 
analysis. The real beauty of the new 
program is its speed and ease of use. 
A simple two-word command starts the 
program, so data can be entered much 
faster. And when our researchers need 
to query the database, they ask their 
questions in English using medical 
terminology familiar to them, without 
having to deal with computerese. 

"In the past few months, I've 
recommended dBASE II to at least four 
of my programming colleagues in other 
hospitals�' 

-

Put time on your side 
with dBASE II. 

When you're customizing an 
applications program and fighting the 
clock at the same time, you won't firid 
a faster, more flexible solution than 
dBASE II* from Ashton-Tate. We'll be 
glad to rush you all the details. Ashton
Tate, 10150 West Jefferson Boulevard, 
Culver City, CA 90230. (800) 437-4329, 
Ext. 217. In Colorado, (303) 799-4900. 
In the U.K., call (0908) 568866. 

ASHTON .TA1E 

'Suggested retail price, $700. 
dBASE II is a registered trademark of Ashton-Tate. 

©Ashton-Tate 1983 
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America's largest household products company 
�o they know something yourcompanydoesn't? 

Ask them. They're Procter & Gamble. 
Motorola is a world leader in advanced electronics 
for memory, logic and voice and data communications. 
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relies on our business information systems. 

® MOTOROL.A / Four-Phase Systems 
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thus there are teletype codes for most 
of the keys on a typewriter. The codes 
inc! ude the alphabetic characters A 
through Z, the digits 0 through 9 and 
common punctuation marks such as the 
period and the comma. Standards are 
harder to establish, however, for sym
bols such as #, @, ¢ and ) . And what 
about keys that print nothing, such as 
the tab key, the carriage-return key and 
the backspace key? 

The difficulties that arise in choos
ing standards can be illustrated by one 
peculiarity of text encoding. The tele
type code distinguishes between a car
riage return (which returns the type car
riage to the beginning of the line with
out advancing the paper) and a line feed 
(which advances the paper without re
positioning the carriage). Hence the end 
of a line is marked by a sequence of 
two characters: a carriage return and a 
line feed. One code would suffice, and 
so some programs eliminate either the 
carriage return or the line feed, or they 
replace both characters with another 
code entirely. The problem is that vari
ous programs employ different conven
tions, so that lines encoded by one pro
gram may not be readable by another. 

The problems become worse when a 
full range of characters-punctuation 
marks, mathematical symbols, diacriti
cal marks such as the umlaut-is consid
ered. Moreover, word processing is now 
being extended to languages such as 
Chinese and Japanese, which require 
thousands of ideographic characters, 
and to languages such as Arabic and 
Hebrew, which are written from right 
to left. Coding schemes adequate for 
English are useless for alphabets with 
thousands of characters. It should be 
said that the schemes continue to vary 
because political and economic forces 
play a role in the design of computer 
systems. A given manufacturer wants to 
promulgate a standard that suits its own 
equipment; thus some present-day stan
dards exist because they were offered by 
a vendor that dominates a market. On 
the other hand, technical matters such 
as the efficiency of certain software run
ning on certain hardware perpetuate dif
ferences in detail. It will be quite a while 
before universal standards emerge and 
users gain the ability to transport text 
from one word-processing system to 
any other. 

Encoding schemes aside, there is the 
form of the letters themselves. On a 
typewriter keyboard an A is simply an 
A. Typographically, however, an A is 
an A or an A or an A. In the new field 
of digital typography the computer is a 
tool for the design and presentation of 
forms of type. Some of the efforts in 
the field are applied to the forms them
selves: in particular the representation 
of characters as composites of dots and 
spaces. Additional efforts go into the 
devising of code for the computer stor-

Stay away from the bank. 

bank n 1. the rising terrain that borders a river or lake. 

bank n 2. an establishment for the deposit, loan, issuance and transmission of money. 

AMBIGUOUS MEANINGS permeate natural languages (that is, languages that people speak 
and write) and thus subvert the attempt to have computers translate text from one language into 
another. Here lexical ambiguity, the simplest type of ambiguity, is diagrammed. In lexical 
ambiguity a word in a sentence has more than one possible meaning. In this case the word is 
"bank" (color), which might equally well refer to either a river or a financial institution. A 
translator must choose. The following four illustrations show more complex types of ambiguity. 
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He saw that gasoline can explode. 
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that gasoline can explode 

STRUCTURAL AMBIGUITY arises when a sentence can be described by more than one 
grammatical structure. Here the conflicting possibilities for the sentence "He saw that gasoline 
can explode" are displayed in the form of grammatical "trees." In one of the trees the sentence 
has a subordinate clause whose subject is "gasoline" (color); the sentence refers to the recogni
tion of a property of that substance. In the other tree "gasoline can" is part of a noun phrase 
(NP) meaning a container of gasoline; the sentence refers to the sight of a specific explosion. 
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WHAT PEOPLE CARRIED 
BEFORE THEY CARRIED 

THE CITIBANK PREFERRED 
VISA CARD. 

The bulging wallet. 
Universal symbol of success and 

power. 
The Citibank Preferred Visa 

Card deflates that myth. 
We offer you a credit line from 

$5,000 to $50,000. T hat's more 
than enough to start taking some 
credit cards out of your wallet. 

You'll also get four times the 
acceptance of the American Express 
Gold Card. That's another card you 
can leave at home. 

But most importantly, only 
the Citibank Preferred Visa lets you 
tap into the worldwide financial 
resources of Citicorp. That means 
opportunities to invest in CDs, high 

interest savings plans,* -even the 
chance to buy gold bullion. 

And everything you buy with 
your card earns you bonuses. You can 
use them to get guaranteed savings 
on anything from reproductions of 
antiques to original works of con
temporary art. 

To get all this power behind you, 
just fill out the attached 
application and send it in. 
But you'll need an income 
of at least $25,000 to qual-
ify. If you'd like more infor-
mation, call us toll-free 
at 800-952-2152. 

Then start empty
ing your wallet to make 

THE CARD TO END ALL CARDS 
• Federal regulations require substantial penalties for early withdrawals from time accounts. 

Copyright. Clticorp 1984. Citlbank (South Dakota). N.A. Member FDIC. 

room for the Citibank Preferred Visa. 
Even though it's just one card, 

you'll be carrying a lot more weight. 

CITIBAN(O 
A CIT/CORP COMPANY 
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age of text that combines different fonts 
(such as Times Roman and Helvetica) 
and different faces (such as italic and 
boldface). 

so far I have dealt only with stored 
sequences of characters. Yet one of 

the major tasks of a word-processing 
program is to deal with margins and 
spacing-with the "geography" of the 
printed page. In the typesetting language 
called TEX commands that specify non
standard characters, change the style of 
type, set the margins and so on are em
bedded in the text [see top illustration on 
page 138]. A command to TEX is distin
guished from ordinary text by the back
slash character (\). The stored text is 
"compiled" by the TEX program, which 
interprets the embedded commands in 
order to create a printed document in 
the specified format. 

The compiling is quite complex, and a 
good deal of computation is often need
ed to get from code created by means of 
a word-processing program to code that 
readily drives a printer or a typesetting 
machine. An algorithm that justifies text 
(fills the full width of each line of type) 
must determine how many words will fit 
in a line, how much space should be in
serted between the words and whether a 
line would be improved by dividing and 
hyphenating a word. The algorithm may 
also take actions to avoid visual defects 
such as a line with wide interword spac
ing followed by a line that is very com
pact. Positioning each line on the page is 
further complicated by the placement of 
headings, footnotes, illustrations, tables 
and so on. Mathematical formulas have 
their own typographic rules. 

TEX and similar programs are prim
itive with respect to another aspect of 
word processing: the user interface. The 
high-resolution display screens becom
ing available are now making it pos
sible for the computer to display to 
the user a fair approximation of the 
pages it will print, including the place
ment of each item and the typeface to 
be employed. This suggests that the user 
should not have to type special com
mand sequences but might instead ma
nipulate page geography directly on the 
screen by means of the computer key
board and a pointing device such as 
a "mouse." The resulting interface be
tween the computer and the user would 
then fall into the class of interfaces 
known as WYSIWYG, which stands for 
"What you see is what you get." 

I t is worth noting that programs for 
manipulating text are called d iffer

ent things by different professions. Pro
grammers call them text editors, but 
in business and publishing they are re
ferred to as word processors; in the lat
ter fields an editor is a person who works 
to improve the quality of text. Comput
er software is emerging to aid in this 
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DEEP-STRUCTURAL AMBIGUITY ariscs when a sentcnce has a single apparent structure 
but nonetheless has more than one possible meaning. In this example the sentence is "The 
chickens are ready to eat." Its grammatical structure (top) leaves the role of the chickens am
biguous: in one interpretation they will eat; in the other they will be eaten. Deep-structure trees 
make the chickens' role explicit: they are the subject of the sentence (middle), in which case 
their food is undetermined, or they are the object (bottom), and their eaters are undetermined. 
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more substantive aspect of editing. It 
deals with neither the visual format of 
language nor the conceptual content but 
with spelling, grammar and style. It in
cludes two kinds of programs: mecha
nized reference works and mechanized 
correctness aids. 

An example of a mechanized refer
ence work is a thesaurus program de
signed so that when the writer desig
nates a word, a list of synonyms appears 
on the display screen. In advanced sys
tems the thesaurus is fully integrated 
into the word-processing program. The 
writer positions a marker to indicate the 
word to be replaced. The thesaurus is 
then invoked; it displays the alterna
tives in a "window" on the screen. The 
writer positions the marker on one of 
the alternatives, which automatically 
replaces the rejected word. 

The design of such a program in
volves both linguistic and computa
tional issues. A linguistic issue is that 
the mechanism for looking up a word 
should be flexible enough to accept vari
ant forms. For example, the store of in
formation pertaining to "endow" should 
be accessible to queries about "en
dowed," "endowing," "endows" and 
even "unendowed" or "endowment." 
Recognizing the common root in such 
words calls for a morphological analy
sis, which can be done by techn iq ues 
developed in the course of work on 
machine translation. Computational is
sues include devising methods for stor
ing and searching through a thesa urus 
or a dictionary, which must be fairly 
large to be useful. 

A correctness aid deals with spelling, 
grammar and even elements of style. 
The simplest such programs attempt to 
match each word in a text with an en
try in a stored dictionary. Words that 
have no match are flagged as possible 
misspellings. Other programs look for 
common grammatical errors or stylis
tic infelicities. For example, the Writ
er's Workbench software developed at 
AT&T Bell Laboratories includes pro
grams that search for repeated words, 
such as "the the" (a common typing mis
take), for incorrect punctuation such as 
" ?" and for wordy phrases such as "at 
this point in time." A different correct
ness aid calls attention to "pompous 
phrases" such as "exhibit a tendency" 
and "arrive at a decision" and suggests 
simpler replacements such as "tend" 
and "decide." Still another correctness 
aid searches for gender-specific terms 
such as "mailman" and "chairman" and 
suggests replacements such as "mail 
carrier" and "chairperson." 

In addition to searching a text for 
particular strings of characters, some 
correctness-aid programs do statisti
cal analyses. By calculating the aver
age length of sentences, the length of 
words and similar quantities, they com
pute a "readability index." Passages that 
score poorly can be brought to the writ
er's attention. No program is yet able 
to make a comprehensive grammatical 
analysis of a text, but an experimen
tal system called Epistle, developed 
at the International Business Machines 
Corporation, makes some grammatical 
judgments. It employs a grammar of 

David wants to marry a Norwegian. 

3x Norwegian(x) 1\ Want(David,[Marry(David,x)]) 

Want(David,[3x Norwegian(x) 1\ Marry(David,x)]) 

SEMANTIC AMBIGUITY arises when a phrase can play different roles in the meaning of a 
sentence. Here the roles of the phrase "a Norwegian" become explicit when the sentence "David 
wants to marry a Norwegian" is "translated" into a logical form based on the notation called 
predicate calculus. According to one interpretation, the speaker of the sentence has a partic
ular person in mind and has chosen nationality as a way to specify who. Hence the sentence 
means: There exists (3) an x such that x is Norwegian and (A) x is the person David wants to 
marry. According to another interpretation, neither David nor the speaker has any particu
lar person in mind. David might be going to Norway hoping to meet someone marriageable. 

She dropped the plate on the table and broke it. 

She dropped the plate on the table and broke [the plate). 

She dropped the plate on the table and broke [the table). 

PRAGMATIC AMBIGUITY arises when a sentence is given more than one possible meaning 
by a' word such as the pronoun "it." Suppose a computer is given the sentence shown in the iIIus
tration .. 1f the computer has access to stored knowledge of the grammar of English sentences 
but lacks access to commonsense knowledge of the properties of tables and plates, the com
puter could infer with equal validity that the table was broken or that the plate was broken. 
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400 rules and a dictionary of 130,000 
words. As with all software that tries to 
parse text without dealing with what the 
text means, there are many sentences 
that cannot be analyzed correctly. 

I s there software that really deals with 
meaning-software that exhibits the 

kind of reasoning a person would use 
in carrying out linguistic tasks such as 
translating, summarizing or answering a 
question? Such software has been the 
goal of research projects in artificial 
intell igence since the mid- 1960's, when 
the necessary computer hardware and 
programming techniques began to ap
pear even as the impracticability of 
machine translation was becoming ap
parent. There are many applications 
in which the software would be use
ful. They include programs that accept 
natural-language commands, programs 
for information retrieval, programs that 
summarize text and programs that ac
quire language-based knowledge for ex
pert systems. 

No existing software deals with mean
ing over a significant subset of English; 
each experimental program is based on 
finding a simplified version of language 
and meaning and testing what can be 
done within its confines. Some inves
tigators see no fundamental barrier to 
writing programs with a full under
standing of natural language. Others ar
gue that computerized understanding of 
language is impossible. In order to fol
low the arguments it is important to 
examine the basics of how a language
understanding program has to work. 

A language-understanding program 
needs several components, correspond
ing to the various levels at which lan
guage is analyzed [see illustrations all 

pages 138-144]. Most programs deal with 
written language; hence the analysis of 
sound waves is bypassed and the first 
level of analysis is morphological. The 
program applies rules that decompose a 
word into its root, or basic form, and 
inflections such as the endings -s and 
-iI/g. The rules correspond in large part 
to the spelling rules children are taught 
in elementary school. Children learn, 
for example, that the root of "baking" 
is "bake," whereas the root of "bark
ing" is "bark." An exception list han
dles words to which the rules do not 
apply, such as forms of the verb "be." 
Other rules associate inflections with 
"features" of words. For example, "am 
going" is a progressive verb: it signals 
an act in progress. 

For each root that emerges from the 
morphological analysis a dictionary 

yields the set of lexical categories to 
which the root belongs. This is the sec
ond level of analysis carried out by the 
computer. Some roots (such as "the") 
have only one lexical category; others 
have several. "Dark" can be a noun or 
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What is the latest R&D activity in Japan in the field 
of industrial robots? 

What are the market trends for frozen orange juice? 
What are the mechanical properties of shape memory materials? 

Introducing In-Search - immediate answers to 
millions of questions like these � 

through DIALOG� 
In-Search is an easy-to-use personal computer software 
package that lets you instantly retrieve answers to your 
questions from DIALOG, the world's largest collection 
of online databases. 

With In-Search,. your personal computer and 
modem, you can access this information over 
telephone lines. 

All the Answers. 
Imagine scanning thousands of articles in 
seconds. In-Search can do just that. 

In-Search gives you over 80 million 
articles from thousands of sources: Newspapers, 
magazines, technical journals, investment reports, 
wire services, annual reports and the Yellow Pages. 

Easy Answers. 
1. Type the words or subject you wish to research into 

your personal computer. 
2. In-Search takes it from there, bringing up all the articles 

and references you need. 
3. Simple on-screen graphiCS gUide you through 

every step. 

Fast Answers. 
In-Search can find in minutes what could take days or 
weeks to find. You can now spend more time using 
information because you spend less time tracking 
it down. 

Once you have the information, you can store it 
on disk or print it out. In-Search is compatible with 
most word processing programs. 

How to get the Answers. 
To see a demonstration or to purchase In-Search, call 
(408) 986 -1200 for your nearest dealer. Or send this 

coupon and $5.00 for a 
demonstra tion disk deSigned 

for IBM-compatible or TI. 
personal computers. 

I
--------------------

� 

I 00 MenloCOrporation 0 Enclosed is $5.00 for my 
I 00 . In-Search demonstration 

4633 Old Ironsides Dr diskette. 
Suite 400 0 Please send me a free 
Santa Clara, CA 95050 booklet with more details. 
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PHONE 
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MY OCCUPATION IS 104 I 
L ____________________ � 
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a \inset 
This is a sample of a {\italic justified} piece of text, which contains l\eightpoint small letters {\bold and}} {bigFont big ones}. 
It includes foreign words such as \lquote pe\-na\rquote-which is Spanish-and foreign letters like \alpha\ and \aleph, 
which can be baffling, and includes one \hskip 1.3in wide space. 

b 

FONT X-POSI-
e CODE TION 

b g o n e s 

1000000001000000011101011111101101101001011001 010010011 011101001001000001011010011. 
NEW FONT X-POSI- Y-POSI- X-INCRE- SPACE 

ENTITY CODE TION TION MENT 

c This is a sample of a justified piece of text. which contains small letters and 

big ones. It includes foreign words such as "peiia"-which is Span

ish-and foreign letters like a and K which can be baffling. and includes 
one wide space. 

WORD PROCESSING, that is, the computer-aided preparation and 
editing of text, requires several representations of the text, because 
the format best for interactions between the software and its user is 
not efficient for sending instructions to a printing machine, nor can it 
efficiently give a preview of the result of the printing. In the typeset
ting language TEX the user's typed input (a) includes commands that 
specify nonstandard characters, change the style of type, set margins 

and so on. Such commands are distinguished by a backslash (I). The 
TEX software "compiles" the input, producing computer code that will 
drive a printing machine (b). To that end the code is divided into "en
tities," each of which specifies the typeface and the starting posi
tion for a sequence of words. Coded "X increments" space out the 
words to fill the distance between margins on the printed page; thus 
they "justify" lines of type. The printed page (c) shows the result. 

an adjective; "bloom" can be a noun or a 
verb. In some instances the morpholog
ical analysis limits the possibilities. (In 
its common usages "bloom" can be a 
noun or a verb, but "blooming" is only 
a verb.) The output of the morpholog
ical and lexical analysis is thus a se
quence of the words in a sentence, with 
each word carrying a quantity of dic
tionary and feature information. This 
output serves in turn as the input to the 
third component of the program, the 
parser, or syntactic-analysis component, 
which applies rules of grammar to de
termine the structure of the sentence. 

Two distinct problems arise in design
ing an adequate parser. The first prob
lem is the specification of a precise set of 
rules-a grammar-that determines the 
set of possible sentence structures in a 
language. Over the past 30 years much 
work in theoretical linguistics has been 
directed toward devising formal linguis
tic systems: constructions in which the 
syntactic rules of a language are stat
ed so precisely that a computer could 
employ them to analyze the language. 
The generative transformational gram
mars invented by Noam Chomsky of 
the Massachusetts Institute of Technol
ogy were the first comprehensive at
tempt; they specify the syntax of a lan
guage by means of a set of rules whose 
mechanical application generates all al
lowable structures. 

The second problem is that of the 
parsing itself. It is not always possible to 
tell, when a part of a sentence is encoun-
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tered, just what role it  plays in the sen
tence or whether the words in it go to
gether. Take the sentence "Roses will 
be blooming in the dark gardens we 
abandoned long ago." The words "in 
the dark" might be interpreted as a com
plete phrase; after all, they are gram
matically well formed and they make 
sense. But the phrase cannot form a co
herent unit in a complete analysis of the 
sentence because it forces "Roses will be 
blooming in the dark" to be interpreted 

as a sentence and therefore leaves "gar
dens we abandoned long ago" without a 
role to play. 

Parsers adopt various strategies for 
exploring the multiple ways phrases can 
be put together. Some work from the top 
down, trying from the outset to find pos
sible sentences; others work from the 
bottom up, trying local word combi
nations. Some backtrack to explore al
ternatives in depth if a given possibil
ity fails; others use parallel processing 
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COMPUTERIZED UNDERSTANDING OF LANGUAGE requires the computer to draw 
on several types of stored data (white boxes) and perform several levels of analysis (colored 
boxes). If the language is spoken, the first.analysis is. phonological (1): the computer analyzes 
sound waves. If the language is written, the first analysis is morphological (2): the computer de
composes each word into its root, or basic form, and inllections (for example -ing). Next is lexi-
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to keep track of a number of alterna
tives simultaneously. Some make use of 
formalisms (such as transformational 
grammar) that were developed by lin
guists. Others make use of newer for
malisms designed with computers in 
mind. The latter formalisms are better 
suited to the implementation of parsing 
procedures. For example, "augmented
transition networks" express the struc
ture of sentences and phrases as an ex
plicit sequence of "transitions" to be fol
lowed by a machine. "Lexical-function 
grammars" create a "functional struc
ture" in which grammatical functions 
such as head, subject and object are ex
plicitly tied to the words and phrases 
that serve those functions. 

Although no formal grammar suc
cessfully deals with all the grammati
cal problems of any natural language, 
existing grammars and parsers can han
dle well over 90 percent of all sentences. 
This is not entirely to the good. A given 
sentence may have hundreds or even 
thousands of possible syntactic analy
ses. Most of them have no plausible 
meaning. People are not aware of con
sidering and rejecting such possibilities, 
but parsing programs are swamped by 
meaningless alternatives. 

The output of a parsing program be
comes the input to the fourth com

ponent of a language-understanding 
program: a semantic analyzer, which 
translates the syntactic form of a sen
tence into a "logical" form. The point is 
to put the linguistic expressions into a 
form that makes it possible for the com
puter to apply reasoning procedures and 
draw inferences. Here again there are 
competing theories about what repre
sentation is most appropriate. As with 
parsing, the key issues. are effectiveness 
and efficiency. 

4 � 5 

Syntactic 

Syntactic structures 

analysis 

I 
Grammatical Definition 

rules dictionary 

Effectiveness depends on finding the 
appropriate formal structures to en
code the meaning of linguistic expres
sions. One possibility is predicate calcu
lus, which employs the quantifiers V to 
mean "all" and 3 to mean "there ex
ists." In predicate calculus "Roses will 
be blooming . . .  " is equivalent to the as
sertion "There exists something that is a 
rose and that is blooming . . . .  " This en
tails a difficulty. Is one rose adequate to 
represent the meaning of "roses will be 
blooming," or would it be better to spec
ify two or more? How can the computer 
decide? The dilemma is worsened if a 
sentence includes a mass noun such as 
"water" in "Water will be flowing . . . .  " 
One cannot itemize water at all. In de
signing a formal structure for the mean
ing of linguistic expressions many simi
lar problems arise from the inherent 
vagueness of language. 

Efficiency must also be considered, 
because the computer will employ the 
logical form of a sentence to draw infer
ences that in turn serve both the analysis 
of the meaning of the sentence and the 
formulation of a .response to it. Some 
formalisms, such as predicate calculus, 
are not directly amenable to efficient 
computation, but other, more "proce
dural" representations have also been 
devised. Consider the effort to answer 
the question "Are there flowers in the 
gardens we abandoned long ago?" The 
computer needs to know that roses are 
flowers. This knowledge could be repre
sented by a formula in predicate calcu
lus amounting to the assertion "Every
thing that is a rose is a flower." The 
computer could then apply techniques 
developed for mechanical theorem
proving to make the needed ded uction. 
A different approach would be to give 
certain inferences a privileged compu
tational status. For example, basic clas-

� � 
Representation 

sificational deductions could be repre
sented directly in data structures [see 
bottom illustration on page 144) . Such de
ductions are required constantly for rea
soning about the ordinary properties of 
objects. Other types of fact (for exam
ple that flowers need water in order to 
grow) could then be represented in a 
form closer to predicate calculus. The 
computer could draw on both to make 
inferences (for example that if roses do 
not get water, they will not grow). 

A good deal of research has gone 
into the design of "representation lan
guages" that provide for the effective 
and efficient encoding of meaning. The 
greatest difficulty lies in the nature of 
human commonsense reasoning. Mo"st 
of what a person knows cannot be for
mulated in all-or-nothing logical rules; 
it lies instead in "normal expectations." 
If one asks, "Is there dirt in the garden?" 
the answer is almost certainly yes. The 
yes, however, cannot be a logical infer
ence; some gardens are hydroponic, and 
the plants there grow in water. A person 
tends to rely on normal expectations 
without thinking of exceptions unless 
they are relevant. But little progress 
has been made toward formalizing the 
concept of "relevance" and the way it 
shapes the background of expectations 
brought to bear in the understanding of 
linguistic expressions. 

The final stage of analysis in a lan
guage-understanding program is 

pragmatic analysis: the analysis of con
text. Every sentence is embedded in a 
setting: it comes from a particular 
speaker at a particular time and it refers, 
at least implicitly, to a particular body 
of understanding. Some of the embed
ding is straightforward: the pronoun "I" 
refers to the speaker; the adverb "now" 
refers to the moment at which the sen-
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Semantic Pragmatic Deductive Inferential 
rules rules rules rules 

cal analysis (3), in which the computer assigns words to their lexical 
category (noun, for instance) and identifies "features" such as plu
rals. Then comes syntactic analysis, or parsing (4):  the application of 
rules of grammar to yield the structure of the sentence. After that 
comes semantic analysis (5). Here the sentence is converted into a 

form that makes it amenable to inference-drawing. The final stage 
is pragmatic (6):  it makes explicit the context of the sentence, such 
as the relation between the time at which it is spoken and the time 
to which it refers. The computer is now in a position to draw infer
ences ( 7), perhaps in preparation for responding to the sentence. 
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IBM PC SQ{tware: the value Q{ choosing 

If they don't fi t ,  they're not worth wearing . 
Software programs . 

If they don't fi t ,  they're not worth using . 
That's why it's altogether fitting that IBM 

Personal Computer Software offers you a choice . 

Size up the selection. 

You'll find many types of programs in the 
IBM software library. They'll help keep you on 
your toes in the office , at home or 
in school . 

There are , in fact ,  seven 
different categories of IBM pro
grams called "families :' A family 
of software for business , productivity, 
education , entertainment,  lifestyle , 
communications or programming . 

Of course , every program in 
every family is tested and approved by 
IBM . And IBM Personal Computer 
Software is made to be compatible 
with IBM Personal Computer hardware . 
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programs that fit. 

Puttingyour 
best foot forward. 

Although every person isn't on equal footing 
when it comes to using personal computer 
software , there's something for almost everyone in  
the IBM software library. 

For example , you may be on a shoestring 
budget and want a big selection of programs 
with small price tags . 

You may be introducing students to 
computing and want programs that are simple to 

use and simple to learn . 
You may run a business requiring 

sophisticated inventory and payroll 
programs . Or you may run a business 

requiring a single accounting program . 

You may write interoffice memos and want a 
streamlined word processing program . Or you 
may be a novelist looking for a program with 
features worth writing home about . 

Now you can find IBM Personal Computer 
Software that fits - to help you accomplish 
specific tasks and reach individual goals . 

Stroll into a store today. 
What's the next step ?  
Visit a n  authorized I B M  Personal Computer 

dealer or IBM Product Center near you . To find 
out exactly where , call 800-447-4700 . In Alaska 
or Hawaii ,  800-447-0890 .  

Ask YOut dealer t o  demonstrate your choice 
of programs . Then get comfortable . Sit down at 
the keyboard and try IBM software on for size . 
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tence is uttered. Yet even these can be 
problematic: consider the use of "now" 
in a letter I write today expecting you 
to read it three or four days hence. 
Still, fairly uncomplicated programs can 
draw the right conclusion most of the 
time. Other embedding is more com
plex. The pronoun "we" is an example. 
"We" might refer to the speaker and the 
hearer or to the speaker and some third 
party. Which of these it is (and who the 
third party might be) is not explicit and 
in fact is a common source of misunder
standing when people converse. 

Still other types of embedding are not 
signaled by a troublesome word such 
as "we." The sentence "Roses will be 
blooming . . . " presupposes the identifi
cation of some future moment when the 
roses will indeed be in bloom. Thus the 
sentence might have followed the sen
tence "What will it be like when we get 
home? " or "Summer is fast upon us." 
Similarly, the noun phrase "the dark 
gardens we abandoned long ago" has a 
context-dependent meaning. There may 
be only one instance of gardens in which 
we have been together; there may be 
more than one. The sentence presup
poses a body of knowledge from which 
the gardens are identifiable. The point 
is that a phrase beginning with "the" 
rarely specifies fully the object to which 
it refers. 

One approach to such phrases has 
been to encode knowledge of the world 
in a form the program can use to make 
inferences. For example, in the sentence 
"I went to a restaurant and the waiter 
was rude" one can infer that "the wait
er" refers to the person who served the 
speaker's meal if one's knowledge in
cludes a script, so to speak, of the typical 

Roses will be blooming 
in the dark gardens 
we abandoned long ago. 

--3l 

2 

Morphological 
analysis 

3 

events attending a meal in a restaurant. 
(A particular waiter or waitress serves 
any given customer.) In more complex 
cases an analysis of the speaker's goals 
and strategies can help. If one hears 
"My math exam is tomorrow, where's 
the book? " one can assume that the 
speaker intends to study and that "the 
book" means the mathematics text em
ployed in a course the speaker is taking. 
The approach is hampered by the same 
difficulty that besets the representation 
of meaning: the difficulty of formalizing 
the commonsense background that de
termines which scripts, goals and strate
gies are relevant and how they interact. 
The programs written so far work only 
in highly artificial and limited realms, 
and it is not clear how far such programs 
can be extended. 

Even more problematic are the effects 
of context on the meaning of words. 
Suppose that in coming to grips with 
"the dark gardens we abandoned long 
ago" one tries to apply a particular 
meaning to "dark." Which should it be? 
The "dark" of "those dark days of tribu
lation" or that of "How dark it is with 
the lights off!" or that of "dark colors" ? 
Although a kernel of similarity unites 
the uses of a word, its full meaning is 
determined by how it is used and by the 
prior understanding the speaker expects 
of the hearer. "The dark gardens" may 
have a quite specific meaning for the 
person addressed; for the rest of us it is 
slightly mysterious. 

At first it might seem possible to distin
.£\. guish "literal" uses of language 
from those that are more metaphorical 
or poetical. Computer programs faced 
with exclusively literal language could 

Word Root 

Roses rose 

1_ will 
I-be 
'-bf90mlng bloom 

In 
tile 

Lexical � I-dark analysis 

gardens garden 

1-we 
abandoned abandon 

1- long 
ago 

then be freed from contextual dilem
mas. The problem is that metaphor and 
"poetic meaning" are not limited to the 
pages of literature. Everyday language 
is pervaded by unconscious metaphor, 
as when one says, "I lost two hours 
trying to get my idea across." Virtual
ly every word has an open-ended field 
of meanings that shade gradually from 
those that seem utterly literal to those 
that are clearly metaphorical. 

The limitations on the formalization 
of contextual meaning make it impossi
ble at present-and conceivably forev
er-to design computer programs that 
come close to full mimicry of human 
language understanding. The only pro
grams in practical use today that at
tempt even limited understanding are 
natural-language "front ends" that en
able the user of a program to request 
information by asking questions in En
glish. The program responds with En
glish sentences or with a display of data. 

A program called SHROLU is an early 
example. Developed in the late 1960's, it 
enables a person to communicate with a 
computer in English about a simulat
ed world of blocks on a tabletop. The 
program analyzes requests, commands 
and statements made by the user and 
responds with appropriate words or 
with actions performed in the simulat
ed scene. SHROLU succeeded in part be
cause its world of conversation is limit
ed to a simple and specialized domain: 
the blocks and a few actions that can be 
taken with them. 

Some more recent front-end inter
faces have been designed with practical 
applications in mind. A person wanting 
access to information stored in the com
puter types natural-language sentences 

Lexical categories Features 

Noun lDlural 

verb" auxiliary modal 

Vero{auxiliary) l�nfinitiv�l 
Verb icoQular) infinitive 

VerblintransitiveY [prggressive] 

PreRosition 

Determiner [definitef 

. Adjective 
Noun [mass] 

'Noun -Iflunil] 
Verb third-�rson singular Rresentl 

Pronoun first-�rson, I1luI!II, nominatlvr 

Vern (transitive) [past] 
Verb (transitive) [participle] 

Adiective 

Adverb 

SUCCESSION OF ANALYSES done by a hypothetical computer 
program suggests how software that understands language works. In 
this illustration the program has been given the sentence "Roses will 
be blooming in the dark gardens we abandoned long ago." The first 
analyses (morphological and lexical) yield a list of the words in the 

sentence, with their roots, their lexical categories and their features. 
"Blooming," for instance, is a progressive verb: it signifies an act in 
progress. The data serve as input for the syntactic level of analysis: 
the parsing of the sentence. Here the surface, or grammatical, struc
tnre of "Roses will be blooming ... " is put in the form of a tree. Pre-
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that the computer interprets as queries. 
The range of the questioning is circum
scribed by the range of the data from 
which answers are formulated ;  in this 
way words can be given precise mean
ing. In a data base on automobiles, for 
example, "dark" can be defined as the 
colors "black" and "navy" and nothing 
more than that. The contextual meaning 
is there, but it is predetermined by the 
builder of the system, and the user is 
expected to learn it. 

The main advantage of a natural-lan
guage front end is that it presents a low 
initial barrier to potential users. Some
one invited to pose a question in English 
is usually willing to try, and if the com
puter proves unable to handle the spe
cific form of the question, the user is 
probably willing to modify the word
ing until it works. Over time the user 
will learn the constraints imposed by 
the system. In contrast, a person who 
must learn a specialized language in 
order to formulate a question may well 
feel that an inordinate amount of work 
is being demanded. 

I want finally to look at a rather new 
type of system called a coordinator. 

In brief it replaces standard electronic 
mail with a process that aids the genera
tion of messages and monitors the prog
ress of the resulting conversations. Co
ordinators are based on speech-act the
ory, which asserts that every utterance 
falls into one of a small.number of cate
gories. Some speech acts are statements: 
"It's raining." Some are expressiv.e: ' �I'm 
sorry I stepped on your toe." Some are 
requests:, "Please take her the package" 
or "What is your name?" Some are com- . 
mitments: "I'll do it tomorrow." Some 

4 

Syntactic 
analysis 

are declarative: "You're fired . "  (Oeclar
atives differ from statements in that 
they take effect by virtue of having 
been said.) 

The classification of speech acts is 
useful because acts in the various cate
gories do not occur at random. Each 
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speech act has "felicity conditions" un
der which it is an appropriate thing to 
say and "conditions of satisfaction" un
der which it is fulfilled .  For example, a 
request or a commitment carries with it, 
either implicitly or explicitly, a time by 
which it should be satisfied . Moreover, 
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sumably the computer discards numerous incorrect trees. For exam
ple, it discards a tree in which "Roses will be blooming in the dark" is 
construed as a sentence. The deep structure of "Roses will be bloom
ing . . .  " is put in the form of a functional-structure diagram. There the 
relations between the parts of a sentence become explicit; they are 

shown by strings between boxes. Some relations were explicit in the 
snrface structnre (for example that "roses" is the subject of "bloom
ing"). Others were not (for example that "gardens" is the object of 
"abandoned"). The syntactic analysis is supplied to the final stages 
of the program, which appear in the top illustration on the next page. 
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ANALYSES CONCLUDE with the conversion of the syntactic struc
ture of "Roses will be blooming . . .  " into a form from which the com
puter can draw inferences. In this example the conversion is based 
on predicate calculus; thus the semantic-analysis module of the hy
pothetical software represents the logical content of "Roses will be 
blooming . . .  " by symbols that can be translated as "x is a rose and y is 
a garden and y is dark. . . .  " Finally, the pragmatic-analysis module 

specifies what is known about the variables x, y, Z, /0, / 1 and /2' The 
variable x, for example, is "quantified": it declares the existence of 
something instead of identifying a particular object. In other words, 
the computer takes "roses" as referring to roses in general, not to par
ticular roses. Hence roses is not a "definite" noun. (That decision was 
made in the course of semantic analysis.) On the other hand, z re
mains ambiguous because it stands for the ambiguous pronoun "we." 

each speech act is part of a conversa
tion that follows a regular pattern. The 
regularity is crucial for successful com
munication. 

As with every aspect of language, the 
full understanding of any given speech 
act is always enmeshed in the unarticu
lated background expectations of the 
speaker and the hearer. The speech act 
"I'll be here tomorrow" might be a pre
diction or a promise, and "Do you play 
tennis?" might be a question or an invi
tation. In spoken conversation intona
tion and stress play a prominent part in 
establishing such meaning. 

Coordinator systems deal with the 
speech acts embodied in messages by 
specifying what ne.eds to be done and 
when. The system does not itself at
tempt to -analyze the linguistic content 
of messages. Instead the word-process
ing software at the sender's end asks the 
sender to make explicit the speech-act 
content of each message. A person may 
write ' ' I'll be happy to get you that re
port" in the message itself but must add 
(with a few special keystrokes) that the 

flower 

is-part 

stamen petal 

message is an ACCEPT of a particular RE
QUEST. The computer system can then 
keep track of messages and their inter
connections. In partic ular the system 
can monitor the completion of conver
sations, calling the users' attention to 
cases in which something immediate is 
pending or in which an agreed-on time 
for satisfaction has not been met. 

From a broad perspective, coordi
nators are just one member of a large 
family of software that gives users a 
structured medium in which language 
is augmented by explicit indications of 
how things fit together. Another type of 
software in this family provides tools 
for outlining and cross-indexing docu
ments. Still another type is a comput
erized bulletin board that enables users 
to store and receive messages not ad
dressed to a specific receiver. The mes
sages are "posted" with additional struc
ture that indicates their content and 
helps interested readers to find them. 

The most obvious prediction about 
the future of computer software deal
ing with language is that the decreas-

plant 

is-part 

ing cost of hardware will make applica
tions that are possible but impractical 
today available quite widely in the fu
ture. Yet software that mimics the full 
human understanding of language is 
simply not in prospect. Some specific 
trends can be noted. 

The first is that spoken language will 
get more emphasis. To be sure, the 

computerized understanding of spoken 
language presents all the difficulties of 
written language and more. Merely sep
arating an utterance into its component 
words can vex a computer; thus hopes 
for a "voice typewriter" that types text 
from dictation are just as dim as hopes 
for high-quality machine translation 
and language-understanding. On the 
other hand, many useful devices do 
not require the analysis of connected 
speech.· Existing systems that can identi
fy a spoken word or phrase from a fixed 
vocabulary of a few hundred items will 
improve the interface between users and 
machines; the recent emergence of in
expensive integrated-circuit chips that 

fruit l eaf 

is-a 

� 
daisy rose apple orange 

is-a is-a 

Mci ntosh pippin 

SEMANTIC NETWORK is a specialized form of stored data that 
represents logical relations so that certain types of inference can be 
drawn efficiently by a computer. Here a simple tracing of links in 

the network (color) has yielded the inference that a pippin is a fruit 
and that a rose has petals. Facts not readily represented by a network 
can be represented in other ways, for example by predicate calculus. 

1 44 
© 1984 SCIENTIFIC AMERICAN, INC



process acoustic signals will facilitate 
the trend. Speech synthesizers that gen
erate understandable utterances (al
though not in a natural-sounding voice) 
will also play an increasing role . Im
proved speech "compression" and en
coding techniques will make acoustic 
messages and acoustic annotation of 
computer files commonplace . 

A second trend in software dealing 
with language .is that constraints on lin- . 
guistic domain will be handled with in
creasing care and theoretical analysis. 
At several points in this article I have 
noted instances in which computers deal 
with meaning in an acceptable way be
cause they operate in a limited domain 
of possible meanings. People using such 
software quickly recognize that the 
computer does not understand the full 
range of language, but the subset avail
able is nonetheless a good basis for com
munication. Much of the commercial 
success of future software that deals 
with language will depend on the dis
covery of domains in which constraints 
on what sentences can mean ' still leave 
the user a broad range of language . 

A third trend lies in the development 
of systems that combine the natural and 
the formal. Often it is taken for granted ' 
that natural language is the best way for 
people to communicate with computers. 
Plans for a "fifth generation" of intelli
gent computers are based on this propo
sition. It is not at all evident, however, 
that the proposition is valid. In some 
cases even the fullest understanding of 
natural language is not as expressive as a 
picture . And in many cases a partial un
derstanding of natural language proves 
to be less usable than a well-designed 
formal interface . Consider the work 
with natural-language front ends. Here 
natural language promotes the initial 
acceptance of the system, but after that 
the users often move toward stylized 
forms of language they find they can 
employ with confidence, that is, with
out worrying about whether or not the 
machine will interpret their statements 
correctly. 

The most successful current systems 
facilitate this transition. Some systems 
(including coordinators) mix the natural 
and the formal: the user is taught to rec
ognize formal properties of utterances 
and include them explicitly in messages. 
Thus the computer handles formal 
structures, while people handle tasks in 
which context is important and precise 
rules cannot be applied. Other systems 
incorporate a 'highly structured query 
system, so that as the user gains experi
ence the artificial forms are seen to save 
time and trouble. In each case the com
puter is not assigned the dilftcult and 
open-ended tasks of linguistic analysis; 
it serves instead as a structured linguis
tic medium. That is perhaps the most 
useful way the computer will deal with 
natural language . 
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Computer Software for Graphics 

No longer the exclusive domain of specialists, interactive 

computer graphics 1S fast becoming the standard medium 

of communication between computers and all kinds of users 

I
van E. Sutherland, a pioneer in the 

programming of computers to cre
ate and manipulate images, once re

marked about his favorite subject: "I 
think of a computer display as a window 
on Alice's Wonderland in which a pro
grammer can depict either objects that 
obey well-known natural laws or purely 
imaginary objects that follow laws he 
has written into his program. Through 
computer displays I have landed an air
plane on the deck of a moving carrier, 
observed a nuclear particle hit a poten
tial well, flown in a rocket at nearly the 
speed of light and watched a computer 
reveal its innermost workings." 

Until recently Sutherland's experi
ence of the seemingly magical powers of 
interactive computer graphics could be 
shared by only a handful of workers: 
mainly scientists and engineers engaged 
in computer-aided design, data analysis 
and mathematical modeling. Now the 
privilege of exploring real and imagi
nary worlds through the looking glass of 
the computer is becoming increasingly 
common. Indeed, graphics is well on its 
way to being the standard form of com
munication with computers. 

There are a num ber of reasons for this 
change. First, dramatic improvements 
in the price-performance ratio of cer
tain components of computer hardware 
have made sophisticated graphics termi
nals and graphics-based personal com
puters widely affordable. In particular, 
advances in the design and fabrication 
of microelectronic circuits have led to a 
new generation of memory "chips" that 
offer enormous information-storage ca
pacity at extremely low unit cost. This 
development has in turn made the tech
nique of raster graphics economically 
competitive. A raster is the pattern of 
horizontal scanning lines in a television
type display. In raster-graphics systems 
each pixel, or picture element, in the ras
ter is represented individually in the 
computer's memory· and hence can be 
controlled independently by software, 
giving the programmer maximum flexi
bility in the creation and manipulation 
of images. 
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by Andries van Dam 

Meanwhile corresponding improve
ments in software have greatly extended 
the range of applications that can be 
handled pictorially. New software pack
ages for business applications, for ex
ample, make it possible to display data 
in the form of charts and graphs even on 
inexpensive home computers. In addi
tion standard high-level software pack
ages for graphics are becoming widely 
available, making it easier for new ap
plications programs to be written and 
transported from one make of computer 
to another. 

Another factor in the growing popular
.£\.. ity of computer graphics is the way 
computer displays contribute to what 
has come to be called a "user-friendly" 
operator-machine interface. This over
worked term refers to a philosophy of 
software design perhaps best exempli
fied by a set of techniques developed in 
the 1 970's at the Xerox Corporation's 
Palo Alto Research Center. Computer 
displays based on this approach (which 
was influenced by earlier work by Doug
las C. Engelbart's group at the Stanford 
Research Institute) are now available 
in commercial products ranging from 
the Xerox Star work station to the Ap
ple Computer, Inc., Macintosh personal 
computer. A notable feature of this kind 
of user interface is the "desktop" meta-

phor: the display is divided into sepa
rate, possibly overlapping regions called 
windows, which can be thought of as 
pieces of paper spread out on a desk. 
Each window can serve as the display 
for a different application program; thus 
one can work simultaneously with both 
textual and pictorial material, and with 
the aid of simulated "cut and paste" op
erations one can compose these different 
elements into a single document. 

The new user-friendly systems are 
generally based on the WYSIWYG ("What 
you see is what you get") approach, in 
which the display resembles as close
ly as possible what will eventually be 
printed out (or otherwise recorded in 
hard-copy form). To design a page of 
text, for example, no specialized format
ting codes (such as .pp for "paragraph" 
or .s2 for "skip two lines") have to be 
entered, to be interpreted by a separate 
"batch formatting" program only after 
the user has finished editing. Instead 
margins and indentations are adjusted 
by manipulating a facsimile of a rul
er with markings on it for the various 
stops, and the text is continuously refor
matted to the current settings as it is ed
ited. Because the characters are gener
ated entirely by graphics software, they 
can be displayed in almost any size 
or font, spaced either equally or pro
portionally to their width. Mathemati-

IMAGINARY WORLD of vines and flowers is viewed from the inside in this computer image 
created by Ned Greene of the New York Institute of Technology. The vines trace the edges of 
a three-dimensional lattice analogous to the crystal structure of diamond. The image is a frame 
from an animated sequence in which the viewpoint moves down one of the "corridors" between 
the vines. The objects in the scene were first defined mathematically as meshes of polygons. 
The vines were rendered with a "bump mapping" technique that gives the impression of relief 
by adjusting the shading according to depth information obtained from X-ray images of a pIas
ter cast of real tree bark. The leaves and flower sepals were colored by mapping previously re
corded "paintings" onto their mesh representations with a technique known as texture map
ping. To produce a smooth gradation of color across the flower petals, colors were assigned to 
the vertexes in the mesh representations of the petals and the vertex colors were then interpo
lated across the polygonal faces by the rendering program. The appearance of fog was achieved 
by reducing the contrast as an exponential function of distance from the viewer. "Without fog 
or some other form of depth cueing," Greene notes, "the scene is practically incomprehensible." 
There are approximately 1.9 million polygons in the scene, and rendering them took 18 hours 
on a Digital Equipment Corporation VAX 111780 minicomputer. Each pixel, or picture ele
ment, in the 1,536-by-l,536 raster pattern carries 24 bits of color information. Besides Greene, 
Jules Bloomenthal, Paul Heckbert and Lance Williams wrote programs used in the project. 
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cal symbols, non-Roman alphabets and 
even Chinese or Japanese ideograms 
can be handled in much the same way. 

The application programs for such 
systems rely on a uniform set of conven
tions to specify commands. For exam
ple, instead of typing a series of com
mands on an alphanumeric keyboard, 
one can pick and choose from various 
"menus," or lists of commands, that ap
pear on the display. A command is exe-

cuted by simply pointing to it with the 
aid of a device such as a light pen or a 
"mouse" (a mechanism one slides on the 
desk to move a pointer on the screen). 
Simple graphic symbols, called icons, 
represent familiar office items such as 
file drawers, folders, wastebaskets, cal
culators and clocks; the functions they 
symbolize can be selected by pointing 
to them. It has been found that an inter
face based on menus and icons is pre-

ferred by most people over a strictly 
alphanumeric interface because, when 
these graphic features are properly de
signed, they seem more natural, are eas
ier to learn and use, require little memo
rizing and result in fewer mistakes. 

Computer graphics has also become 
commonplace in a variety of other, 
everyday contexts. Children (and even 
many adults) are gaining a kind of 
literacy in graphics by playing arcade 
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TWO MODES OF OPERATION are available for producing an image on the screen of a 
cathode-ray tube. In a vector display (left) the electron beam is steered continuously between 
any two points on the screen to create a straight line called a vector. The simple line drawing of 
a house, for example, is the result of several such operations. In a raster, or television-type, dis
play (right) the electron beam traces out a regular raster pattern of horizontal scanning lines, 
and the beam's intensity is increased at the pixels closest to the straight lines to form the corre
sponding picture. Raster graphics has recently become the dominant form of computer display. 
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games and doing educational exercises 
based on visual effects that often entail a 
good deal of animation and interaction. 
In addition artists are now producing 
eye-catching and sometimes spectacular 
computer-animated displays for televi
sion advertising and for special effects 
in science-fiction films, taking copious 
amounts of computer time to produce 
each highly detailed frame. Image syn
thesis, currently one of the most rapidly 
expanding fields of computer graphics, 
is discussed in greater detail below. 

Most interactive graphics displays 
are based on the technology of the 

cathode-ray tube (although solid-state 
fiat panels are coming into vogue for 
some purposes, such as portable com
puters). The electron beam in a cath
ode-ray tube strikes a phosphor-coated 
screen, which emits light with an intensi
ty that depends on the kinetic energy of 
the electrons. Because the light output 
from the phosphor fades in millisec
onds, the entire image must be redrawn 
at frequent intervals, typically 30 times 
per second or more; the redrawing is 
based on a digital representation of the 
picture stored in a memory unit called a 
refresh buffer. 

The electron beam is steered to the 
desired place on the screen in one of two 
modes: the vector mode or the raster 
mode. In a vector display the beam can 
be deflected continuously between any 
two points in the display's two-dimen
sional x,y coordinate system to create a 
crisp, straight line, called a vector. The 
result of several such operations is a line 
drawing. Characters are also composed 
of short vectors. A set of basic display 
"primitives"-the lines, arcs, characters 
and other elements of an image-is 
stored in the refresh buffer in the form 
of a list of coded commands specifying 
the endpoint coordinates and other at
tributes of the primitives, such as their 
thickness, intensity and color. For dis
play systems with a "real time" three
dimensional viewing capability special 
hardware is provided to perform the 
"viewing transformation," an operation 
that consists in projecting three-dimen
sional primitives onto the two-dimen
sional screen. 

While the image is being refreshed, 
either the computer itself or special
purpose hardware can be commanded 
to assign translation, rotation or scaling 
values to the endpoints of the vectors or 
to the viewing-transformation parame
ters in order to change the picture for 
the next refresh cycle. These parameters 
can be specified by an animation pro
gram or by the operator, using a mouse, 
a joystick or dials. The ability to have 
either the objects on the screen or the 
viewpoint of the user appear to move 
smoothly has been found to be very 
helpful in giving people kinesthetic 
feedback as they explore the structure of 
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grated" software package 
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A complete two-disk 
Tandy 2000 system with 
monitor and 1-2-3 sells for 
$3793, and can be leased 
for only $130 per month. * 

For those of you who al
ready own a 256K Tandy 
2000, Lotus 1-2-3 can be 
yours for $495. 

So tonight, jog by your 
nearby Radio Shack Com
puter Center and see how a 
Tandy 2000 lets you race 
right by IBM. And IBM 
compatibles, too. 

We Invite Comparison! 
In speed, graphics, disk storage and 
support, the Tandy 2000 offers more 
than IBM's PC. Come in and see! 

Available at over 1200 
Radio Shack Computer Centers and at 

participating Radio Shack stores and dealers. 
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"JAGGIES," or jagged edges, appear in a raster display along any lines or edges that are neither 
horizontal nor vertical, owing to the way such display "primitives" are approximated by dis
crete sets of closest pixels. This artifact, also known as staircasing, is barely noticeable in the 
radial pattern at the upper left; it can be seen more clearly in the enlargement at the lower left. 
One way to minimize the problem in systems in which there are multiple bits per pixel is to vary 
the intensity of the pixels lying on the boundary in order to blur the edge, as in the pattern at 
the upper right and in the corresponding enlargement at the lower right. The jagged-edge prob
lem is a form of aliasing; the solution shown here is called anti-aliasing. The diagrams were pro
duced on a computer screen by Paul S. Strauss and James K. Rinzler of Brown University. 

an unfamiliar three-dimensional scene. 
Vector graphics, which was initially 

the most common mode of computer 
display, offers several advantages: it rep
resents display primitives in a way that 
req uires little memory; the primitives 
are crisply drawn, and the operator can 
change the image continuously in real 
time. Its main disadvantage is that it 
cannot show solid areas; both two- and 
three-dimensional objects must be rep
resented by "wire frame" diagrams. 
Furthermore, if there are too many dis
play primitives on the screen for all of 
them to be redrawn in the time allotted 
for a single refresh cycle, there are too 
few cycles and the image flickers. 

In a raster display the beam is not de
flected in a pattern determined by the 
image being drawn. Instead, as in the 
case of a television set, the beam traces 
out a regular raster pattern. The only 
control is on the beam's intensity. In 
a color display the intensities of three 
beams-one each for red, green and 
blue-are controlled individually; each 
beam strikes its corresponding phos
phor dot in a triad of red, green and blue 
dots for each pixel. The primitives in 
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a raster display are formed by intensi
fying the pixels that are closest to the 
straight line, curve or edge that is de
fined by the endpoints of the primitive. 
Solid areas are filled in by intensifying 
all the interior pixels. Raster displays, 
because of their fixed deflection pattern, 
are generally simpler and less expensive 
than vector displays. On the other hand, 
raster displays usually call for a much 
greater memory capacity in the refresh 
buffer, which must now store an intensi
ty value or a color value amounting to 
at least one bit for every pixel on the 
screen. (In this context the refresh buffer 
is also known as a frame buffer or a bit 
map.) One advantage of storing the im
age in the form of individual pixels rath
er than higher-level primitives is that the 
former representation is completely in
dependent of the number of primitives 
specified for display. As a result raster 
displays avoid the problem of flicker. 

Avector display draws lines and edges 
in a way that is analogous to the 

way a draftsman uses a ruler or a T 
square. A raster display, in contrast, re
lies on an electronic version of the poin-

tillist technique developed by the 1 9th
century French Impressionist painter 
Georges Seurat. A discrete sampling 
technique of this kind may cause indi
vidual pixels to be noticeable, and prim
itives that are neither horizontal nor ver
tical have jagged edges. This artifact, 
sometimes referred to as staircasing or 
the "jaggies," is a form of aliasing, a 
common problem in signal processing. 
It can be minimized by increasing the 
resolution of the display or by varying 
the intensity of the pixels lying on the 
boundary in order to blur the line or the 
edge. (The latter process is sometimes 
referred to as anti-aliasing.) A new tech
nique that simulates higher resolution 
and avoids blurring is called pixel phas
ing by its developer, the Megatek Cor
poration. In this approach each pixel 
can be slightly repositioned by shifting it 
by a quarter, a half or three-quarters of 
a pixel diameter horizontally or verti
cally; the size of the pixel can also be 
adjusted to help fill the gaps. 

The ability to specify each pixel's in
tensity or color value independently in 
raster systems is particularly important 
for the creation of detailed character 
fonts or icons. Typically a font is defined 
as a set of small pixel arrays, one for 
each character or icon. As a character or 
icon is needed, its array is copied from 
the computer's main memory or from a 
special part of the frame buffer to the 
part holding the representation of the 
characters on the screen. On the other 
hand, because of the large number of 
pixels that must be updated whenever a 
significant part of the image is moved 
or deleted, making changes is usually 
much slower on raster displays than it is 
on vector displays, where only encoded 
primitives have to be changed. Modern 
raster systems enable the programmer 
to quickly copy and move rectangular 
blocks in the frame buffer by means 
of special operations that facilitate the 
"scrolling" of text, the rearrangement 
of windows and the creation of simple 
animated sequences. Such systems may 
also provide a display-list representa
tion, with rapid "rasterization" from en
coded primitive form to pixel form for 
the frame buffer. 

The function of high-level support 
software is to insulate the program

mer from these kinds of low-level hard
ware details so that he can concentrate 
on matters pertaining directly to the ap
plication. In the early days of computer 
graphics this was not possible, because 
graphics applications were programmed 
at the assembly-language level. Efficien
cy took precedence over ease of pro
gramming, and the transportability of 
programs from one make of computer 
to another was hardly even a considera
tion. It was not until the late 1 960's and 
early 1 970's that the drive began to write 
graphics programs at a higher level and 
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No one knovvs more 
about putting fiber optics to 

vvork than NevvYorkTelephone. 

Our advanced lightvvave technology 
doesn't just promise virtually 
error-free transmission. 
It guarantees it. 

© New York Telephone 1984 
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The New York lelephone network. 
Taking the lead in the information age. 

Fiber optics may be something new to most 
people, but not to us. We've been working with 
fiber optics technology for years. 

As a matter of fact, fiber optics, the transmis
sion medium of the future, is in place and working 
at New York Telephone today. 

Right now, New York Telephone has 32,000 
fiber miles of lightwave cables serving the telecom
munications needs of many of America's largest 
financial and industrial companies. And we have 
fiber optics projects already built or under con
struction in New York, Long Island, Westchester, 
Albany, Syracuse, Buffalo and other locations 
around the state. 

The special things fiber optics 
can do for you. 

Fiber optics can transmit voice, data and 
video messages from one point to another faster, 
more reliably and less expensively than any other 
transmission system available. 

Possibly the most important feature of our 
fiber optics network is its ability to transmit 
information practically error free. A major reason 
that reliability is made possible is that fiber optics 
do not have to electronically repeat transmissions 
as many times as conventional facilities do. Other 
reasons are that they're immune to interference 
from moisture and electrical currents and they 
transmit data in a digital format-the language that 
computers "speak." 

And, since fiber optics utilize laser light 
sources, they can transmit voice, data and video at 
speeds of up to 405 million bits of information per 
second. 

A fast, efficient net work. 
But fiber optics are only one part of our 

remarkable network . 
• > New York Telephone's network consists of a 

vast combination of electrical equipment, micro
chips, processors and memory units-all woven 
together to work with fantastic speed, efficiency 
and precision. 

And we're constantly working with new tech
nologies to modernize and upgrade that network. 

As the communications needs of New Yorkers 
and businesses such as yours grow in scope and 
sophistication, New York Telephone will have the 
solutions. We are anticipating the future. We have 
made the necessary capital commitments. We have 
the people, the ingenuity, the imagination and the 
technology. As we have for nearly a century, we will 
continue to provide you with high-quality com
munications service in the future. 

New York lives on 
New York Telephone. 

@ 
New YorkTelephone 

A NYNG Company 
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Air Force engineers are designing tomorrow's tech
nology today. It takes imagination to dream new dreams 
and skills to bring those dreams to life. 

If you're an electrical or aerospace engineer, or plan to 
be, the Air Force gives you a chance to push your skills to 
the limit and learn new ones. And while you're growing, 

you'll be helping your country grow stronger, too. 
For more detailed information, call us toll-free at 

1-800-423-USAF (in Calif. 1-800-232-USAF). Better 
yet, send your resume to HRS/RSAANE, Randolph 
AFB, TX 78150. We' re waiting for your ideas. 

AIM HIGH AIR FORCE 
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to make them independent of any par
ticular computer system. 

The first graphics software of the new 
era was designed in imitation of the 
input-output strategy of high-level pro
gramming languages. Idealized "virtu
al" devices corresponding to real inter
active devices were generated by means 
of low-level "device driver" programs 
that handled both the tricky graphics 

hardware and the equally tricky input
output communications with the central 
processing unit. Each virtual display 
had a square virtual screen designed 
to coincide with the largest square that 
could fit on the actual display surface 
or the plotter. The same unit coordinate 
system was used to address the virtual 
screen regardless of the real screen's 
dimensions. Each virtual display could 

REPRESENTATION OF OBJECT 
IN "WORLD" COORDINATE SYSTEM 

VIEW VOLUME 

also have virtual input devices. Input de
vices not available on a particular con
sole could be simulated by means of the 
devices present; in this way one could 
create, for example, a virtual keyboard, 
virtual dials or even a virtual mouse. 

Most graphics programs at the time 
were developed for applications in com
puter-aided design and data visualiza
tion. The programs ran on vector dis-

VIEWING TRANSFORMATION is the operation whereby a stored 
representation of an object (in this case an idealized milling machine) 
is projected from a three-dimensional "world" coordinate system 
onto the two-dimensional coordinate system of a screen, represented 
by the image plane in this schematic diagram. Mimicking the opera-

tion of a camera, the software "clips" the parts of the object that are 
outside the view volume and then projects only the parts that are in
side the view volume onto the screen. For a three-dimensional per
spective projection the clipping boundary is typically a pyramid. In 
this case hidden edges were eliminated before the projection stage. 
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play systems and plotted pictures de
rived from an application data base, 
known as the application model. The 
graphics software provided the applica
tion programmer with a two- or three
dimensional "world" coordinate system 
equally suited to handling angstrom 
units, centimeters, miles or light-years. 

The world coordinate system enabled 
the programmer to abstract the defini
tion of primitives to a level even further 
removed from the hardware than that 
of the virtual screen's standard coordi
nate system. The software also handled 
the entire viewing-transformation opera
tion, specifying the area currently in 

IMAGE SYNTHESIS BY COMPUTER can be thought of as proceeding through a sequence 
of steps, although in fact they are often interlaced in a single program. In this demonstration of 
the process the object (a close-up of the milling machine) is defined as a mesh of polygons and 
is displayed first in the form of a "wire frame" diagram (1). Hidden edges are then removed (2). 
In the next step shading (in this case color shading) is applied individually to the polygons as a 
function of the angle of the polygon with respect to the light sources and of its surface proper
ties; the result is a picture with an unnatural, faceted appearance (3). The discontinuities at the 
shared edges between adjacent polygons can be smoothed by Gouraud shading (4), and specu
lar (mirrorlike) highlights can be added by Phong shading (5). In the final step anti-aliasing 
smooths out the jaggies (6). The images were made by Rinzler and Strauss in collaboration with 
Roger L. Gould, Richard L. Hagy, David H. Laidlaw and Gerald I. Weil, all students at Brown. 
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view in the world coordinate system and 
the region of the virtual screen on which 
it was to appear. The viewing-transfor
mation software "clipped" primitives 
that were outside the viewing area and 
projected only those primitives that 
were inside the viewing area onto the 
actual screen. In two dimensions the 
clipping boundary was a rectangle, 
whereas in three dimensions it could be 
either a rectangular solid (for a parallel 
projection) or a pyramid (for a perspec
tive projection). 

In effect, the type of graphics software 
that was first developed a decade or 
more ago can be described by the "syn
thetic camera" metaphor: the applica
tion program constructs a world consist
ing of objects such as flow-chart sym
bols, circuit elements or atoms in the 
application-dependent model, incl uding 
all the appropriate attributes and pa
rameters, and then extracts geometric 
information from it to pass on to the 
graphics software. The graphics soft
ware, which is typically under the view
er's control, then takes a snapshot of 
the specified primitives in the viewer's 
world from the specified viewpoint and 
posts the snapshot on the screen. Thus 
modeling is the responsibility of the ap
plication program, and viewing some 
part of the model is the responsibility of 
the synthetic-c<!mera software. The ap
plication itself typically consists of two 
subsystems: a graphics editor that en
ables the viewer to create and manipu
late the application model and its vis
ual representation, and an independent 
set of postprocessing packages that ana
lyze the completed application model. 
In computer-aided design these pack
ages include provisions for simulating 
and testing the design and subsequently 
specifying manufacturing data for fab
rication and construction, often by nu
merically controlled machine tools. 

Two standard graphics packages are 
now becoming available for all 

categories of commercial displays: the 
three-dimensional Core Graphics Sys
tem sponsored by the Association for 
Computing Machinery and the two
dimensional Graphical Kernel System 
adopted by the International Standards 
Organization. Derived from a common 
ancestor, they are both essentially syn
thetic-camera packages. As it happens, 
they were largely designed before raster 
graphics became the dominant form of 
computer display. Although they can 
handle raster primitives such as pixel ar
rays and filled polygons, they still oper
ate in the world coordinate system, with 
user-defined objects. For many simple 
applications in raster graphics the appli
cation program cannot take enough ad
vantage of the facilities of the package 
to justify the considerable computation
al "overhead" needed to handle more 
complex applications. Moreover, a pro-
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OUR MTOS REAL-TIME 
OPERATING SYSTEMS ARE 
THE NUMBER ONE CHOICE 

FOR CONTROL APPLICATIONS 
WORLDWIDE. 

Since 1973, IPI's MTOS family has been 
used in more control applications than 
any other real-time operating system. 

From radar to robotics. Avionics to 
process control. The list of potential MTOS 
applications is limited only by your 
imagination. 

Available for 8-bit and 16-bit 
Intel and Motorola microprocessors. 

MTOS is fast. It's simple to use. And all 
our systems are conceptually compatible. 
So once you've learned to use one sys
tem, you can use them all. 

MTOS is also rich in coordination 
and other critical services. And unlike 
some operating systems, it's written in 
assembly language; the result is speed 
and compactness. 

MTOS offers 
multiprocessor support. 

MTOS is the only system that will control 
several microprocessors on a common 
bus. For advanced applications such as 
vision systems and signal processing, 
this unique capability is indispensable. 

Our customer list is a 
who's who in high technology. 

MTOS is sold in the United States and in 
twenty countries overseas. Our customers 
include many Fortune 500 companies 
and some of the most prestigious names 
in academia. 

Specially configured versions of 
MTOS are available for various hardware, 
such as the IBM® PC. Other versions are 

available in source form, and are sold 
under a liberal licensing policy. 

To learn more about real-time oper
ating systems in general, and MTOS in 
particular, call or write for our free booklet 
"On Operating Systems." Industrial . 
Programming, Inc., 100 Jericho Quad
rangle, Jericho, NY 11753. Telephone: 
800-228-MTOS (in New York State call 
516-938-6600). Telex 429808 (ITT). 

IBM is a registered trademark of International Business MochinesCorporofion. 

• • 

• f). Industrial 
Programming Inc. 

The standard-setter in operating system software. 
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HIGH-QUALITY, REAL-TIME ANIMATION is achieved in certain special-purpose appli
cations, as seen in this sequence of frames selected from an interactive flight-simulation sys
tem for training pilots in aerial-refueling procedures. The ultrahigh-performance system, 
which is capable of generating 50 frames per second, is a product of Evans & Sutherland. 
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gram relying on a graphics package may 
not be able to take full advantage of 
several powerful new hardware capa
bilities associated with raster-graphics 
work stations and personal computers. 

Programs that do not adhere to the 
modeling-followed-by-viewing scheme 
of the synthetic-camera metaphor in
clude the "painting" programs now be
coming popular on raster-graphics sys
tems. The objects manipulated in such 
programs are not world coordinate ob
jects but rather the individual pixels, 
and the package must enable the viewer 
to recolor, move or even logically com
bine arbitrary regions in the frame buff
er. Painting by manipulating pixels in 
the frame buffer is analogous to making 
a photograph by altering areas on the 
emulsion directly rather than by expos
ing the film through a camera aimed at a 
real scene. Synthetic-camera packages 
are unsuitable for such low-level, de
vice-dependent operations. 

The situation is further complicated 
by the need to manage multiple win
dows on the bit-mapped screen. The ex
isting graphics packages have no way to 
handle multiple application programs. 
Most raster-gr.aphics work stations are 
therefore provided with a "window 
manager," a low-level part of the system 
software that keeps track of which pro
gram runs in which window and where 
the window is defined on the screen. One 
window might run a painting program, 
another a word-processing program and 
a third an application program based on 
a standard graphics package. The win
dow manager must handle such prob
lems as moving windows, covering and 
uncovering overlapping windows, scal
ing or clipping primitives to fit in the 
currently visible part of a window and 
finally rasterizing the visible primitives 
for display on the screen. As yet there is 
no commonly accepted design for such 
window managers. 

For the foreseeable future a number 
of graphics standards designed by differ
ent communities of users will coexist. 
Examples include the Initial Graphics 
Exchange Specification, an engineering
drawing standard for computer-aided 
design, and the North American Presen
tation Level Protocol Syntax, for dis
plays of text and graphics on television. 
All the standards share the common 
purpose of defining primitives, their at
tributes and their groupings in named 
collections for selective manipulation 
as a group. Eventually these diverse 
standards should be brought together. 

Most traditional applications of com
puter graphics have been two-di

mensional. Lately, however, there has 
been increasing commercial interest in 
three-dimensional applications, arising 
from the significant progress made in 
the past decade on the twin problems of 
modeling three-dimensional scenes and 
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displaying them as realistically as possi
ble. In flight simulators for training pi
lots, for example, the emphasis is on re
sponding to input from both the pilot 
and the instructor. To give the impres
sion of smooth motion the simulator 
must present a fairly realistic picture of 
a dynamically changing world at a rate 
of at least 3 0  frames per second. In 
contrast to this real-time animation, 
pictures for the advertising and enter
tainment industries are computed off
line, often for hours, in order to get 
maximum realism or visual impact. In 
computer-aided design there is now 
increased emphasis on creating wire
frame diagrams interactively and then 
promptly displaying them in a fully ren
dered version. The newest hardware 
even makes possible the interactive cre
ation of polygonal "solid" objects. 

Two-dimensional objects are mod
eled by such primitives as lines defined 
by two endpoints, polygons defined by a 
list of vertexes and possibly a fill pat
tern, circles defined by a center, a radius 
and possibly a fill pattern, and polyno
mial curves defined by their coefficients. 
In three dimensions the corresponding 
primitives are defined by adding the z 

coordinate. Primitives that exist only in 
three dimensions can also be defined; 
they include polyhedrons, pyramids, 
spheres, cylinders and surfaces de
scribed by certain polynomial functions. 

Solid-modeling systems for creating 
three-dimensional objects rely on either 
interactive or off-line specification of 
parameters. Off-line specification can be 
done with data files created by another 
program or with a text editor. Alterna
tively a procedural description, such as 
the one used to generate fractal curves 
and landscapes, can do the job. Further
more, an object can be modeled direct
ly as a solid or indirectly as a volume 
bounded by its surface. 

In systems based on constructive solid 
geometry objects are modeled directly 
by solid primitives such as blocks, cylin
ders and spheres. The primitives can be 
combined by means of three-dimension
al set operations such as union (joining 
two objects), intersection (taking a com
mon subset) and difference (taking all 
of the first object except for those parts 
it has in common with the second ob
ject). Indirect representation is done in 
boundary-representation systems that 
may also provide set operators but that 
define an object as bounded by polygo
nal facets, cylindrical facets or even 
surface patches defined by polynomial 
functions. Such "free form" surface def
inition with curved patches has become 
important to aerospace and automobile 
companies for sculpting the bodies of 
their vehicles. 

An object with rotational symmetry 
.£\. can also be described by a surface of 
revolution; a vase or a bottle is defined 

by its generator (the silhouette curve) 
and an axis of revolution. Analogous to 
such a rotational sweep is the transla
tional sweep: here a face of arbitrary 
complexity, including holes, is translat
ed along a space curve to create a vol
ume. An idealized gear can be made by 
first defining a quarter section of a face, 
using symmetry operations to complete 
the face and then sweeping the face 
along a short straight path to define the 
cylindrical form of the solid gear. 

Many other mathematical techniques 
are useful in defining classes of objects, 
and hybrid systems incorporate a varie
ty of techniques. The special case of 
making objects interactively presents 
an additional problem with these meth
ods in that the user is forced to look at a 
two-dimensional projection of a three
dimensional scene in which depth is dif
ficult to assess. Among the techniques 
that can give the user some feedback as 
the specification process proceeds are 

RAY-TRACING TECHNIQUE relies on an extremely time-consuming algorithm to com
pnte the reflection and refraction of light from the surfaces of imaginary objects. Basically the 

computer program traces individual light rays, starting at the viewpoint and passing backward 
through each pixel in the image plane until the ray hits a surface. The reflected ray is then con
tinued to see if it could have come from a light source, either directly or after reflection from 
another object. For a transparent surface a second, refracted ray must also be traced. In this 
demonstration of the technique, produced by Lee Westover and Turner Whitted of the Univer
sity of North Carolina and Numerical Design Ltd., a ray-traced image is shown at the top and 
the technique by which the image was made is shown in the computer-generated diagram at 
the bottom. White lines trace two reflected rays; refracted components of the rays are omitted. 
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multiple views (such as the standard or
thographic projections of front, side and 
top, as well as a three-dimensional per
spective view), drawing in a plane of 
constant x, y or z coordinates and aids 
such as dynamically updated dimension 
lines and two- or three-dimensional 
grids with tick marks. 

When the objects in the scene have 
been defined, the next phase is to pass 
the object description to the image-syn
thesis programs for rendering. Current 
image-synthesis algorithms work either 
with polygonal descriptions or with pol
ynomial or other higher-order defini
tions of mathematical surfaces. It is 
common to reduce higher-level defini
tions to a simpler "piecewise" approxi
mation with a mesh of small polygons 

prior to rendering. The rendering proc
ess can be idealized as a sequence of 
steps, but the steps are often interlaced 
in an actual program. All of them are 
basically adaptations of the fundamen
tal laws of optics. 

The first step is the elimination of hid
den surfaces, that is, surfaces or parts of 
surfaces that are not visible from the 
point of view of the synthetic camera. 
This category includes both surfaces 
on the far side of objects and those ob
scured by other objects closer to the 
viewpoint. Various techniques for the 
elimination of hidden surfaces can be 
implemented in hardware. The algo
rithms typically assume that the screen 
lies in the z = 0 projection plane for the 
scene that lies behind it. For example, 

SIMPLE TECHNIQUE for generating a realistic image of a mountain is loosely based on the 
concepts of fractal geometry originally formulated by Benoit B. Mandelbrot of the IBM Thom
as J. Watson Research Center. This demonstration of the technique is reproduced through the 
courtesy of Lucasfilm Ltd. Starting with the single triangle shown in step I, the computer pro
gram generates step 2 from it by the following procedure. First, break each side of the triangle 
at its midpoint. Second, displace each midpoint by a distance proportional to the length of the 
corresponding side. (The factor of proportionality can be generated at random or taken from a 
table of, say, 100 well-dispersed random numbers.) Third, connect the three new points to one 
another to form four new triangles. Step 3 is generated from step 2 by applying the same pro
cedure in turn to each of the four new triangles, generating 16 triangles, to each of which the 
procedure is applied again in step 4, and so on. Although the subdivision algorithm is simple, 
it can yield a very complex polygonal surface. The mountainlike surface in step 8 can lat
er be rendered by standard computer-graphics techniques to produce a finished landscape. 
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the z-buffer algorithm maintains a sepa
rate buffer of z val ues, one value for 
each pixel. The z val ue of a pixel records 
the depth of the corresponding point on 
the nearest polygon encountered so far 
that projects on the pixel. When a new 
polygon is transformed, clipped and 
projected onto the z = 0 plane, the z val
ues of its component pixels are com
pared one at a time with those stored in 
the z buffer. Only if the z value of a pixel 
in the current polygon is smaller (signi
fying that the polygon is closer to the 
screen at this pixel than any polygon 
previously encountered) is the current 
pixel "in view" and stored in both the 
refresh buffer and the z buffer. It actu
ally becomes visible only if it has not 
been replaced by the time the last poly
gon is processed. 

Unlike the z-buffer algorithm, which 
takes polygons in any order, the "paint
er's algorithm" first orders them from 
back to front. In the event that pairs of 
polygons cannot be simply ordered, 
they are subdivided until their pieces 
can be. They are then projected and 
"painted" in the frame buffer in back
to-front order so that the polygons clos-' 
er to the viewpoint properly eclipse 
more distant ones, without the need for 
further computation. 

After the visible surfaces have been 
I\. computed the next step is to calcu
late the shading for each one. The shad
ing rule must take into account both the 
properties of the surface (its color, tex
ture and reflectance) and the relative lo
cation, orientation and properties of the 
light sources and other surfaces. Illumi
nation models for light sources can take 
into account ambient light, point sour
ces (such as the sun or an incandescent 
bulb) or distributed sources (such as a 
window or a row of fluorescent tubes). 

Ambient light is most easily modeled 
by adding a constant amount of light 
intensity to all surfaces, but naturally 
that strategy affords no way of differen
tiating among surfaces. The reflection of 
point sources of light by matte, or dif
fuse, surfaces (those that scatter light 
equally in all directions) is modeled by 
Lambert's cosine law, which states that 
intensity varies as the cosine of the angle 
between the direction of the light source 
and a vector perpendicular to the sur
face, called the surface normal. The 
brightest illumination appears when the 
surface is perpendicular to the light 
source. For shinier surfaces that yield 
specular, or mirrorlike, highlights, such 
as brightly polished wood or metal, the 
amount of light reflected depends on 
both the angle of the light source and the 
angle of the viewpoint with respect to 
the surface normal. The surface acts like 
a mirror in that it reflects most of the 
light only when the angles are almost 
eq ual (that is, when the viewpoint and 
the light source are arranged symmetri-

© 1984 SCIENTIFIC AMERICAN, INC



cally with respect to the surface nor
mal). As the angles become more un
equal, the light intensity falls off rapidly. 
Adding the components of ambient, dif
fuse and specular reflection gives the 
intensity of a single surface. If color is 
involved, there is an equation for each 
of the three primary colors. 

The effect of this combination of op
erations is an unnatural, faceted appear
ance. Since the polygon is described by a 
single surface normal, adjacent poly
gons with different surface normals 
have different intensity values, and there 
is a noticeable discontinuity at the 
shared edge. Gouraud shading (named 
after its inventor, Henri Gouraud) aver
ages intensity values at the vertexes of 
the polygons and then across the scan 
lines to achieve smoothness. Phong 
shading (named after its inventor, the 
late Bui-Tuong Phon g) improves on 
Gouraud shading by using a more de
tailed calculation that is more sensitive 
to the directional effects of specular 
highlights. The newest medium-priced, 
high-performance raster-graphics sys
tems are now capable of doing the entire 
rendering job for approximately 3 ,000 
polygons per second. They proceed by 
first processing an object hierarchy, 
including the application of geometric 
transformations to its components to 
simulate motion, next computing the 
viewing transformation and then carry
ing out the hidden-surface and smooth
shading algorithms. A few years ago 
this level of performance was available 
only on special-purpose flight simula
tors costing millions of dollars. 

Other effects to be dealt with include 
shadows, light transmission and surface 
properties such as texture and grain. 
Shadow algorithms for point sources re
semble algorithms for eliminating hid
den surfaces in that they determine what 
surfaces can be "seen" from the light 
sources. Surfaces that are simultaneous
ly visible from the viewpoint and from 
the light sources are not in shadow, 
whereas those that are visible from the 
viewpoint but not from the light source 
are. For distributed light sources the 
complex calculations must include both 
the umbra and the penumbra. 

Tight transmission is an even more dif
L ficult subject. "Specular" transmis
sion, characteristic of transparent sur
faces such as glass, is determined by the 
substance's index of refraction. Diffuse 
transmission through translucent mate
rials such as frosted glass causes scatter
ing in all directions. The most compu
tationally complex and most realistic 
algorithms for dealing with both reflec
tion and refraction are called ray-trac
ing algorithms. In essence they trace in
dividual light rays to determine which 
of them end up at the viewpoint and how 
they got there. In order to avoid having 
to deal with an infinity of lines emanat-

COMPOSITE IMAGE of a seaside landscape, titled "Point Reyes," was produced by a team 
of workers at Lucasfilm. The landscape was defined by a variety of techniques; the different 
elements of the scene were rendered separately and later combined. The simple procedural
modeling technique shown in the iIInstration on the opposite page was used by Loren Carpen
ter to define the rocks, the mountains and the lakes; he also wrote the hidden-surface program 
and an "atmosphere" program for the sky and the haze. Rob Cook directed the project, de
signed the road, hills, fence and rainbow, and wrote the texture-mapping software. Tom Por
ter provided the procedurally drawn texture for the hills and also wrote the software for com
bining the elements to form a composite image. Bill Reeves defined the grass by means of a 
"moving particle" system he developed; he also wrote the modeling software. David Salesin put 
the ripples on the puddles, and Alvy Ray Smith designed and rendered the /lowering plants. 

ing from a point source, the process 
works backward, starting at each pix
el. Each ray starting at the viewpoint 
and passing through a pixel is project
ed backward until it hits a surface. The 
backward tracing of the reflected ray 
then continues to determine whether it 
could have come from a light source or 
from reflection from another object. For 
a transparent surface a second, refract
ed ray must also be traced. Each ray is 
in effect a probe that must be tested 
for intersection with each object; only a 
small percentage of the rays ultimately 
have antecedents in a light source. New 
techniq ues exist to handle the reflection 
and refraction of diffuse light, but they 
are still very expensive in terms of the 
amount of computation they require. 

Surface texture can be handled by 
various models that build in local irreg
ularities. For mapping a two-dimension
al pattern onto a surface a pattern of 
intensity values can be used to modulate 
the intensities computed by the shading 
and shadowing algorithms. Some of the 
most recent work in image synthesis is 
concerned with effects such as depth of 
field, motion blur and the realistic ren
dering of objects in nature that exhibit 
both statistical regularity and irregulari
ty, such as mountains, water, sky, trees 
and bushes. 

Whether one is dealing with simple 
block diagrams or highly realistic pic
tures, the most important function of 
computer graphics is to increase one's 

understanding, to enable one to experi
ment without danger, discomfort or un
due cost and to help answer "what if 'l 
questions. For most modeling and simu
lation studies, however, mere static rep
resentations will not suffice: the phe
nomena one generally wants to under
stand are dynamic. A static picture may 
be worth a thousand words, but a mov
ing picture is often worth many static 
ones. A key capability of the new gener
ation of powerful work stations is to re
veal the behavior of objects as they vary 
over time, by means of real-time user
controlled animation. 

Among the objects exhibiting dynam
ic behavior that are of particular interest 
to programmers are programs and their 
data structures. Since the beginning of 
computer graphics in the early 1 960's 
there has been considerable interest in 
using a diagrammatic approach to the 
design of computer hardware and soft
ware. Block diagrams, flow charts, mod
ule-interconnection diagrams, data-flow 
diagrams and many other symbolic rep
resentations have been used to portray 
systems whose designs were specified 
by typing in statements in a textual lan
guage. Although much hardware design 
today is done with graphical symbols, 
there are as yet no programming lan
guages in common use in which the 
basic elements are pictorial rather than 
textual. 

Thus graphics programs are specified 
in an ordinary programming language 
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such as FORTRAN or Pascal with "calls" 
to special-purpose graphics packages, 
not by specifying graphically what is 
wanted. The reasons for this curious 
contrast between the specification tech
niques for hardware and those for soft
ware include the compactness and preci
sion a conventional programming lan
guage affords and the ease with which 
changes can be made with a text editor 
that includes good facilities for seeking 
out specified text patterns. Experience 
with true pictorial languages is lacking. 

Although computer scientists know 
rather well what facilities a programmer 
needs to specify how to do something in 
a conventional programming language, 
they are still not very good at the much 
more difficult problem of letting a user 
specify what is to be done and then hav
ing the system automatically compile an 
appropriate procedure from this speci
fication. Meanwhile considerable prog
ress has been made in the development 
of work-station-based programming en
vironments. In general these facilities 
enable the programmer to edit interac
tively and to "debug" programs with the 
aid of multiple views of programs and 
data, represented in the form of text or 
icons. The views are dynamically updat
ed as the program is executed. 

Two promising areas for the appli
cation of dynamic computer graph

ics are the classroom and the laborato
ry. Many schools and universities are 
turning to microcomputer-based in
struction. One of the techniques adopt
ed is the traditional "programmed learn
ing" style of computer-assisted instruc
tion, which emphasizes the acquisition 
of facts and skills. Computer-assisted in-

MA THEM A TICALAPPLICA TION of com
puter graphics is represented in this sequence 
of frames, adapted from the computer-ani
mated film "Topology and Me�hanics," by 
Huseyin Kocak, Frederick Bisshopp, Thom
as F. Banchoff and David Laidlaw of Brown. 
A hypersphere, an analogue in four-dimen
sional space of an ordinary sphere, can be vis
ualized by "filling" it with two interlinked cir
cles and a succession of surrounding toroidal 
surfaces. (The operation is roughly analogous 
to slicing a sphere into two points at opposite 
poles and a succession of parallel circles in be
tween.) The frames show a series of perspec
tive projections onto three-dimensional space, 
made from a viewpoint on the hypersphere, 
of two toroidal surfaces (one blue and one red) 
closely enveloping the two circles of the hy
persphere. A third toroidal surface (yellow) is 
shown as it moves from the blue surface to the 
red one in six steps. The yellow surface has 
been cut into bands to reveal its linkage with 
the other two surfaces. This method of "dec om
posing" a hypersphere was inspired by work 
done by the German mathematician Heinz 
Hopf in 1931.  The computer is invaluable in 
implementing such mathematical procedures, 
since it can easily be made to manipulate ab
stract objects in a higher-dimensional space. 

struction is now being augmented by 
simulated "laboratory" experimentation 
and by "browsing environments" in 
which information is available much as 
it is in an encyclopedia or a library. Five 
years ago, at the instigation of my col
league Robert Sedgewick, the computer
science department at Brown University 
began to study the applications of work
station technology to education and re
search. Last year we inaugurated a nov
el electronic classroom, equipped with 
5 5  high-performance work stations con
nected in a high-speed network. Most 
introductory courses in the computer
science curriculum are now taught in 
this specially constructed auditorium, 
as are sections of courses in differen
tial equations, differential geometry and 
neuroscience. 

Our aim is to offer students an oppor
tunity to "see" an abstract phenomenon, 
and thereby to develop some geometric 
intuition about it, before delving into 
the details of programming or mathe
matics. We also want to involve them 
with the material more quickly by com
bining the classroom lecture with the 
laboratory experiment. Most students in 
a formal lecture are passive, even when 
questions are encouraged. As a result 
they do not really confront the material 
until they have to do homework or a 
laboratory exercise. Now an instructor 
can introduce a new topic by talking his 
way through an animated sequence of 
images viewed by all students and then 
letting each of them work independent
ly on the same "interactive movie." 

Our primary support environment, 
the Brown Algorithm Simulator and 
Animator (BALSA), enables users to con
trol the speed of an animated sequence, 
to decide which views of the subject to 
look at and to specify the input data to 
be processed. There is even a facility for 
running programs backward and undo
ing their graphical effects. 

Multiple dynamic views of complex 
objects have turned out to be valua
ble not only to students but also to re
search workers. Much work has begun 
at Brown to learn how the technique 
can be generalized, both to other sub
jects in science and engineering and to 
fields that have no tradition of graphi
cally representing their objects and proc
esses of study. Are there intrinsic rea
sons for the absence of pictorial repre
sentation in some fields, or is it merely a 
cultural artifact? If many other ways of 
using graphics in various disciplines 
are found, how might that change class
room pedagogy? This question is partic
ularly relevant as work stations start 
proliferating on the campus and many 
students have 24-hour-per-day access to 
them in their dormitory rooms. How do 
instructors not accustomed to program
ming specify and implement "course
ware" without having to invest the usual 
preparation time for computer-aided 
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ELECTRONIC CLASSROOM developed by Robert Sedgewick and 
the author together with their cOlleagues in the computer-science de
partment at Brown is equipped with SS high-performance work sta
tions connected in a high-speed network. The instructor can first pre-

view a topic through an animated sequence of images viewed by all 
students and then let each of them work independently on the same 
"interactive movie." The specially constructed auditorium has been 
used for courses in computer science, mathematics and neuroscience. 

instruction of 1 00 hours or more per 
classroom hour? Many years of devel
opment and experimentation will be 
needed before this promising new capa
bility can be widely disseminated. 

Our interactive classroom demon
strations at Brown are an example 

of the more general category of what 
might be called "electronic books." A 
rather different example is the Spatial 
Data Management System developed 
at the Massachusetts Institute of Tech
nology. This system makes it possible 
to browse in a two-dimensional "data 
land," an arbitrarily large desktop popu
lated by icons. The cursor can be moved 
to point at any icon to display its con
tents. The data base stores text, dia
grams, photographs, sound and televi
sion frames (retrieved in real time from 
a videodisk). 

In a related experimental system at 
Brown the desktop metaphor is replaced 
by that of an associative network of text 
pages and footnotes, marginalia and 
cross-references. The reader can follow 
a trail of cross-references between asso
ciated topics, much as one would with 
an encyclopedia. Such a nonlinear man
uscript has been called a hypertext by 
Theodor H. Nelson, a leader in the 

movement to exploit computer-display 
technology to create a new literary 
form. Other projects at the frontier of 
computer graphics, initiated by Nicho
las P. Negroponte and his co-workers 
at M. I.T., include an interactive auto
mobile-maintenance-and-repair manual 
that can explicate text by creating cus
tomized "movies" based on sequences 
of stored frames from videodisks, and 
an electronic newspaper that continu
ously scans the wire-service reports and 
its data base and formats stories and pic
tures for the reader on the basis of a 
stored reader-interest profile. 

Computer professionals, and particu
larly specialists in graphics, can take 
pleasure in the fact that finally our 
promises of the utility and convenience 
of computing for the general public are 
being kept. Computer graphics, once 
the domain of experts, is commonplace 
as even children in elementary school 
work with windows, mice and comput
er displays as instruments for draw
ing and indeed for imagining. Thinking 
and programming in terms of graphics 
are becoming an integral part of learn
ing to construct algorithms. 

And what of the future? There must 
still be an improvement of orders of 
magnitude in the price-performance ra-

tio of hardware before the average user 
can have the equivalent of a real-time 
flight simulator on his desk (let alone 
on his lap), and much more progress 
will have to be made in understanding 
the interaction of the laws of physics 
and aesthetics before computer artists 
will know how to render convincingly 
realistic scenes that also please the eye. 
Eventually true three-dimensional dis
plays will open up yet another realm: 
research on digital holograms may re
sult in real-time computation of lifelike 
scenes. On the input side, additional 
work is needed on the user interface. For 
example, pictures must be better inte
grated with sound, as in the case of voice 
input and output. Much progress will 
also have to be made in understanding 
the structure of natural language and in 
related areas of artificial intelligence be
fore users can carry on conversations 
with their computers. New methods of 
providing tactile control and feedback 
are also needed for exploring the "feel" 
of the objects seen on the screen. For me 
the ultimate ideal is expressed in the old 
comic strip "Mandrake the Magician" : 
"Mandrake gestures hypnotically . . .  " 
and in the twinkling of an eye a new 
scene, a new sensory environment, is 
conjured up. 
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Computer Software 
for Information Management 

Enormous volumes of stored data are of use only if information can be 

retrieved quickly in an understandable form. Software for the purpose 

must reflect the structure of the data base and of the storage medium 

A 
anyone with a cluttered office 
knows, having a large quantity 
of information on hand does not 

guarantee ready access to any particu
lar piece of information. In the past two 
decades there has been a rapid increase 
in the capacity of electronic machines to 
store information and an eq ually rapid 
decrease in the cost of storage. In gener
al the development of software for orga
nizing and retrieving the electronical
ly stored data has not kept pace. Those 
who are writing programs for informa
tion management are in the position of 
having to catch up with the capacities of 
the computing machinery. 

What principles are guiding the effort? 
One principle is that the best form of 
organization depends on the content of 
the information and on how the infor
mation is to be used. For example, pro
grams that maintain a list of names have 
been written for many purposes; they 
vary considerably according to what 
information is associated with each 
name and how the names are retrieved. 
A commercial system called Soundex is 
employed to identify airline passengers 
with reservations for a particular flight. 
Soundex stores the names phonetical
ly, which reduces the number of tran
scription errors and allows a name to 
be found even if the exact spelling is 
not known. The Chemical Abstracts 
Service maintains programs for deter
mining whether a particular substance 
has already been identified, a task that 

by Michael Lesk 

in a formal sense is similar to the one 
done by Soundex. The systems are not 
phonetic; furthermore, they record con
siderable information about chemical 
structure and nomenclature. Informa
tion specific to one domain of knowl
edge can improve the efficiency of a pro
gram in accomplishing one job, but the 
program then becomes less suitable for 
other purposes. Programs designed for 
a chemicals data base would be a poor 
choice for listing airline passengers. 

Another consideration is the physical 
structure of the storage medium. Mag
netic disks for storing data became com
mon in the late 1970's. On a disk data 
are recorded in subunits called blocks, 
and access is most efficient if the logi
cal divisions of the data approximate the 
boundaries of the blocks. Thus software 
aimed at managing large quantities of 
information is constrained on the one 
hand by the structure of the machinery 
and on the other hand by the content 
of the information. The effort to design 
software that more fully exploits the 
capacities of current machines is large
ly defined by the need to accommodate 
these two fundamental constraints. 

A
small group of related items in an 

electronic data-storage system is 
generally referred to as a record. For 
example, in a file describing the stock 
on hand in a supermarket each record 
might include the type of product, the 
general category of goods of which it is 

SHORTEST ROUTES TO THE PLAZA HOTEL from Wall Street were calculated by a com

puter program, which thereupon drew the map of the southern part of Manhattan Island shown 

on the opposite page. One route, shown in white, minimizes travel time and the other, shown 

in orange, minimizes distance. Because of the pattern of one-way streets in lower Manhattan, 
each route begins with a change of direction. The route that minimizes time passes along West 
Street to Tenth Avenue, which is followed uptown. Stored information about the average trav

el time on each street enables the program to specify the route that takes the minimum time. 
The route that minimizes distance begins on West Street, then passes uptown along Sixth Av
enue. Software for storing and processing the information in the map was formulated by the 

author and his co-workers. The program for identifying the routes that minimize time and 
distance was written by one of those co-workers, Jane Elliott of AT&T Bell Laboratories. 

a part, the number of the aisle where 
the prod uct is to be found and the price. 
Each item in the record, such as the type 
of prod uct, is referred to as a field. The 
record is retrieved from the electronic 
file by means of a key: a label that can 
consist of a field, a part of a field or a 
combination of several fields. 

Some types of fields are employed as 
keys more frequently than others. It is 
probable that in the supermarket data 
base the aisle number would serve as a 
key but the price would not; hence the 
user could easily find all the products 
that are for sale in aisle 3 but could not 
easily find all the products that cost 49 
cents. Other information, such as the 
name of the wholesaler that supplied 
the product, the shelf life of the prod
uct and the quantity of stock on hand 
might or might not be keyed. The soft
ware employed to manage the informa
tion should make it easy to search for 
the record that includes a particular val
ue of the key. 

It should be noted that the key need 
not be taken directly from the record. 
In formulating a directory-assistance 
system for AT&T Bell Laboratories I 
transformed nicknames in the storage 
record into their formal equivalents in 
the key. Thus "Chuck" in the record 
became "Charles" in the key. The trans
formation, however, was specific to 
the domain of telephone listings: in a 
geographic data base Billings, Mont., 
clearly would not be transformed into 
Williamings. 

The varying relations among records, 
fields and keys serve to define the three 
main ways of organizing electronic rec
ords: the hierarchical, the network and 
the relational. The hierarchical system 
is so named because of the ordering of 
the fields in the record. In each group of 
records one field is designated the mas
ter field and the other fields are subordi
nate to it. Groups of records are ar
ranged in a serial order resembling the 
rungs of a ladder and data can be re-

163 
© 1984 SCIENTIFIC AMERICAN, INC



trieved only by traversing the levels ac
cording to a path defined by the succes
sion of master fields. 

Hierarchical data bases have beeJ1 em
ployed since the beginning of the JTIod
ern period of machine computation in 
the 1940's and examples of their oper
ation could be chosen from many fields. 
As a simplified example, consider the 
supermarket data base discussed above. 
The first level of organization in such a 
body of information could include a ta
ble giving the aisle numbers and the 
general category of goods available in 
each aisle. The category of goods serves 
as the master field. Only by retrieving 
the table of aisles and their contents and 
then selecting a category, such as prod
uce, can the tables at the next level 
be reached. 

The second level of the hierarchy 
might include tables that list the specific 
products available in an aisle. The tables 
farther down might include the price 
of each product, the wholesale supplier 
and the product's shelf life. Only by tra
versing several levels of the hierarchy 
in sequence can information about a 
particular article, such as its price, be 
retrieved. Unless additional indexes are 
constructed within the file it is costly in 
terms of computer resources to ask 
questions that deviate from the hierar
chical path, such as inquiring about the 
price directly. 

The network model is somewhat 
more flexible than the hierarchical one 
because multiple connections can be 
established between files. Such connec-

Aisle 

1 
2 
3 
4 

2 

Produce Cucumber Oairy Milk 
Lettuce Yoghurt 
Tomatoes Butter 

3 II 
Item Unit Price 

Cucumber .49 each 
Lettuce .79 per head 
Tomatoes .59 per pound 

tions enable the user to gain access to a 
particular file without traversing the 
entire hierarchy above that file. By this 
means the subsidiary connections modi
fy the vertical structure of the data base 
in a significant way. For example, in 
the supermarket data base a connection 
could be established between the list of 
aisles and the table of prices, so that it 
would be possible to find the price of an 
article without first retrieving the inter
mediate table that identifies the prod
ucts for sale in the aisle. 

T
he relational model, which was de
veloped by E. F. Codd of the Inter

national Business Machines Corpora
tion in about 1970, is currently the sub
ject of much interest because it promises 
greater flexibility than the other types of 
data bases provide. In both the hierar
chical form of organization and the net
work form some questions are answered 
much more readily than others. More
over, which questions are difficult to 
answer and which questions are easy 
to answer is determined when the data 
base is constructed. In many instances 
there is no sound basis for determining 
in advance what the most frequently 
asked questions will be. 

In the relational data base flexibility is 
achieved by abolishing the hierarchy of 
fields. All fields can be utilized as keys 
to retrieve information. A record is not 
thought of as a set of discrete entities 
with one item being designated the mas
ter field; instead each record is con
ceived as a row in a two-dimensional 

Contents 

Produce 
Oairy 
Noodles 
Fish 

Noodles Linguini 
Spaghetti 
Torteliini 

Fish Flounder 
Swordfish 
Codfish 

HIERARCHICAL DATA BASE consists of tables that must be scanned in a predetermined 
order to retrieve information. The illustration shows the steps that might be needed to find the 

price of a product in a file storing data about the stock on hand in a supermarket. The first 

table in the hierarchy identifies the aisles and the general category of goods available in each 
aisle (1). The general category can be em ployed to retrieve a table on the next level that lists 
the specific products on the shelves of the aisle (2). The third table includes the price of each 

product (3). Such a form of organization would be convenient for the clerk who must put a 

price on each article, because the method of access follows the clerk's path through the mar
ket. It would be less convenient, however, for directly answering shoppers'. inquiries about 

prices. In the related form of organization called the network data base a subsidiary connection 
could be established between table I and table 3. Such a connection between tables would re
duce the time that is needed to find the price, but it would also require additional storage space. 
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table and each field becomes a column 
in the table. The entry 

Aisle 2 Dairy Milk .69 quart 

can be thought of as a relation between 
the aisle field, the general-category field, 
the product field and the price field. The 
relation could be augmented with the 
name of the wholesaler, the shelf life of 
the product, the quantity of stock on 
hand and other facts. Shorter relations 
consisting of two fields can be obtained 
from the full set of relations by choosing 
the appropriate fields; the process is re
ferred to as projecting the relation. Thus 
the price of any product can be retrieved 
quickly, as could a table listing all the 
prod ucts in one aisle. 

The classification of data bases into 
the hierarchical, network and relational 
forms is commonly cited in discussions 
of information management. The clas
sification scheme is not as useful as 
it might appear, however, because the 
structure of any data base can be sup
plemented with secondary indexes that 
make it possible to answer efficiently 
queries that do not follow the underly
ing organization. Furthermore, certain 
problems are common to all three types 
of data base. Consider the task of select
ing one record from a file made up 
of many related records. The file could 
consist of dictionary entries, the lines of 
a telephone directory or other records, 
but in all cases the problem is to retrieve 
one record quickly and efficiently. 

The case of picking out a single rec
ord depends critically on how the items 
are arranged in the main memory of the 
computer or on a secondary storage me
dium such as a magnetic disk. Several 
techniques for arranging data can facili
tate subsequent retrieval; the techniques 
can be employed with any of the three 
types of data base. 

For a small body of information it 
may not be necessary to maintain any 
particular arrangement. Lines can be 
stored on a disk in an arbitrary se
quence; when an item must be retrieved, 
a simple pattern-matching program 
scans the lines seq uentially for the ap
pearance of particular combinations of 
symbols. In the Unix operating system, 
for example, a program named grep is 
often employed in this way. 

Suppose a list of telephone numbers, 
including those of two seltzer delivery 
companies, has been stored in a file 
named fe/nos. In the Unix system the 
command 'grep seltzer results in the 
printing of the names and numbers of 
the two companies that deliver seltzer. 
In the fe/nos file the word "seltzer" was 
entered before the name of the com
panies, but the key need not be at the 
beginning of the line for the grep pro
gram to operate. The command grep 
beverage < fe/nos results in the print
ing of the same two lines because the 
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word "beverage" is part of the name of 
each company. 

Maintaining a file of items that are not 
in a predetermined order has several ad
vantages. There is the saving of time and 
effort that would be needed to sort the 
data when the file is set up. In addition 
considerable flexibility is maintained 
because it is not necessary to decide in 
advance which items in the file will serve 
as keys when the data are retrieved. If a 
system user decides to find all the num
bers in the feinos file with the prefix 
800, the command grep 800 < Ie/nos 
works immediately, regardless of wheth
er or not such a request was anticipated 
when the file was established. If the list 
is not ordered, new data can be added 
at the end of the file without rearrang
ing the previously stored items. Further
more, no space is required for storage 
beyond the space that is taken up by 
the individual entries. In more complex 
storage systems some memory capacity 
is taken up by information needed to 
organize the data. 

The unordered method of storage has 
a critical drawback: retrieval is very 
slow. Each line in the file must be 
scanned separately and as a result 
searching a file of 10,000 lines takes 
100 times as long as searching a file of 
100 lines. The algorithm employed by 
the grep program corresponds to find
ing books in a library by starting at the 
shelves nearest the entrance and exam
ining each book until the one wanted 
is found. 

To speed up the search process the file 
can be sorted into serial order, such as 
alphabetical order or numerical order. 
Putting the items in serial order makes 
it possible to retrieve an entry by the 
techniq ue called binary search. The list 
is divided in half and the program de
termines which half includes the item 
sought. The process is then repeated un
til the item is found. 

Suppose the file consists of the entries 
in a dictionary and the definition of 
"cat" is sought. A binary-search program 
would first identify the middle item in 
the dictionary, which turns out to be 
"legality." By comparing the first letter 
of "legality" with the first letter of "cat" 
the program determines that "cat" is 
in the first half of the file. The mid
point of the first half is "distort" and so 
"cat" is in the first fourth of the diction
ary. After the next division, at "castiga
tor," the second portion rather than the 
first must be searched. By continuing 
through the sequence of midpoints, the 
definition of "cat" is isolated. 

Binary search is quicker than search
ing an unordered data set. Assume the 
file to be searched includes n items. On 
the average finding any one item by 
searching through an unordered set re
quires n!2 operations. Binary search re
quires at most about log2n operations 
to find a particular item (where log211 is 

Product Aisle Category Price Unit 

Butter 2 Dairy 1.99 pound 

Codfish 4 Fish 2.09 pound 

Cucumbers 1 Produce .49 each 

Flounder 4 Fish 3.29 pound 

Lettuce 1 Produce .79 head 

Linguini 3 Noodles 1.29 pound 

Milk 2 Dairy .69 quart 

Spaghetti 3 Noodles 1.29 pound 

Swordfish 4 Fish 4.49 pound 

Tomatoes 1 Produce .59 pound 

Tortellini 3 Noodles 3.49 pound 

Yoghurt 2 Dairy .79 pint 

2 

Cucumbers .49 each 

3 

Cucumbers Aisle 1 Produce .49 each 

Lettuce Aisle 1 Produce .79 head 

Tomatoes Aisle 1 Produce .59 pound 

IN THE RELATIONAL DATA BASE each entry is made up of a list of connected items; any 
subset of the items in the full list can readily be retrieved. In a supermarket data base the items 

might include the type of product, the aisle where the product can be found, the general catego
ry to which the product belongs and the price of the product (1). More specific relations, such 
as the price of an item, can readily be derived from the complete set of relations (2). A table 
showing the articles available in one aisle and their prices can also be constructed (3). The rela
tional data base is valuable when the most frequently asked questions are not known in advance. 

the logarithm of 1/ to the base 2). The se
rial order has another advantage: When 
an entry has been located, it is a simple 
matter to find out about adjacent en
tries, such as the word after "cat" in 
the dictionary. 

Adding a new entry to a file set up for 
I\. binary search, however, is a costly 
process because the sorted order of the 
file must be maintained. Since a new 
item will on the average be inserted in 
the middle of the list, half of the items in 
the file must be moved each time a new 
entry is added. The fact that entries can 
be found only from the key on which the 
file is sorted can also be a serious limita
tion. It is possible to duplicate the items 
and store multiple files sorted accord
ing to different keys, but that consumes 
much additional space. 

Another techniq ue for retrieval from 
a sorted file relies on subgroups of adja
cent data entries called buckets. The first 
entry in each bucket is stored in a table 
that serves as an index to the divisions of 
the file. If II items are divided among V n 
buckets, with each bucket holding V n 
items, a linear scan of the bucket index 
followed by a scan of the appropriate 
bucket to isolate the needed entry takes 
only slightly more than V/1 operations. 
Although V n operations is not as good 
as log2/l, particularly for a large file, it is 
not unwieldy for a small file. Further
more, programs for bucket storage are 
simple to write. 

So far the best we have been able to do 
in searching a file is log2n operations. 

It is possible to improve on that figure 
by means of the procedure known as 
hashing. To understand the advantages 
of hashing consider the possibility of as
signing a number to each entry in a file. 
If the number could be computed quick
ly by means of a simple algorithm each 
time an item is needed, the item could 
be fetched directly from the file with
out searching. 

For the entries of a dictionary such an 
indexed array could be created in princi
ple by a straightforward method. Each 
letter of the alphabet can be assigned a 
number, so that the spelling of a word 
designates a unique number that serves 
as the word's address in memory. The 
trouble with such a scheme is that the 
memory space required is immense, and 
it would remain almost entirely empty; 
most combinations of letters, after all, 
do not spell an English word. To look at 
the problem another way, the difficulty 
is that the first letters of English words 
are not distributed evenly. For example, 
words beginning with c. s or I are much 
commoner than words beginning with k 
or w. If 100 words were assigned to 100 
numerical addresses on the basis of their 
first letter, they would pile up in certain 
slots instead of filling slots l through 
100 in a smooth distribution. 

The most convenient solution is to 
formulate an algorithm that assigns a 
"pseudorandom" number to each word. 
The spelling of the word fully deter
mines the pseudorandom number, but 
words spelled differently can gener
ate the same number. The algorithm 
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is based on a mathematical expression 
called a hash function. In one possible 
hash function each character in the al
phabet is assigned a numerical value 
and the values for all the characters in a 
word are summed to yield the pseudo
random number that serves as the ad
dress. If an effective hash function is 
chosen, the entries are distributed fairly 
smoothly thoughout the indexed array, 
which is referred to as a hash table. 

I
t is generally necessary to leave at 

least one-fourth of the slots in the 
hash table empty. Leaving some slots 
empty reduces the frequency of cases in 
which the same pseudorandom number 
is assigned to more than one item. When 
such a duplication, which is known as a 
collision, takes place, an additional al
gorithm is invoked to pick a slot for the 
second item. The algorithm might call 

a 

b 

c 

UNORDERED FILE 

seltzer, excelsior beverage co. newark 242-0412 

new york air, nyair 800-221-9300 

usair 622-3201 

seltzer, elliot beverage somerville 356-0273 

united airlines (ua) 624-1500 

imagen systems (laser printers) 496-7200 

COMMAND: 'grep seltzer 

OUTPUT: 

seltzer, excelsior beverage co. newark 242-0412 

seltzer, elliot beverage somerville 356-0273 

COMMAND: grep beverage < te/nos 

OUTPUT: 

seltzer, excelsior beverage co. newark 242-0412 

seltzer, elliot beverage somerville 356·0273 

d 

COMMAND: grep air < te/nos 

OUTPUT: 

new york air, nyair 800-221-9300 

usair 622-3201 

united air lines (ua) 624·1500 

UNORDERED FILE is made up of entries 
that are stored without being put in any partic
ular arrangement. The top panel shows such 
a file: a small telephone directory designat
ed teillos (a). When the command grep in the 
Unix operating system is given, each line in 
the file is scanned in sequence and all the lines 
that include a particular key, or combination 
of symbols, are retrieved. The names of the 
companies in the list that deliver seltzer can 
be retrieved by means of the key seltzer, which 
has been entered at the beginning of both en
tries (b). The same pair of entries can be re
trieved by means of the key beverage, which 
is found in the names of both companies (c). 
The names of the airline companies included 
in the list can be found by means of the key air, 
which is part of the name of each airline (d). 
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for the next slot in the hash table to be 
filled; as an alternative a second hash 
function could be computed. If the dis
tribution of entries is known, the tilble 
can be kept more than three-fourths full, 
but it is not common for the distribution 
to be known. 

It should be noted that when a body of 
information is organized in a hash table, 
the hash function is computed each time 
an entry is sought. The hash functi(ln is 
simple to compute, and when it has been 
computed, the entry is retrieved without 
additional searching. Hashing is there
fore a very fast method of retrieval. 
Revising the file is also efficient since 
the items are not stored in a serial order 
that must be preserved by moving many 
items each time an entry is made. 

The technique of simple hashing has a 
drawback, however, that makes it un
satisfactory for many applications. Be
cause of the problem of collisions, the 
approximate number of entries must be 
known in advance so that a hash table of 
the appropriate size can be constructed. 
If many new items arrive unexpectedly, 
it may be necessary to recompute all the 
hash functions. In practice it is often not 
possible to predict the size of a set of 
data, and so it is inconvenient to have 
to choose the size of the hash table 
in advance. 

Unordered files, buckets, binary 
search and hashing are all techniques 
in use today, particularly in conjunc
tion with small data bases where ease 
of programming is a more important 
consideration than ultimate efficiency. 
Two methods developed in recent years 
are more commonly employed with 
large data bases: extensible hashing 
and B-trees. 

Extensible hashing was devised to 
avoid the need to specify the size of the 
hash table in advance. A hash code long
er than necessary is computed and only 
the part of the code needed to accom
modate the number of entries on hand is 
utilized; the rest of the code forms a re
serve against an increase in the size of 
the file. The details of extensible hashing 
are beyond the scope of this article, but 
the outcome of the method is to pre
serve the speed of hashing at a small cost 
in additional storage. 

In all the variants of hashing, file en
tries are stored in the arbitrary order 
determined by the hash function. Any 
sequential relations that might have ex
isted among items in the original data 
set are lost in the storage process. For 
example, if a dictionary is stored in a 
hash table, words beginning with care 
scattered at random through the array. 
As a result, when a word has been re
trieved, it is not possible to obtain a 
quick answer to questions about en
tries that were adjacent to it when the 
words were in alphabetical order, 

A B-tree does make it possible to effi
ciently answer questions about items 

that were neighbors in the original se
quence. The B-tree is a mechanism for 
implementing binary search in which 
the repeated divisions of the file are in
corporated into the data structure in
stead of being calculated by the algo
rithm. The B-tree has the form of an 
inverted tree: there are many categories 
(leaves) at the bottom and only one cate
gory (the root) at the top. Each category, 
or node, is made up of a set of keys for 
data entries. 

At the bottom level of the tree each 
node includes a group of entries ar
ranged in order without omissions. At 
the next level up each node includes one 
key from each node of a subset of the 
nodes at the bottom. The process of re
duction continues to the top of the tree, 
where there is a single node. The tree is 
traversed from top to bottom with the 
keys in each node serving as pointers to 
nodes one level down. 

If a dictionary were stored as a B
tree, the first node might contain the 
words "chromophore," "epicycle," "im
polite" and so on, which constitute a 
set of dividing points for the alphabet. 
"Chromophore," the first key, could 
point to a node at the second level that 
includes the words "alfalfa," "apocry
phal," "available," "binocular," "bully" 
and "celery." It can readily be seen that 
the second list includes dividing points 
from the beginning of the alphabet to 
the word "chromophore." Each item in 
the second group points to a more fine
ly resolved list. At the bottom of the 
tree the nodes point to the dictionary 
entries themselves. 

T
he B-tree has become popular for 
several reasons. As noted above, a 

B-tree makes it possible to answer ques
tions about the adjacent items when one 
item has been retrieved. In addition B
tree storage is relatively fast: a search 
requires roughly log2n operations and 
adding or deleting entries also requires 
roughly log2n operations. 

One of the main reasons B-trees have 
been so widely applied is related to the 
physical structure of magnetic-disk stor
age. It is often assumed for the purpose 
of �pproximation that each search in 
a file takes about the same amount of 
time. It is only in main memory, how
ever, that each search takes an unvary
ing period, and data bases large enough 
to be of interest do not fit in main memo
ry. Large data bases are stored on disk, 
where there are two types of search with 
quite different retrieval times. The ran
dom-access time is the average time 
needed to retrieve a record from an arbi
trary position on the disk. The sequen
tial-access time is the time needed to re
trieve the record following the one most 
recently accessed. In a typical machine 
the random-access time might be 30 
times greater than the sequential-access 
time. An efficient program therefore 
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maximizes the number of sequential 
searches and minimizes the number of 
random ones by retrieving relatively 
large groups of data each time a search 
is done. If the data are stored in a B-tree, 
the size of the nodes at the base of the 
tree can be adjusted to match the size of 

a disk block. Hashing cannot readily ex
ploit the disk structure. 

often necessary to combine several tech
niques to achieve the best operational 
result, as is suggested by several exam
ples drawn from work I have done with 
my colleagues. One experimental pro
gram we have devised gives weather 
forecasts for any town in the U.S. If the 

I
n the preceding discussion the meth

ods for storing and retrieving data 
have been considered separately. In the 
design of an actual system, however, it is 

a 

cat dog eel 

LI_
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_
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_
ff

_
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_
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_
t
-'-__ -'-__ ....l1 I 

iguana I koala 

b 

cat dog eel 

J I giraffe I goat I I I 
iguana I koala 

C 

I giraffe I goat 

STRUCTURE OF B-TREE and strategies for adding items to the 
tree are shown for a small file made up of the names and descriptions 
of animals stored in alphabetical order. The B-tree is an ordered form 
of data storage consisting of nodes, or small groups of keys. Each 
node includes keys that divide the file or part of the file into frac
tions (a). The top node includes keys that function as dividing points 
for the entire file. Each key in the top node points to a node on the 
level below. The keys in each lower node fiU the gaps between the 
keys in the upper node. For example, the gap between frog and rac
coon is filled by gerbil, horse, lion and okapi; the key frog in the top 
node points to the lower node that includes them. To find the entry 

rat snail 

otter I panda I pigeon I 

otter I panda I pigeon I 

I 
mouse I nut

hatch 

lizard, the top node is scanned and it is found that lizard lies between 
frog and raccoon. When the second node is scanned, it is found that 
lizard lies between lion and okapi. Lion points to the node that be
gins with lizard. The key lizard points to the entry describing the or
ganism (not shown). Adding an item to a B-tree can be a simple job 
or a complex one depending on the position of empty slots. To add 
ocelot to the tree is straightforward: the entry is put in the empty slot 
after nuthatch (b). If ocelot has been added, however, adding magpie 
requires that the node beginning with lizard be divided into an upper 
and a lower node (c). In that way the arrangement of pointers is pre
served: mouse and nuthatch fill the gap between magpie and ocelot. 
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user asks for the weather in a particu
lar town, the program finds the closest 
place to the town where the weather 
has been recorded and reports the most 
recent observations. It then goes on to 
locate the nearest weather forecasts and 
reports them. 

Presenting such weather information 
entails the use of three data bases and 
software for each one. The system relies 
mainly on a National Weather Service 
communications circuit that delivers six 
megabytes of weather information per 
day, including observations and fore
casts. The observations are made at air
ports, which are identified only by a 
three-letter code; as a result two data 
bases are needed in addition to the one 
that holds the weather information it
self. The first supplementary data base, 
a table that gives the latitude and lon
gitude of each airport, is drawn from 
records maintained by the Federal Avi
ation Administration. The second, a ta
ble that gives the latitude and longitude 
of each U.S. town, is drawn from Bu
reau of the Census records. 

The town data are stored as a B
tree. The weather reports are stored in 
a bucketed file where the U.S. is divid
ed into small sq uares of latitude and lon-

COMMAND: $ date 

OUTPUT: Fri. May 4 12:55:48 EDT 1984 

COMMAND: $ weather 

elmira, ny 

OUTPUT: Elmira, NY: (42.093 N, 76.807W) 

gitude. When a set of weather observa
tions arrives, the airport code is convert
ed into a location by means of the B-tree 
and the information is stored in the ap
propriate bucket. When a request for 
weather information is made, the buck
et is searched for the closest airport. If 
the data were in one-dimensional rather 
than two-dimensional form, the entire 
job could be done with B-trees, but B
trees do not accommodate two-dimen
sional data well. The weather service is 
often used by my associates who are go
ing on trips and want to know the weath
er at their destination. 

Another service we provide is a means 
of selecting information from news sto
ries filed by the Associated Press. The 
program is currently experimental and 
has about 100 participants. Each day 
about 200,000 words are stored in the 
computer system. There are two main 
modes of access to the information in 
the news stories. In one mode the user 
picks current stories from a "menu" dis
play; the stories are selected according 
to a few words that serve as the title in a 
�omputer-terminal display. About 40 
people read a total of 840 stories per day 
on the average by picking them from 
the menu. 

6.3 miles NW at the airport in Elmira, NY (CHEMUNG COUNTY) (11 :55 AM EDT): 
temperature 55, humidity 96, weather overcast, visibility 15 miles 

Next 48 hours at Rochester, NY (ROCHESTER-MONROE COUNTY) 
To 8 PM EDT/5: high 62 low 41, prob. precip. to 8 AM 30% to 8 PM 10% 
To 8 PM EDT/6: high 66 low 45, prob. precip. to 8 AM 40% to 8 PM 60% 

Forecast For Western New York 
National weather service buffalo ny 
430 am edt fri may 4 1984 
Rain .. Heavy in spots .. Becoming intermittent during the day from 
west to east and ending tonight. Highs in the mid to upper 50's 
today and lows tonight about 40. A mix of clouds and sunshine 
Saturday. Highs 60 to 65. 

WEATHER INFORMATION for Elmira, N.Y., is presented by a program devised by the an
thor. After checking the date the user asked for information about the weather in Elmira. The 
program found the nearest point where the weather had been observed (the Elmira airport) 
and reported current observations. It then found the nearest weather forecasts. The forecast 
for Rochester was compiled mechanically; the one for Buffalo was compiled by human beings. 
The weather-information program, which can report the weather for any town in the U.S., re
lies mainly on National Weather Service observations that are made at airports. Hence two 
data bases are required in addition to the one that records the weather information itself: a 
table giving the latitude and longitude of each airport and a table giving the latitude and longi
tude of each town. When a request is made, the program identifies the latitude and longitude of 
the town, finds the nearest airports and reports forecasts and observations from the airports. 
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In the second mode of access readers 
are able to retrieve stories by means of a 
profile consisting of particular words, 
phrases or syntactical operations. Some
one who wants to read about Mount Ev
erest can ask for all the Associated Press 
stories in which the word "Everest" ap
pears. Queries based on phrases such as 
"space shuttle" or on features such 'as 
the inclusion of "telephone" and "regu
lation" in the same sentence can also be 
answered. About 50 people maintain 
such standing requests and some 550 
stories per day are sent out because they 
match a particular profile. 

T
he systems I have described so far 
are all designed to store and retrieve 

information in the form of numbers 
or words, but it is also possible to proc
ess large quantities of information de
rived from graphic images. Consider 
the problem of storing a street map in 
a computer file and then employing the 
file to answer questions that would or
dinarily be answered by consulting the 
map. The information in a street map 
can be reduced to two main types of 
data: the location of nodes and the loca
tion of edges. A node is a point where 
two streets intersect; an edge is the seg
ment of a street that connects two nodes. 
The positions of nodes and edges could 
be converted into digital form by de
vices called digitizing table.ts or scan
ners, but fortunately the conversion has 
been done by the Census Bureau. Our 
system for processing maps is based on 
data obtained from the bureau. 

How should the maps be stored? The 
data are copious, and what is even worse 
from the point of view of storage, they 
are two-dimensional. The storage sys
tem must be able to accommodate both 
these properties. Several storage meth
ods could do so, and to select one we 
considered the queries that the system 
should be able to answer efficiently. 
Four types of query are significant: 
finding the location of a building when 
the street number, the street name and 
the Zip Code are known; finding out 
whether two streets intersect and, if 
they do, locating the intersections; find
ing all the points that can be reached di
rectly from a given point, and finding 
all the streets within a certain radius of 
a given point. 

Two techniques for storing data plot
ted in two dimensions are the connec
tion matrix and the k-d tree. In the con
nection matrix the only information that 
is stored is the list of all pairs of nodes 
that are linked by an edge. Such a file 
does not include enough information to 
support the map system because it is es
sential for the system to include street 
names and the locations of the nodes. 
The street names must be entered so that 
the program can determine when the 
route passes from one street to anoth-

• 
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THE PORTABLE. 
For years business people had to choose 

between the power of a desktop computer and the 
limited capabilities of the first portables. That 
problem was solved when Hewlett·Packard intro
duced The Portable. 

The Portable is designed with more total 
memory than most leading desktop personal 
computers ... 656K in fact. That includes 272K 
of user memory. So, The Portable's built-in 
business software can work with enormous 
amounts of data. 

1-2-3'" from Lotus!" America's most popular 
spreadsheet, file management and business 
graphics program, is permanently built into The 
Portable. So is Hewlett-Packard's word processing 
program, MemoMaker. Just press the key and 
you're ready to work. 

The Portable even has a built-in modem and 
easy-to-use telecommunications software to send 

or receive data using a staildard telephone jack. 
If you use a Hewlett-Packard Touchscreen 

PC, IBM® PC, XT or an IBM compatible youll 
be glad to know that your desktop and The 
Portable can talk to each other with the simple 
addition of the Hewlett-Packard Portable
Desktop Link. 

The Portable's rechargeable battery gives 
you 16 hours of continuous usage on every charge. 

Finally, you can work comfortably on a full 
size keyboard and an easy-to-read 16-line by 80-
column screen. And it all folds shut to tum The 
Portable into a simple nine-pound box. 

The Portable. A small miracle ... perhaps. 
But then consider where it came from. 

See The Portable and the entire family of 
personal computers, software and peripherals at 
your authorized Hewlett-Packard dealer. Call 
(800) FOR-HPPC for the dealer nearest you. 

PG02412 236 A 

Setting You Free 
Fh HEWLETT 
a! PACKARD 

IBM is a registered trademark of International Business Machines Corporation. 1·2·3 and Lotus are trademarks of Lotus Development Corporation. 
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Your Key To 
Microcomputer Software! 

More 
software 
for more 

comp'Dters 
... anil more. 

Whatever your software needs, all 
you need to know is Westico. We 
have hundreds of business and 
professional software programs 
in formats to fit more than 120 
microcomputers, including IBM 
PC, MS DOS and CP/M-compatible 
systems. Our large inventory means 
you get the software you want, 
when you want it. Plus, our after 
sales service is designed to keep 
you smiling. Westico helps you get 
the most from your microcomputer. 

Find out more with our new 
directory. Detailed descriptions of 
all our programs help you select 
the correct software to fit your needs. 
Start getting more with Westico . 

• - Order Your Copy Today - • 

o Rush me the brand new Westico 
software directory. 

Name ____________________ _ 

Firm ___________ _ 

Address __________ __ 

City ___ State __ Zip __ 

Mail to: 

\VrSIICO The Soft_re Express Service"" 
25 Van Zant Street • Norwalk, CT 06855. 

(203) 853-6880 • Telex 64-3788 • 
' .  . �;:��9: w.:;t:, :.:;8;7". ___ ... 
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er. The locations of the nodes must be 
entered so that a left turn can be distin
guished from a right turn and also so 
that a physical version of the map can 
be drawn. 

The k-d tree is a variant of the B-tree 
that can accommodate data in more 
than one dimension. In the k-d tree the 
descent from one level to the next-lower 
level corresponds not only to a progres
sively finer selection of data but also to 
a change of dimension. At each step the 
data are divided along the largest di
mension. Thus in storing a digitized map 
of Chile the first division would be along 
the north-south axis, whereas in a map 
of Tennessee the first division would be 
along the east-west axis. 

The k-d tree is an efficient means of 
storing two-dimensional data because 
breaking up the information along its 
largest dimension reduces the number 
of decisions that must be made to re
trieve an item. The main problem in 
storing maps, however, is not to reduce 
the number of decisions in each retrieval 
but to minimize the number of disk 
blocks that must be examined. Like the 
connection matrix, the k-d tree cannot 
store street names with the streets and 
therefore the names must be supplied 
from a separate file . 

DOW JONES 
820 

INDUSTRIAL 

TIME AVERAGE 818 

10:30 814.12 

11 :00 813.55 

11 :30 814.12 816 

NOON 816.59 

12:30 816.69 
814 

1:00 817.73 

1:30 818.21 

2:00 814.12 812 

2:30 810.50 

3:00 810.12 

3:30 812.02 810 

CLOSE 810.41 

808 
10AM 11 AM 

To speed the disk-retrieval operations 
a "patched file" was constructed that 
comprises two subfiles, with each subfile 
holding a different kind of information. 
One file is the master list of edges, drawn 
from Census Bureau data and from 
a table of extra information for each 
street. The Census Bureau data give the 
location of each edge and its name; 
the additional table designates one-way 
streets and limited-access highways and 
gives information about speed limits 
and average travel speed. 

I
n the master segments file, as in the 

original Census Bureau data, each 
street is divided into segments short 
enough so that a segment intersects oth
er segments only at the ends and also 
short enough so that the segment can be 
approximated by a straight line. A seg
ment corresponds to a single record in 
the data base. Such a form of organiza
tion implies that for most streets each 
block requires a separate record. The 
records are sorted in alphabetical order 
according to street name. 

Each record includes a field that indi
cates whether the segment is an ordinary 
street, a limited-access highway, an ac
cess ramp or another map feature such 
as a railroad, a river or a boundary line. 

NOON 1PM 2 PM 3PM 4PM 

COMPUTER 'The market crept upward early in the session yesterday, but stumbled shortly before trading 
ended. Stock prices turned in a mixed showing, with the market posting a small loss in 
moderate trading." 

WALL STREET 
JOURNAL 

"The stock market finished with mixed results after the attempt to push its rebound into a 
fourth session faltered in cont�nued active trading." 

SOFTWARE FOR THE STOCK MARKET can convey the resnlts of a day's trading in num
bers, visual images or words. The Dow Jones Industrial Average is available in machine-read
able form; the panel at the top left shows the average at half-hour intervals on June 23, 1982. 
The panel at the top right shows the output of a simple program that converts the numerical 
information into a graph of the day's average. A more complex program devised by Karen 
Kukich of Carnegie-Mellon University gives an English-language summary of the progress of 
the average through the day. The bottom panel compares a computer-generated summary and 
the summary of the same day's trading that was published in The Wall Street Journal. The 
stock-market program does not include information about trading on previous days; hence the 
summary cannot include generalizations about trends lasting for more than one day. The text 
generator is specialized for the task at hand. For example, it never generates the future tense. 
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For streets the record also includes the 
house numbers on each side of the seg
ment, information about travel speed, 
the locations of the endpoints and the 
Zip Code on each side of the segment. 
By means of a binary search through 
the master file it is a simple matter to 
retrieve the location of any street ad
dress and list the intersections of any 
two streets. Thus the master file alone 
can answer the first two types of query. 

The second file is a group of segments 
organized according to a patched for
mat in which the area covered by the 
map is divided into squares 10,000 feet 
on a side. To draw a map that includes 
all the segments in a particular area the 
program scans the list of patches se
quentially and then scans the relevant 
patches in the same way. A segment that 
appears in only one patch is stored once, 
but a segment that appears in more than 
one patch is stored in all the patches 
where it has an endpoint. The patched 
file is entirely derived from the mas
ter list. When changes are made, they 
are entered into the master list only; 
the patched file is then regenerated au
tomatically. 

When techniques for organizing and 
storing the information from the maps 
had been selected, the problem of pro
viding an interface between the user and 
the system had to be solved. Most of the 
available computer interfaces are inferi
or to a printed map. On many printed 
road maps the ratio of the width of the 
smallest printed character to the width 
of the map is about one to 1,000. Even 
on a high-quality computer terminal the 
ratio of the width of the smallest let
ter to the width of the screen is general
ly only about one to 125. Furthermore, 
most computer devices can print only 
horizontally; a few can also print verti
cally but almost none can print at inter
mediate angles. Because of these limita
tions many street names must be omit
ted from the maps that are produced 
from the digitized information. 

T
o determine which labels should be 
omitted the program utilizes infor

mation about how big the labels are and 
also about which streets are important. 
It is assumed that the longer a street 
is, the more important it is for routing 
purposes; the assumption works well in 
practice. Information about the relative 
importance of streets is also employed 
to excerpt the maps so that large areas 
can be represented without excessive 
detail and to plot routes that traverse 
only large thoroughfares. For rapid 
processing it is convenient to assume 
that each street follows a straight path 
between the intersections that survive 
the excerpting. 

The system we have constructed can 
efficiently answer all four types of query 
given above. When the data base is com-
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bined with a program written by Jane 
Elliott of AT&T Bell Laboratories, it is 
possible to find the shortest route be
tween two points on the map in terms of 
time or distance. Most of the map proc
essing utilizes the patched-file structure, 
which is analogous to the bucketed 
file employed for one-dimensional data. 
Th� patched file . is somewhat slower 
than the B-tree but it exploits the disk 
structure better than the B-tree does. 
The list of patches for a single map gen
erally fits in one disk block; hence each 
retrieval can be done quickly. More
over, the patched structure is easy to un
derstand, to use and to update. 

F
ew standard routines exist for proc

essing two-dimensional data, but by 
combining several techniques the map 
problem can be solved. Many other in
triguing examples of data-base manage
ment could be cited as a result of the 
proliferation of devices that generate 
information in machine-readable form. 
That increase, however, has not been 
matched by the development of soft
ware to provide access to the informa
tion. In the next few years more efficient 
and more imaginative software for in
formation management will undoubted
ly be developed. Although the results of 
the process cannot be predicted, it is 
probable that such development will be 
guided by the principles set forth in the 
introduction to this article: the need to 
tailor each program to the content of the 
information and to how the information 
will be employed and the need to fully 
exploit the structure of the machinery in 
which the software operates. 

GEOGRAPHIC DATA BASE stored in digi
tal form generates maps with varions levels 
of detail. Each panel shows the same area: a 
sqnare fonr miles on a side centered on an in
tersection in Chatham, N.J. The map at the 
top shows all the streets in the sqnare. The 
map in the middle has been excerpted to show 
only important streets. The map at the bottom 
has been fnrther excerpted and also simplified 
by assuming that each street follows a straight 
path between the intersections shown. The ex
cerpting can considerably reduce the comput
er time that is needed for processing a map. 
The full map requires 56 seconds of proc
essing on a Digital Equipment Corporation 
VAX 1 1 1750 computer (a large minicomput
er). The excerpted map requires 34 seconds 
and the excerpted, straight-line map requires 
five seconds. The software for processing the 
maps relies on a file that comprises two sub
files. The main file includes data in digital form 
from the Bureau of the Census concerning the 
location of nodes and edges. A node is an in
tersection and an edge is the portion of a street 
that connects two nodes. The second file is a 
"patched file" in which the map is divided into 
small squares and the appearance of nodes 
and edges in each square is recorded. The two 
subfiles are employed together to excerpt the 
maps and to answer questions about routes. 
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Computer Software 
for Process Control 

Software of this kind has the primary function of communicating 
with and governing physical devices. A process-control computer 
does not set its own pace but responds to events in the real world 

C
omputer systems that monitor or 

control processes in the real 
world are rapidly growing in 

number. They deal with such things as 
air traffic control, the equivalent rout
ing and signal ing system for the rail
roads,  the operation of nuclear power 
plants, the distribution of electric pow
er,  the telephone network, the autopilot 
and other control systems of an aircraft, 
the operation of elevators,  the control 
of robots and machine tools, the indoor 
environment of build ings, production 
l ines in manufacturing plants, the flight 
of spacecraft and so on. One d istinctive 
characteristic of a process-control com
puter is that its pr imary function is to 
communicate with the physical world 
rather than with a human operator 
(although it may d isplay information 
about the state of the process to the op
erator). Another feature is that a proc
ess-control computer cannot set its own 
pace; it  must respond on cue to events in 
the world at large . 

A typical system might be put to work 
controlling a fractionating column that 
distil ls  light chemical components from 
heavier ones, as in a petroleum refinery .  
In this  application the computer,  d irect
ed by software, receives information on 
the level and the rate of flow of the vari
ous fluid s  and on temperatures and pres
sures in the column; it issues commands 
to control these factors and thereby de
termines the quantity and quality of the 
products.  The control system might also 
be programmed to minimize the use of 
energy in the plant. 

Whatever the application is ,  the l inks 
between the computer and the process 

by Alfred Z. Spector 

are sensors and actuators. Typically a 
sensor monitors analogue data, such as 
changes in temperature, that must be 
transformed into d igital data before 
be ing presented to the computer. With 
some types of sensor the software pe
riodically calls for information; with 
other types it  is the sensor that inter
rupts the software at irregular intervals 
to present information. A program for 
controlling a process is  also likely to in
clude a t iming device-a clock-that can 
be regarded as a sensor. An actuator 
manipulates the real-world process ei 
ther electrically or electromechanically. 
In controlling temperature an actuator 
might turn a fan on or off. 

The l inks between the computer and 
the human operators are input and out
put devices. A keyboard is the standard 
input device. M odern computer systems 
often have add itional means of input, 
such as a light pen or a "mouse,"  where
by the operator can make choices by 
pointing at a d isplay screen. The screen 
itself is  an output device, d isplaying 
textual and graphic information on the 
state of the process.  Another form of 
output is  an alarm indicating that some 
part of the process needs attention. 

At  the heart  of a process-control com
n puter is a model of the real-world 
process. The model has three compo
nents that I call the model state, the 
state-update function and the pred ictor 
function. The model state consists of 
data g iving a complete description of 
the re al-world process at each instant. 
The state-upd ate function transforms 
one model state into another based on 

ELECTRIC POWER SYSTEMS are monitored by computer software, which displays the 
state of the system at any given time on the computer screen. In the top photograph on the op
posite page the software is reporting the conditions in a generating plant with two steam gener
ators and one turbine. The bottom photograph shows the high-voltage transmission system of 
the Iowa Electric Light and Power Company. By means of this display the operator at the com
pany's control center in Cedar Rapids can open and close circuit breakers to reroute power 
among the substations named in the display. The program was installed by Aydin Controls. 

information supplied by the sensors. 
The predictor function, if it  is  given 
an accurate model state, y ields  a set of 
computer commands that achieve some 
desired condition in the process being 
controlled.  What the formal terms de
scribe is a system of feed back control: 
the software receives data from the 
sensors, implements the state-update 
and pred ictor functions and issues com
mands to the actuators .  The results of 
those commands then influence further 
data received from the sensors. 

Separate from the model but also cru
cial to the operation of the system is a 
strategic plan. It specifies the sequence 
of states the controlled process should 
pass through. For example, in a city traf
fic-control system the plan specifies the 
state of the traffic lights as a function 
of t ime and traffic flow. The plan may 
be supplied by human operators or it 
may be generated by the software from 
a set of more abstract goals established 
by the designers of the system. 

A fairly s imple arrangement for con
trolling the supply of heat to a build
ing illustrates the structure of a process
control system. The hardware includes a 
sensor to monitor the outdoor tempera
ture,  sensors in several rooms to mon
itor indoor temperatures,  a clock and 
two actuators ,  which are switches for a 
heat pump and a furnace . Assume the 
software is g iven two goals: to main
tain a temperature that depends on the 
t ime of day and to minimize energy 
consumption. 

The model state include s  the inside 
and outside temperatures and the t ime 
of day.  The most important part of 
the state-update function calculates 
a we ighted average of the data from 
the various indoor-temperature sensors. 
The predictor function utilizes the mod
e l  state, together with information about 
the heat loss of the build ing and the ther
mal output of the two heaters, to pre
dict when a heater should be started or 
stopped.  The strategy calls for a deter-
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mination of whether the furnace or the 
heat pump is most cost-effective at 
a particular time; the determination 
might well be based on the outdoor tem
perature and the cost of fuel. 

One could extend the system by add
ing more sensors (say to monitor the 
fuel levels), by taking into account other 
aspects of the model state and by ar
ranging to give some notice of excep
tional conditions (such as a malfunc
tioning heater or an open window). The 
fundamental nature of the system would 
not be changed, however, by these en
hancements. It would still be based on a 
model of the controlled process, and it 
would still employ a predictor function 
to reach new states. 

Most process-control systems are 
more complex than this example might 
suggest. The main reason is the com
plexity of the internal model. Consider a 
vehicular-control system, even an ele
mentary one that can sense only accel
eration. Just to maintain the correct ve
locity the state-update function must 
do a mathematical integration for each 
reading of the acceleration. If a cam
era were added to detect obstacles and 
follow roadways, analyzing the view in 
order to update the model state would 
demand the most elaborate techniques 
of artificial intelligence. 

Complex procedures may also be 

needed in carrying out predictor func
tions and in developing strategic plans. 
The predictor function that calculates 
the angles for a six-joint robot arm in 
order to position and orient its hand 
calls for substantial amounts of linear 
algebra. Planning the sequence of inter
mediate states necessary for a robot arm 
to move smoothly from one position to 
another is even more difficult. 

Computation and planning are tasks 
that must be done in many com

puter applications, and process-control 
software employs techniques to do them 
that are common to other types of soft
ware. On the other hand, process-con
trol systems have requirements that dif
fer from th9se of other computer appli
cations. One requirement has to do with 
speed. For a computer playing chess or 
calculating a payroll precise timing is 
seldom critical; higher speed would be 
advantageous, but a result obtained af
ter a delay is still valid. A system con
trolling a jet aircraft, however, has to 
make decisions quickly; it must act in 
"real time." 

Similarly, the chess-playing or pay
roll-calculating computer can do one 
task at a time and can schedule its tasks 
in whatever way is convenient. The air
craft-control system must meet multiple 
demands as they are presented, care-

COMPUTER 
SYSTEM 

fully synchronizing its work on various 
tasks. Reliability is also more important 
in the aircraft, where the consequence of 
a programming error could be a loss of 
life and not merely the loss of a game or 
a financial loss. In many cases the need 
for speed, synchronization and reliabil
ity is complicated by the physical organ
ization of the system, in which com
puters, sensors and actuators may be 
spatially separated and operating in a 
harsh environment. 

The problems of synchronization and 
timing are suggested by the simple pro
gram fragment in the top illustration on 
the opposite page. It is part of a program 
for controlling the heating of a building, 
and it takes the form of a loop: a se
quence of instructions that can be ex
ecuted repeatedly. The only timing re
quirement is that the procedures must 
be carried out fast enough to allow for 
a specified frequency of operation. If 
there were multiple sensors to be sam
pled or actuators to be commanded, 
however, the control flow through the 
software would be far more complex. 
Furthermore, if the system had to han
dle asynchronous interruptions from 
sensors and to issue commands in re
sponse to such events, the software 
could no longer be organized as a loop 
or even as a set of loops but would need 
to have some more complex topology. 

FROM 
ROOM 

SENSORS 

FROM 
OUTDOORS 

FURNACE 

PROCESS-CONTROL SYSTEM for regUlating the supply of heat 
to a building is shown schematically. The system consists of two heat
ers (a furnace and a heat pump), an array of sensors to monitor the 
outdoor temperature and the temperature in the rooms of the build
ing, actuators to turn the heating units on and off, a computer and a 
program given two goals: to maintain a temperature that depends on 
the time of day and to minimize the consumption of energy at all 
times. The program operates according to a three-part model of the 

real-world situation. The model state includes the inside and outside 
temperatures and the time of day; the state-update function calcu
lates a weighted average of the various temperatures and revises the 
model state accordingly, and the predictor function takes into ac-. 
count such matters as the state of the system and the rate of heat 
loss from the building to predict when one of the heaters should be 
turned on or off. The computer program is based on a strategy of us
ing only the more economical heater unless both heaters are needed. 
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Process-control software is usually 
constructed as a collection of cooperat
ing but separate tasks. A task is defined 
as an independent sequence of comput
er instructions that can call on data at 
least partially segregated from the data 
relating to other tasks. Multiple tasks 
can be carried out on multiple proces
sors, with each processor executing a 
single task. A commoner arrangement, 
however, employs a multitasking op
erating system to schedule the execu
tion of many tasks on a single comput
er. Careful analysis is needed to ensure 
the tasks receive service in a way that 
meets the overall goals of the system. 

One simple techniq ue sched ules tasks 
in a round-robin way: each task gets a 
turn during which it is executed to com
pletion. With this technique a task may 
meet with severe delays if long tasks are 
scheduled ahead of it. A second possibil
ity is a preemptive round-robin tech
nique, in which each task gets only a 
short time to execute before the proces
sor turns to another one. If there is more 
work for the first task to do, it gets 
another period of execution on its next 
turn. A third approach is priority-based 
scheduling, in which tasks of higher pri
ority get longer or more frequent pe
riods of execution. A final important 
approach is called deadline scheduling. 
A deadline by which each task must be 
completed is established, and the system 
attempts to schedule the tasks so that 
they all meet their goals. 

A fragment of a simple multi task con
trol program is shown in the bottom il
lustration at the right. Two tasks are co
ordinated: Keyboard-Sensor-Read, with 
a high priority, and Plan-Predict-Actu
ate, with a lower priority. The high-pri
ority task receives input asynchronously 
(that is, at unpredictable intervals) from 
a human operator and from sensors; the 
other task periodically adjusts actuators 
in response to recent inputs. If the low
priority task is executing when the key
board or a sensor reports that new data 
are available, the operating system in
terrupts the task and allows it to resume 
only after the data have been read. Al
most all process-control systems have 
this multitask organization. 

It is significant in this arrangement 
that the Keyboard-Sensor-Read task 
transfers data to the Plan-Predict-Actu
ate task by way of the model state. The 
first task simply loads information from 
the keyboard into the area of memory 
where the model state is stored, an area 
to which the second task also has access. 
The sharing of memory in this way is 
a powerful and efficient technique for 
intertask communication. It is the stan
dard procedure for process-control ap
plications confined to a single computer. 

On the other hand, communication 
between tasks by means of shared 

memory complicates multitasking and 

FROM 
SENSORS 

Repeat sequentially n times per second 
Beginning-ot-sequence 

Sample-Sensors 
Update-Model-State 
Plan-Next-Desired-Process-State 
Predict-How-To-Reach-Next-State 
Issue-Commands-To-Actuators 

End-ot-sequence 

STATE-UPDATE 
FUNCTION 
USES SENSORS 
TO UPDATE 
MODEL STATE 

MODEL STATE 

PREDICTOR 
FUNCTION 
ISSUES 
COMMANDS 
TO ACTUATORS 

TIME, INDOOR TEMPERATURE, OUTDOOR 
TEMPERATURE AND OTHER DATA 

TO 
ACTUATORS 

SOFTWARE STRUCTURE of tbe process-control scbeme for tbe beating system is suggested 
by tbe program fragment in tbe upper part of tbis illustration. Tbe commands in boldface type 
are key words in tbe programming language; tbe otber commands are calls on software proce

dures tbat are specific to tbe system being controlled. Tbe program bas tbe form of a loop: it 
is a sequence of commands tbat can be executed repeatedly. Tbe lower part of tbe illustra
tion sbows tbe major components of tbe computer program for controlling tbe beating system. 

Beginning-ot-task with priority 10 {Named Keyboard-Sensor-Readl 
Wait-For-Report-From-Keyboard 
Read-Keyboard 
Read-Sensor 
Update-MOdel-State 

End-ot-task 

Beginning-ot-task with priority 5 {Named Plan-Predict-Actuatel 
Repeat sequentially 10 times per second 
Beginning-ot-sequence 

Plan-Next-Desired-Process-State 
Predict-How-To-Reach-Next-State 
Issue-Commands-To-Actuators 

End-ot-sequence 
End-ot-task 

INPUT DEVICE 

TASK: READ 
KEYBOARD 
AND SENSORS 

TASK: PLAN, 
PREDICT, 
ACTUATE 

MODEL STATE 

SENSOR 

MULTITASK CONTROL SYSTEM is based on a single program tbat attends to and coordi
nates several functions; in tbe example sbown bere it operates a remotely controlled aircraft. A 
fragment of tbe program (top) includes two tasks; one task bas a bigb priority (color) and tbe 
otber a lower priority (gray). Tbe bigb-priority task receives inputs at irregular intervals from 
a buman operator, wbo works witb a keyboard, and from sensors on tbe aircraft. Tbe low
priority task periodically adjusts actuators tbat operate tbe aircraft's controls (bere a wing 
flap). Tbe bigb-priority task cannot be interrupted. If tbe low-priority task is executing wben 
inputs come from tbe keyboard or a sensor, it is interrupted by tbe program. Botb tasks bave 
access to tbe representation of tbe model state in tbe computer's memory. Memory sbaring is 
standard for intertask communication in process-control systems directed by one computer. 
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COMPUTER 

ACQUIRE LOCK A �=:::j:=� ACQUIRE LOCK B 

ACQUIRE LOCK B -----11--3>11 ACQUIRE LOCK A 

PROBLEM OF DEADLOCK can arise in a program that employs the technique called locking 
to synchronize the sharing of memory by multiple tasks. In this technique a task cannot gain 
access to data in memory until it acquires a lock, meaning that it asks the operating system for 
access and receives it. When the task no longer needs access, it releases the lock. Here deadlock 
is shown in a two-task system. The task on the left is executing a sequence of instructions (rep
resented by dots) when it encounters a command to acquire lock A. It does so and continues 
executing. Meanwhile the second task has followed instructions to acquire lock B. Now the first 
task issues an instruction to acquire lock B; it cannot do so because the other task already has 
that lock, and so the first task is suspended until the lock is made available. If the second task 
now issues a request to acquire lock A, the system is deadlocked and neither task can execute. 

Beginning-of-task with priority 10 {Clock} 
Repeat sequentially 10 times per second 
Beginning-of-sequence 

Send-Message (Plan-Predict-Actuate-Task, T ime-Passed) 
End-of-sequence 

End-of-task 

Beginning-of-task with priority 10 {Named Keyboard-Sensor-Read} 
Wait-For-Report-From-Keyboard 
Read-Keyboard 
Read-Sensor 
Send-Message (Plan-Predict-Actuate-Task, New-Data) 

End-of-task 

Beginning-of-task with priority 5 {Named Plan-Predict-Actuate} 
Repeat sequentially 10 times per second 
Beginning-of-sequence 

Await-Message 
If message is from T imer-Task then 
Beginning of sequence 

Predict-How-To-Reach-Next-State 
Issue-Commands-To-Actuators 

End-of-sequence 
Else Update-Local-State-With-New-Data 

End-of-sequence 
End-of-task 

TASK: READ 
CLOCK,REPORT 
TIME PASSED 

TASK: READ 
KEYBOARD OR 
SENSOR AND 
REPORT 

CLOCK, 

MESSAGE PASSING is an alternative to memory sharing for synchronizing the work of mul
tiple tasks in a process-control system. It is the only workable method when the system has sev
eral separate computers. Part of a message-passing program for controlling an airplane ap
pears at the top; the organization of the program is diagrammed below the program fragment. 
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leads to some interesting problems. One 
problem is synchronization. Suppose in 
the two-task program the low-priority 
task is interrupted after it has read some 
elements of the model state but before it 
has read others. When the task resumes, 
it reads the remaining values and calcu
lates a result determined by all the read
ings. During the interruption, however, 
the model state may have been changed 
by the other task, so that the computa
tion is based on a chimera of old and 
new data. Suppose the interrupted task 
was measuring a position in an x-y-z co
ordinate system and was interrupted af
ter it had read x but before it had read 
y and z; it would base its calculation 
on a position that never existed in the 
real world. 

Several techniques are available for 
synchronizing access to shared memo
ry, but two simple ones are commonly 
used. One technique depends on des
ignating segments of program code in 
which a task cannot be interrupted; 
the facilities for interrupting a task can 
readily be disabled by the operating sys
tem in conjunction with the computer 
hardware. Turning again to the two-task 
example, the system might specify that 
the Plan-Predict-Actuate task is to be 
free of interruption while it is reading 
the x, y and z coordinates. The other 
major techniq ue is called locking. Be
fore a task can gain access to data it 
must ask the operating system for the 
right to do so. When the task has finished 
with the data, it tells the operating sys
tem that the data are free for the use of 
other tasks. The task is said to acquire a 
lock before it can read data in shared 
memory, and it must release the lock 
when it has finished. By this mechanism 
the operating system ensures that only 
one task at a time has access to the data. 

Although the synchronization of ac
cess to shared memory is conceptually 
simple, it is a major source of bugs in 
multitask programs. In part the reason is 
that synchronization bugs are extreme
ly difficult to find; they may exhibit no 
symptoms except in rare circumstances. 
The computer malfunction that delayed 
the first mission of the space shuttle 
was a synchronization problem (a high
ly complex one) that would be likely to 
arise only once every 65 times the sys
tem was started up. 

Problems connected with the syn
chronization of shared memory can af
fect the reliability of a system in other 
ways. What happens if a programming 
error leads a task into an endless loop 
while it is in a no-interruption period? 
Unless great care has been taken in the 
design of the system, other tasks may be 
shut out entirely. A problem that can 
arise with locks is that a collection of 
tasks may form a cycle in which each 
task is waiting for another task to release 
a lock, with the result that none of the 
tasks is executed. Such a deadlock can 
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SCIENCE/SCOPE 

Artificial intelligence is the focus of a new advanced technology center at Hughes Aircraft Company. 
The facility brings research and development efforts under one roof. Scientists and engineers will 
work closely with universities throughout the country to develop software and equipment to build the 
so-called expert systems. Studies will center on knowledge representation, symbolic reasoning and 
inference, natural language processing, and knowledge acquisition and learning. Technology will be 
developed for image understanding for missile targeting and geological surveys from space, smart 
avionics to reduce pilot workload, self-controlled systems, simulation and training, fault diagnosis and 
maintenance, and manufacturing resource allocation and planning. 

The sights, sounds, motion, and urgency of combat await pilots who learn to fly the F/A-i8 Hornet 
strike fighter in the first computerized simulators of their kind. A pilot wears full flying gear and sits 
in an exact replica of an F/A-i8 cockpit located inside of a 40-foot-diameter sphere. High-resolution 
pictures of earth, sky, and targets are projected onto the inner surface of the sphere and matched with 
appropriate sounds and vibration. Pilots thus experience runway vibration, aircraft stalls, buffeting, 
missile launches, cannon fire, dazzling aerial maneuvers, and enemy aircraft and missiles approaching 
at supersonic speeds. The Hughes simulator will save the U. S. Nav y and Marine Corps millions of 
dollars by providing combat training without costly flight operations. 

Computers will be troubleshooting hybrid microcircuits used in new sophisticated missiles at Hughes. 
Computer-aided troubleshooting (CATS) will cut troubleshooting time, improve effectiveness by 
automatically locating faults, eliminate mistakes and wasted time, and simplify the technician's 
decision-making. CATS also will be able to use past repair records as a key to speed up troubleshooting. 
A typical case: An automatic bar-code reader identifies a failed part and data about the failed test is 
retrieved from a main computer. A probe then automatically takes measurements at key internal circuit 
nodes so the fault can be isolated. Next, the computer displays a schematic of the failed circuit area and 
compares actual and ideal signal values. The technician then determines which component has most 
likely failed and selects rework instructions accordingly. 

Development times for semicustom very large-scale integrated (VLSI) circuits have been cut from 
greater than one year to 20 weeks at an ultramodern computer-aided training and design center at the 
Hughes facility in Newport Beach, California. Utilizing advanced design automation software, a 
comprehensive library of pre designed logic functions (called Macros), and preprocessed wafers, the 
new facility is helping engineers design chips with 2,000 to 8,000 gates and with as many as 180 
pins. New 3-micron dual-layer metal HCMOS processes are applied to both standard cell products and 
state-of-the-art gate arrays. Skilled design engineers and education specialists at the Newport Design 
Center provide training and technical support for IC designers throughout the company. 

Hughes Research Laboratories needs scientists for a spectrum of long-term sophisticated programs. 
Major areas of investigation include: masked ion beam lithography, liquid-crystal materials and 
applications, sub micron microelectronics, ion propulsion, computer architectures for image and signal 
processors, gallium arsenide device and integrated circuit technology (analog and digital), and new 
electronic materials. For immediate consideration, please send your resume to Professional Staffing, 
Hughes Research Laboratories, Dept. S2, 3011 Malibu Canyon Road, Malibu, CA 90265. Equal 
opportunity employer. U. S. citizenship required. 

For more information write to: P.O. Box 11205, Marina det Rey, CA 90295 

HUGHES 
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Make Way For Hayes'Please. 
An advanced, easv-to-use data management 

system for the IBM® PC and compatibles. 

bility and customer support. your spreadsheet program. Please 
Now these same standards have will even look up a name and com-
been applied to a new data pany for you, your Hayes Smart-

L--____________ ..,.-...J management system that isgo- modem* will dial the phone number, 
Want to get your paperwork out of ing to instandy change the way you and you're ready to talk! 
a clumsy file cabinet and onto your do business! 'Iaking this same sales database, 
PC's screen, where you can manage Say you're looking for an effident you might also want to define spedal 
it better? Frustrated with data base way to maintain fields for a custom 
software that's either too limited or sales data. Please "Make it snapp� please!" Output Plan. 
too difficult to use? Hayes offers you leads you every step Need a report fast; You and �ith a ��fined 
a simple word of kindness. of the way in creat- Please can put together a Quick field for COM-

Please�M A powerful. yet easy-to-use, ing a sales database List in a matter of seconds. MISSIONS DUE:' 
system for organizing and managing that might include - please can automa-
your information. please is fle:xiole names, addresses, dates and figures. tically compute each salesman's com-
enough to store any data you enter, These categories are called "fields" in missions, and print them out in a 
and it'll return data to you in exactly database lingo, and they're the very report of your own design. All this 
the form you need. Please does heart of your database structure. and more, just for saying "please:' 
more. Want last month's total in a par- And if you ever change your mind 
�t does "The menu, Please?" ticular region? Press a few keys and and want to change the structure of 
It all M l' 11 . it'SJourS! A few more keystrokes hOur database, please feel free. Step-
s: enus 1st a your options II kn h . . h h laster: and tell you exactly which an you' ow w o's moving pro- y-step mstructions s ow you ow. 
And it's keys to press for every duct. and what's your biggest seller: You have the same fle:xioility with 
sure to please feature. please will supply you with labels any database you and Please aesign. 
please! L--:--__ --:-_-:-__ ---' for a mailing to selected customers. It You can store up to 16 million records 

That's to be expected. As the can send customer information to and 200 custom Output Plans for each 
telecomputing leader, Hayes built its · your word processor for a promotional database! More than you're likely 
reputation on quality design, relia- letter. And it can receive data from ever to require. But isn't it nice 

Please is a trademark of Hayes Microcomputer Products, Inc, • Smaronodem 300. Smaronodem 1200 and Smaronodem 1200B are trademarks of Hayes Microcomputer Products. Inc. 
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"Put it here, please:' knowing Everything about Please is designed 
Design a special screen all that to save you time and effort. So what 
fonnat to position data storage could make data management even 

in a particular place. power easier? please Application Templates, 
'-r------------' is there? that's what! 

Just in case you ever need it? To help you get up-and-running 
Now you might think that a data immediately, we've developed a 

management system that does all series of practical. pre-designed 
this must be difficult to use. Right? templates. You'll appredate their 
Rest assured. Please works hard so well-thought-out structure, and "fill-
you don't have to. An easy-to-follow in-the-blank" ease. Choose several! 
sample disk shows you everything For business and personal use. 
you need to know to Including Mailing 
create your first data- "Merge these, please!" IJst, for storing 
base. Three Please Combine data from one names and 
menus show you database into another, with- addresses and pro-
which keys to press out changing your original. dudng mailing lists. 
to access every fea- Contacts, for man-
ture. And whenever you need it aging facts and figures about your 
please provides on-screen HELP sales contacts. Applicants, for follow-
messages, tailored to a spedfic task. ing applicants thioughout the inter-" 
So you needn't waste time reading viewing process. Appointments, for 
through a list of unrelated instructions maintaining your calendar and track-
on your screen. Or stop what you're ing all of your business expenses. 
doing to consult a manual. In no time Household Records, a complete 
at all, and with no assistance at all, home management system. And 
you'll be a Plea.se database pro! more! Your dealer has details! 

Buy Please nowl 
Get a FREE Mail
ing List temjllate 
from your dealet 

Second FREE 
template of your 
chOICe, direct 
from Hayesl 

Help yourself. 
pleasel And take 
advantage of 
these two valu
able offers. See 
your dealer right 
awayl 

Hayes MicrocomI>uter Products, Inc., 
5923 Peachtree lnoustrial Blvd .. 
Norcross. Georgia 30092. 404/441-1617. 

IBM is a registered trademark of International Business Machines Corporation. ©1984 Hayes Microcomputer Products. Inc. 
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QUALITY PERSONAL PRINTERS. 

Each gear finely honed. Each pendu
lum carefully balanced. Each timepiece 
a combination of precision and function. 
He was a craftsman, building a quality 
product to stand the test of time. 

Today, qkidata makes the most tech
nologically advanced dot matrix print
ers the same way. With quality, perfor
mance, and a healthy respect for value. 

Function with affordability. All print
ers print. but an Okidata does it with 
more performance and versatility than 
any other. There are seven models to 
choose from, priced at $349 to $2,595. 

Affordabillty with flexlbillty. Oki
data offers three print modes, too. The 
data processing mode lets you print up 
to 350 characters per second. That's 
five pages a minute. Another mode lets 
you print emphasized or enhanced text 
for more effective presentations, while 
the correspondence mode prints letter 

quality at up to 85 characters per sec
ond, with clarity that rivals daisywheel. 
And an Okidata can print graphics and 
charts, which a daisywheel can't. This 
allows you to fully use the latest inte
grated software packages like Lotus 
\-2_VM and SymphonyTM. 

F1exlbillty with compatibility. Each 
Okidata printer is fully compatible with 
all popular software packages and per
sonal computers. Special interfaces 
are available for IBM and Apple, in
cluding the Apple Macintosh. 

Compatibility with reliability. 
Here's where Okidata quality really 
shows. With a warranty claim rate of 
less than \ /2 of \ %. With printheads 
that last well beyond 200,000,000 char
acters and come with a full year guaran
tee. With service available nationwide 
through Xerox Service Centers. 

Precision and performance. Quality 

and value. That old English c10ckmaker 
would have been very proud of us. 

Call \-800-0KIDATA (609-235-2600 
in New Jersey) for the name of the Au
thorized Okidata Dealer nearest you. 

Technological Craftsmanship. 

Lotus \-2-3 and Symphony are trademarks of Lotus 
Development Corp. 
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appear in a system with as few as two 
tasks and two locks. 

Difficulties unrelated to synchroniza
tion are also possible in a shared-mem
ory system. Because the memory is 
shared, tasks are not isolated from one 
another, and it is difficult to limit the 
effects of a failure. The faulty execu
tion can alter the model state and thcre
by disrupt the operation of many other 
tasks. In a network of geographical
ly dispersed computers the sharing of 
memory becomes awkward for still an-

COMPUTER 
SYSTEM 

other reason, having to do with the hard
ware rather than the software: it is sim
ply not feasible to build a memory to be 
shared by several distant computers. 

For these reasons among others some 
process-control systems are organ

ized as a collection of tasks that do not 
implicitly share the model state but in
stead explicitly exchange information 
by transmitting messages. Each task 
keeps track of those elements of the 
model state it needs in its own, non-

BUS SYSTEM 

COMPUTER 
SYSTEM 

COMPUTER 
SYSTEM 

shared, segment of memory. The oper
ating system provides facilities for send
ing and receiving messages. 

For simple process-control applica
tions the message-passing arrangement 
is more complex and usually less effi
cient than shared memory. Still, the ex
plicit flow of information between tasks 
and the greater isolation of tasks offer 
certain advantages. A message-passing 
organization is the only feasible choice 
when a process is being controlled by a 
system of several cooperating comput-

GATEWAY 

SENSORS, 
ACTUATORS, 
DISPLAYS, 
INPUT DEVICES 

RING SYSTEM 

GATEWAY 

COMPUTER 
SYSTEM 

I 
I 
I 
I 
I 
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GATEWAY 

I 
I 
I 
I 
I 
I 
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LONG·HAUL 
COMPUTER 
NETWORK 

CENTRAL 
COMPUTER 
COMPLEX 

DISTRIBUTED COMPUTER SYSTEM is a common arrangement 
when the sensors and actuators of a process-control system are wide
ly scattered. The system shown encompasses three clusters of com
puters that are geographically dispersed. One cluster is made up of 
three computers that communicate with one another by means of a 

local-area network organized as a "bus" (a set of parallel straight
line conductors). Another cluster employs a ring-shaped network. 
The third component of the system is a central computer that has the 
functions of coordination, the collection of data and human input. 
The three systems exchange messages over a long-distallce network. 
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ers witho ut shared memory .  Notwith
stand ing the virtues of message passing, 
a program can still  become deadlocked 
because tasks can be waiting to rece ive 
me ssages from one another. 

Systems made up of several comp ut
ers working in concert are increasingly 
prevalent, not only for process control 
but also for scientific calculation, data 
processing and artificial intel l igence. In 
some arrangements of this kind a n um
ber of processors share a common 
memory; the sharing is possible,  how
ever, only if the comp uters are physi
cally close. (Transmitting a signal one 
kilometer takes several microseconds, 
which is an intolerable delay for the 
heavy traffic between a central proces
sor and its main memory.)  

When the comp u ters are physically 
separated ,  the process-control system is 
organized as a collection of processors 
with their own local memory; the proc
essors are connected by communication 
channels to form a network.  These d is
tri b u te d  systems, as they are called,  nec
essarily rely on message passing. The 
distance between processors, sensors 
and act uators d isting u ishes d ifferent 
types of d istrib uted systems because of 
the effect  of d istance on bandwidth and 
latency.  Bandwidth is  a meas ure of the 
n umber of bits that can be transmitted 
per second; latency is  the delay between 
the d ispatch and the receipt of informa-

tion. Shorter d istances make for higher 
bandwidth and lower latency,  thus al
lowing closer interaction between tasks 
being exec uted on the comp uters.  

A common reason for setting up a dis
trib uted system in process control is  that 
the sensors and actuators are themselves 
geographically d istrib ute d .  In s uch a sit
uation it is often possible to organize the 
system so that most of the processing is  
done near the relevant sensors and actu
ators and communication between com
p u ters i s  minimized .  An example is  a 
process-control system for a large facto
ry with many semia utonomou s  comp ut
ers in different b uild ings. The systems 
occasionally exchange messages for the 
p urpose of plantwide coord ination and 
sched ul ing, but mainly they operate in
dependently. The system in one b u il d ing 
might independently control the manu 
facture of a certain prod uct b u t  wou l d  
communicate with other systems t o  
gather information about prod uction 
q uotas or the s upply of raw materials.  

Distr ib uted processing can also s im
p lify the design and installation of the 
system (say by red ucing the amount of 
cabling), and it  encourages an organiza
tional str ucture in which the people re
sponsible for a process also have charge 
of the associated comp uting tasks. Po
tentially higher performance is  anoth
er maj or motivation for multicomp u ter 
systems. In principle more comp uta-

tion can be done if many processors are 
working simultaneously .  A process-con
trol system organized as a set of tasks 
that communicate by means of mes
sages is a natural application of s uch 
parallel processing.  A comp utationally 
intensive p lanning task might be execut
e d  on a high-speed processor that re
ceives data from tasks r unning on oth
er comp uters and passes strategic plans 
back to them. 

Perhaps the most important reason for 
adopting d istr ib uted comp uting in a 

process-control system is that it is a use
ful  means of achieving reliability.  When 
the system is d ivided into s u b systems 
that operate a u tonomo usly,  a failure in 
one machine sho uld not cause the entire 
system to fail .  The factory setup I de
scribed above offers an example: even if 
one s ubsystem fails,  the other s u bsys
tems can contin ue,  at least until they r un 
o u t  of raw materials.  

If  contin ued operation of the entire 
system is the o bjective,  red undant proc
e ssing is  a necessary but not a s ufficient 
means to that end. The entire process
control system from sensors to actua
tors, not j ust the comp uter and its soft
ware, must go on working in spite of a 
malfunction. A comp uter working cor
rectly but receiving incorrect data from 
sensors and therefore iss u ing faulty 
commands to actuators could do more 

PROTECTION AGAINST FAILURE is more important in proc
ess-control systems than it is in many other computer applications. 
One way to improve reliability is to duplicate key components of the 
system. Here one computer is designated primary and the other sec
ondary. Each computer receives all the inputs, but only the primary 

is connected to the actuators. The secondary merely does the compu
tations as if it were controlling the process. If the primary fails, con
trol of the actuators is switched to the secondary. The system also 
has redundancy in the sensors, the actuators, the displays and the 
input devices, since they must operate as reliably as the compnters. 
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damage than a comp uter that stopped 
completely.  

The h ighest goal in the q uest for reli
ability is continued operation complete
ly unaffected by fail ure s .  The nat ure of 
the compromises made when that goal 
cannot be attained is s uggested by the 
approach to reliability taken in the con
trol systems of the space shuttle.  Be
cause of red undancy in the shuttle's pri
mary space borne computer system, a 
single fail ure does not force changes in 
the mission. A second fail ure does not 
jeopard ize the crew or the vehicle, but  
the shuttle is bro ught back to the earth 
as soon as possible because further fail
ure s could be hazardous .  The shuttle is 
said to be "fail operational, fail safe . "  

If  an entire system cannot be k e p t  r un
ning after a fail ure, it  may still  retain 
partial function, a property given the 
rather stately name of graceful degra
dation. For example, a system that can 
no longer control a process a u tomati
cally might still  accept keyboard com
mands from an operator,  so that the 
process could be controlled manually.  
If  even partial operation is not possi
ble,  the control system sho uld at least 
bring about an orderly shutdown of the 
process in the event of a major failure.  

Failures of software can occur in 
three ways.  First, the requirements of 
the process-control system may be m is
state d ,  so that even if the software meets 
its specifications exactly, it  leads to erro
neo us operation. On the first mission of 
the space shuttle insufficient knowle dge 
of the vehicle's flight characteristics led 
to an ascent trajectory that m ight not 
have allowed an emergency land ing in 
Spain as part of the plan for dealing with 
crises.  Second, the logical design under
lying the software or the programming 
statements in which the design is  em
bodied may not meet the specifications. 
The flaw may be something as simple as 
a typographical error. Third,  a h uman 
operator may err in using the software . 

Protecting against fail ure is a key topic 
in al l  comp uter applications, but  in 

process control the high probability of 
bugs in synchronization and timing and 
the potentially greater cost of s uch b ugs 
make the task of protecting against them 
both more important and harder. Some
times formal analytical methods can be 
bro ught to bear to prove that a pro
gram meets the req uirements stated for 
it .  In  most cases, however, less formal 
analytical methods must serve. A com
mon method is  to have experts in re
q u irements and experts in program
ming j o intly study a spec ification of 
req uirements and a program devised 
to meet them. 

Regardless of how thoro ughly a pro
gram is analyzed,  it is still necessary to 
test it .  Analytical methods are gener
ally not powerful enough to catch all 
the conceivable b ugs in software des ign 

and in programming. F urthermore, no 
amount of comparison of programs 
with req uirements can ens ure that the 
req uirements themselves are correct 
and sufficient. 

Sometimes the people who verify pro
grams are organized as a group separate 
from the programmers, and they inde
pendently test the operation of the pro
gram. D uring the development of the 
primary space borne operating system 
of the shuttle the independent group of 
program verifiers was about the same 
size as the programming group.  In an 
effort to red uce the risk of programming 
errors still  further, two programming 
groups are sometimes formed to inde
pendently devise software for the same 
task.  The ass umption is that at least one 
version of the software will work. 

Protection against errors by operators 
calls for what is irreverently termed 
id iot-proofing. Careful design of the 
software can minimize the likelihood or 
s uch errors. Input from the operator can 
also be checked for plausibility,  for ex
ample by having the program deter
mine whether n umerical values are in 
the proper range . Another techni q ue is 
to give the operator an opportunity to 
rethink crucial actions. The program can 
raise a q uestion s uch as "Did you mean 
to hal t the process? " 

An interesting property of software 
I\. is that once a program has been 
proved to operate correctly, i t  will  con
tinue to work indefinitely; software does 
not " break down." In  contrast, hard
ware that is reliable at one time may not 
be rel iable later. Processors may stop 
altogether or comp ute erroneo u s  re
sults;  memory and sensors may ret urn 
incorrect val ues;  communication lines 
may garble information or lose it ,  and 
act uators may stop working or become 
inacc urate. A single component m ight 
fail or an entire comp uter with its mem
ory and comm unication lines might be 
d isabled,  as in an airplane after a fire. 
Even if the computing system itself is 
flawless,  it may still  fail because of envi
ronmental effects s uch as power fluct ua
tions or excessive heat.  I f  a system is to 
be reliable,  therefore , it  should tolerate 
the faults that still  arise in spite of all 
e fforts to el iminate them. Red undancy 
in many forms is the means of keeping 
s uch fa ults from interfering with the sys
tem's p lanne d reliabil ity .  

A certain amo unt of red undancy can 
be b u ilt into the hardware . For example, 
many comp uters store extra informa
tion with each item in memory so that 
some storage errors can be corrected a u 
tomatically.  Some processors automati
cally retry an instr uct ion that has failed, 
a design feature founded on the rea
sonable l ikel ihood that the effort will  
s ucceed _the second time. M aj or logic 
mod ule s-even entire processors-can 
be repl icate d .  The re s ults . obtained by 

the units operating in parallel are com
pare d ,  and the result accepted is deter
mined by a majority vote. The techniq ue 
is called n-replica mod ular red undancy. 
When n is more than 3, the technique 
y ields a correct value if there are no 
more than (n - 1 ) / 2  failures .  As long as 
mod ules fail independently the reliabili
ty of the system increases as J1 increases.  

Software techniq ues are also em
ployed to gain reliability. L i ke hard
ware, software can retry a proced ure af
ter a failure.  In  most comm unications 
systems the software retransmits data 
until it has rece ived an acknowledgment 
that the d ata got thro ugh. Software can 
also t urn to a red undant source after 
one so urce has faile d .  In  a typical oper
ation the software would detect a mal
function in an act uator by noting incon
sistencies in data coming from a sensor; 
commands would then be redirected 
to another actuator.  

In a m ul ticomp uter system similar 
software proced ures can be carried out 
on m ultiple processors to d iminish the 
con seq uences of a processor failure.  
The software for each processor can be 
programmed independently to increase 
the l ikelihood that at least one version of 
the software is correct. If  the system has 
a utonomo us processors that are sepa
rate ly powered ,  spread over a d istance 
and connected by red undant communi
cation channels,  there is little chance 
that the entire system can fail .  With the 
add ition of red undant sensors and actu
ators a system of this kind can provide 
extremely high reliability.  

One way of organizing a system with 
extensive red undancy is to designate one 
computer the primary, with the other 
comp uters be ing considered secondary. 
The primary comp uter receives data 
from the sensors and commands the ac
t uators. The secondary comp uters may 
also rece ive data from the sensors so 
that they will  have the correct model 
state if one of them has to take over 
from the primary, but they do not com
mand the actuators.  The secondaries 
check the primary comp uter periodical
ly,  both implicitly by keeping watch on 
the consistency of the data from the sen
sors and explicitly by sending messages 
to the primary that ask it to perform 
some test function. Both the primary 
and the secondaries m ust filter -informa
tion from red undant sensors, and they 
may have to vote on the read ings from 
the sensors in order to ensure that the 
comp utations are based on valid data. · 

Perhaps the most difficult  part of this 
techniq ue is reliably determining when a 
primary comp uter has faile d .  It is easy 
to envision a sit uation in which a mal
functioning secondary could seize con
trol from a properly functioning pri
mary . Clearly it is necessary to have an 
agreement among m ultiple secondaries 
on the necessity for one of them to take 
over from the primary.  Whenever there 
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is eno ugh time, it is simpler for a human 
operator' to make the decision. 

An alternative way of organizing a 
I\. m ulticomp uter system is based on 
voting.  The proced ure is similar to n 
mod ular re d undancy except t h a t  the 
voting is  done by software modules  
rather than by hardware. The mod ules 
perform calc ulations, exchange results 
with one another and vote on the results.  
Beca use independent processors r un at 
slightly d ifferent speeds, a group of them 
m ust wait untilthe last one has finished 
a computation before they can vote. 

A system somewhat like the one 
described controls crit ical flight seg
ments on the space shuttle.  The system 
has four a utonomous processors. Each 
processor commands a separate act ua
tor for each function, such as moving 
airfoil s urfaces d uring fl ight in the at
mosphere.  The voting is done hydrau-

SENSOR 1 

COMMANDER 

- - - - - - - ..., 

l ically :  three act uators can overpower 
one act uator. A description o f  hydraulic 
act uators that fight against  one another 
may seem out of pl ace in a d isc ussion of 
comp uter software, but it  is  q u ite ger
mane. The hydraulic voting scheme ex
ists because process-control software, 
by its  very nature, m ust d irec tly infl u 
e n c e  processes in t h e  r e a l  world .  I t  is 
this d irect control that most d isting uish
es process-control systems fro m  other 
comp uter systems, which merely re port 
the results of comp utations.  

Some process-control systems are in
herently q u ite s imple .  The heating-con
trol arrangement I have described is  
an example.  Other systems,  s uch as the 
ones that control the shuttle,  jet aircraft 
and telephone switches, are among the 
most complex com p u ter systems ever 
b u ilt .  They demand advanced strate
gic  planning, high performance, high 
reliabil ity and precise t iming.  Mee ting 
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those objectives cal ls  for the use of tech
niq ues from the fields of software engi
neering, hardware architecture, systems 
design, operating systems and artificial 
intel l igence. 

A simple system can be d esigned in a 
matter of days.  A ·complex one s uch as 
the onboard system for the space shuttle 
calls for years of effort by thousands of 
workers: Perhaps the problem most in 
need of sol ution is how to reduce the 
time req uired to constr uct  a complex 
control system. I t  is  almost always pos
sible to devise hardware and software to 
meet a process-control o bjective, but  the 
task can be formidably e xpensive. Al
though certain new software engineer
ing techniq ues and programming lan
g uages (Ada is one) will  help somewhat, 
the real need is for better methods of 
specification and programming, easier 
means of analysis and testing and better 
organization of systems. 

VOTED 
SUBSYSTEM 

VOTING ARRANGEMENT is often provided in process-control 
systems to protect against failure. The scheme of hydraulic voting 
shown here is employed on the space shuttle to set the position of the 
rocket gimbal. The system has three sensors, four computers and four 
hydraulic actuators. Only one computer issues commands for a read
ing from each sensor, but all the computers receive data from all the 
sensors. The computers exchange enough information to ensure that 

they agree on the data. If they do not agree, they discard the data. 
Otherwise they independently compute the appropriate output by 
means of identical algorithms. Each computer commands a separate 
actuator; if the commands are in conflict, three actuators can over
power the fourth actuator, so that there is effectively a principle of 
majority rule. If a component fails, a member of the crew can deal 
with the problem, as is indicated by the lines labeled "Commander." 
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Were light on your feet. 
Our casting material is up to one-th i rd 
l ighter than plaster. It's three times stronger 
and we hope you never need it. 

But on most any injury req u i ring a cast. 
you 'd f ind Scotchcast® Casting Tape more 
comfortable than plaster and easier to 
get around i n .  It 's th i nner, so it fits u nder 
cloth ing .  I t  also breathes. That reduces 
itching,  odor and helps you stay cooler i n  
warm weather. 

Al l  the comforts of Scotchcast tape 
were i nspired by a 3M employee who 

asked for someth ing " l ess barbaric" than 
his plaster cast. 

Hearing the needs of the medical profes
sion and the patients it serves has hel ped 
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Computer Software 
in Science and Mathematics 

Computation offers a new means of describing and investigating 
scientific and mathematical systems. Simulation by computer may 
be the only way to predict how certain complicated systems evolve 

Scientific laws give algorithms, or 
procedures, for determining how 
systems behave. The computer 

program is a medium in which the algo
rithms can be expressed and applied. 
Physical objects and mathematical 
structures can be represented as num
bers and symbols in a computer, and a 
program can be written to manipulate 
them according to the algorithms. When 
the computer program is executed, it 
causes the numbers and symbols to be 
modified in the way specified by the sci
entific laws. It thereby allows the conse
quences of the laws to be deduced. 

Executing a computer program is 
much like performing an experiment. 
Unlike the physical objects in a conven
tional experiment, however, the objects 
in a computer experiment are not bound 
by the laws of nature. Instead they fol
low the laws embodied in the computer 
program, which can be of any consistent 
form. Computation thus extends the 
realm of experimental science: it allows 
experiments to be performeq in a hypo
thetical universe. Computation also ex
tends theoretical science. Scientific laws 
have conventionally been constructed in 
terms of a particular set of mathemati
cal functions and constructs, and they 
have often been developed as much 
for their mathematical simplicity as for 
their capacity to model the salient fea
tures of a phenomenon. A scientific law 
specified by an algorithm, however, can 
have any consistent form. The study of 
many complex systems, which have re
sisted analysis by traditional mathemat
ical methods, is consequently being 
made possible through computer exper
iments and computer models. Compu
tation is emerging as a major new ap
proach to science, supplementing the 
long-standing methodologies of theory 
and experiment. 

There are many scientific calcula
tions, of course, that can be done by con
ventional mathematical means, without 
the aid of the computer. For example, 
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by Stephen Wolfram 

given the equations that describe the 
motion of electrons in an arbitrary mag
netic field, it is possible to derive a sim
ple mathematical formula that gives the 
trajectory of an electron in a uniform 
magnetic field (one whose strength is 
the same at all positions). For more 
complicated magnetic fields, however, 
there is no such simple mathematical 
formula. The equations of motion still 
yield an algorithm from which the 
trajectory of an electron can be deter
mined. In principle the trajectory could 
be worked out by hand, but in prac
tice only a computer can go through the 
large number of steps necessary to ob
tain accurate results. 

A computer program that embodies 
the laws of motion for an electron in a 
magnetic field can be used to perform 
computer experiments. Such experi
ments are more flexible than conven
tional laboratory experiments. For ex
ample, a laboratory experiment could 
readily be devised to study the trajecto
ry of an electron moving under the influ
ence of the magnetic field in a television 
tube. No laboratory experiment, how
ever, could reproduce the conditions en
countered by an electron moving in the 
magnetic field surrounding a neutron 
star. The computer program can be ap
plied in both cases. 

The magnetic field under investiga-

tion is specified by a set of numbers 
stored in a computer. The computer 
program applies an algorithm that sim
ulates the motion of the electron by 
changing the numbers representing its 
position at successive times. Computers 
are now fast enough for the simulations 
to be carried out quickly, and so it is 
practical to explore a large number 
of cases. The investigator can interact 
directly with the computer, modifying 
various aspects of a phenomenon as new 
results are obtained. The usual cycle of 
the scientific method, in which hypothe
ses are formulated and then tested, can 
be followed much faster with the aid of 
the computer. 

Computer experiments are not limit
ed to processes that occur in nature. 

For example, a computer program can 
describe the motion of magnetic mono
poles in magnetic fields, even though 
magnetic monopoles have not been de
tected in physical experiments. More
over, the program can be modified to 
embody various alternative laws for the 
motion of magnetic monopoles. Once 
again, when the program is executed, 
the consequences of the hypothetical 
laws can be determined. The comput
er thus enables the investigator to ex
periment with a range of hypothetical 
natural laws. 

COMPUTER SIMULATION has made it practical to consider many new kinds of models for 
natural phenomena. Here the stages in the formation of a snowflake are generated by a com
puter program that embodies a model called a cellular automaton. According to the model, the 
plane is divided into a lattice of small, regular hexagonal cells. Each cell is assigned the value 0, 
which corresponds to water vapor (black), or the value 1,  which corresponds to ice (color). Be
ginning with a single red cell in the center of the illustration, the simulated snowflake grows in 
a series of steps. At each step the subsequent value of any cell on the boundary of the snow
flake depends on the total value of the six cells that surround it. If the total value is an odd num
ber, the cell becomes ice and takes on the value 1; otherwise the cell remains vapor and keeps 
the value O. The successive layers of ice formed in this way are shown as a sequence of colors, 
ranging from red to blue every time the number of layers doubles. The calculation required for 
each cell is simple, but for the pattern shown more than 1 0,000 calculations were needed. The 
only practical way to generate the pattern is by computer simulation. The illustration was made 
with the aid of a program written by Norman H. Packard of the Institute for Advanced Study. 
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The computer can also be used to 
study the properties of abstract math
ematical systems. Mathematical exper
iments carried out by computer can of
ten suggest conjectures that are sub
sequently established by conventional 
mathematical proof. Consider a math
ematical system that can be introduced 
to model the path of a beam of elec-

trons traveling through the magnetic 
fields in a circular particle accelerator. 
The transverse displacement of an elec
tron as it passes a point on one of its 
revolutions around the accelerator ring 
is given by some fraction x between 0 
and 1. The value of the fraction corre
sponding to the electron's displacement 
on the next revolution is then ax(1 - x), 

where a is a number that can range be
tween 0 and 4. The formula gives an 
algorithm from which the sequence of 
values for the electron's displacement 
can be worked out. 

A few trials show how the properties 
of the sequence depend on the value of 
a. If a is equal to 2 and the initial value 
of x is equal to .8, the next value of x, 
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PHYSICAL PROCESS ALGORITHMIC DESCRIPTION 
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MATHEMATICAL AND COMPUTATIONAL METHODS are 
applied in various ways in the study of random walks. A random walk 
is a model for such physical processes as the Brownian motion of a 
small particle suspended in a liquid. The particle undergoes random 
deflections as it is bombarded by the molecules in the liquid; its path 
can thus be described as a sequence of steps, each taken in a random 
direction. The most direct way to deduce the consequences of the 
model is by a computer experiment. Many random walks are simulat
ed on a computer and their average properties are measured. The dia
gram shows a histogram in which the height of each bin records the 
number of simulated random walks that were found to have reached 
a particular range of positions after a certain time. As more trials are 
included, the shape of the histogram approaches that of the exact dis
tribution of positions. For an ordinary random walk it is possible to 
derive the exact distribution directly. A differential equation can be 
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constructed for the distribution, and the equation is simple enough 
for an exact solution to be given. For most differential equations, 
however, no such exact solution can be obtained, and approximations 
must be made. In numerical approximations the smooth variation of 
quantities in the differential equation is approximated by a large 
number of small increments. The results shown in the diagram were 
obtained by a computer program in which the spatial and temporal 
increments were small fractions of the lengths and times for individ
nal steps in the random walk. Algebraic approximations to the differ
ential equation are found as a series of algebraic terms. The diagram 
shows the first three terms in such a series. The contribution of each 
term is shown as a solid black line or curve. The line or curve is add
ed by superposition to the broken black line or curve that represents 
the previous order in the approximation. The result of the superposi
tion is the current order in the approximation (solid colored curves). 
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which is given by ax(l - x), is equal to 
. 32. If the formula is applied again, the 
value of x obtained is .4352. After sev
eral iterations the sequence of values 
for x converges to . 5. Indeed, when a 
is small and x is any fraction between 
o and 1, the sequence quickly settles 
down to give the same value of x for 
each revolution of the electron. 

As a increases, however, a phenome
non called period doubling can be ob
served. When a reaches 3, the sequence 
begins to alternate between two values 
of x. As a continues to increase, first 
four, then eight and finally, when it 
reaches about 3.57, an entire range 
of values for x appear. This behavior 
could not readily be guessed from the 
construction of the mathematical sys
tem, but it is immediately suggested by 
the computer experiment. The detailed 
properties of the system can then be es
tablished by a conventional proof. 

The mathematical processes that can 
be described by a computer program 
are not limited to the operations and 
functions of conventional mathematics. 
For example, there is no conventional 
mathematical notation for the function 
that reverses the order of the digits in a 
number. Nevertheless, it is possible to 
define and apply the function in a com
puter program. The computer makes 
it practical to introduce scientific and 
mathematical laws that are intrinsical
ly algorithmic in nature. Consider the 
chain of events set up when an electron 
accelerated to a high energy is fired into 
a block of lead. There is a certain proba
bility that the electron emits a photon of 
a particular energy. If a photon is emit
ted, there is a certain probability that it 
gives rise to a second electron and a pos
itron (the antiparticle of the electron). 
Each member of the pair can in turn 
emit more photons, so that a cascade of 
particles is eventually generated. There 
is no simple mathematical formula that 
can describe even the elements of the 
process. Nevertheless, an algorithm for 
the process can be incorporated into a 
computer program, and the outcome of 
the process can be deduced by executing 
the program. The algorithm serves as 
the basic law that describes the process. 

The mathematical basis of most con
ventional models of natural phe

nomena is the differential eq uation. 
Such an equation gives relations be
tween certain quantities and their rates 
of change. For example, a chemical re
action proceeds at a rate proportional to 
the concentrations of the reacting chem
icals, and that relation can be expressed 
by a differential equation. A solution to 
the equation would give the concentra
tion of each reactant as a function of 
time. In some simple cases it is possible 
to find a complete solution to the equa
tion in terms of standard mathematical 
functions. In most cases, however, no 

such exact solution can be obtained, and 
one must resort to approximation . 

The commonest approximations are 
numerical. Suppose one term of a differ
ential equation gives the instantaneous 
rate of change of a quantity with time. 
The term can be approximated by the 
total change in the quantity over some 
small interval and then substituted into 
the differential equation. The resulting 
equation is in effect an algorithm that 
determines the approximate value of the 
quantity at the end of an interval, given 
its value at the beginning of the interval. 
By applying the algorithm repeatedly 
for successive intervals, the approxi
mate variation of the quantity with time 
can be found. Smaller intervals yield 
more accurate results. The calculation 
required for each interval is quite sim
ple, but in most cases it must be repeat
ed many times to achieve an acceptable 
level of accuracy. Such an approach is 
practical only with a computer. 

The numerical methods embodied 
in computer programs have been em
ployed to find approximate solutions 
to differential eq uations in a wide varie
ty of disciplines. In some cases the so
lutions have a simple form. In many 
cases, however, the solutions show com
plicated, almost random behavior, even 
though the differential equations from 
which they arise are quite simple. For 
such cases experimental mathematics 
must be used. 

In practical applications one often 
finds not only that differential equations 
are complicated but also that there are 
many of them. For example, the theoret
ical models of nuclear explosions em
ployed in the design of weapons and the 
study of supernovas involve hundreds 
of differential equations that describe 
the interactions of many isotopes. In 
practice such models are always used 
in the form of computer programs: only 
a computer can follow the interrelations 
among so many quantities. 

The results of some numerical calcu
lations, such as the abundance of 

helium in the universe, can be stated as 
single numbers. In most cases, however, 
one is concerned with the variation of 
certain quantities as the parameters of 
a calculation are changed. When the 
number of parameters is only one or 
two, the results can be displayed as a 
graph. When there are more than two 
parameters, however, the results often 
can be stated succinctly only as a mathe
matical formula. Exact formulas usual
ly cannot be found, but it is often possi
ble to derive approximate formulas. 
Such formulas are particularly conve
nient because, unlike graphs or tables 
of numbers, they can be inserted direct
ly into other calculations. 

A common form for an approximate 
formula is a series of terms. Each term 
includes a variable raised to some pow-
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er; the power is larger in each successive 
term. When the value of the variable is 
small, the terms in the series become 
progressively smaller; thus for small 
values of x the sum of the first few terms 
in an infinite series such as 1 - x 
+ x2 - x$ + ' "  gives an accurate ap
proximation to the sum of the entire 
series, which is 11(1 + x). The first few 
terms in a series are usually easy to eval
uate, but the complexity of the terms in
creases rapidly thereafter. In order to 
evaluate terms that include large pow
ers of x the computer becomes essential. 

In principle computer programs can 
operate with any well-defined mathe
matical construct. In practice, however, 
the kinds of construct that can be used 
in a particular program are largely de
termined by the computer language in 
which the program is written. N umeri
cal methods require only a limited set of 
mathematical constructs, and the pro
grams that embody such methods can 
be written in general-purpose computer 
languages such as c, FORTRAN or BASIC. 
The derivation and manipulation of for
mulas require operations on higher-lev
el mathematical constructs such as alge
braic expressions, for which new com
puter languages are needed. Among the 
languages of this kind now in use is the 
SMP language that I have developed. 

SMP is a language for manipulating 
symbols. It operates not only with num
bers but also with symbolic expressions 
that can represent mathematical formu-

PHYSICAL PROCESS 

COMPUTER EXPERIMENT 

TRIAL 1 

las. For example, in SMP the algebraic 
expression 2x - 3y + 5x - y would be 
simplified to the form 7x - 4y. This 
transformation is a general one, valid 
for any possible numerical values of x 
and y. The standard operations of al
gebra and mathematical analysis are 
among the fundamental instructions in 
SMP [see illustration on page 196]. 

The SMP language also incl udes opera
tions that allow higher-level mathemat
ical constructs to be defined and ma
nipulated, much as they are in ordi
nary mathematical work. Real numbers 
(which include all rational and irratio
nal values) as well as complex numbers 
(which have both a real and an imagi
nary part) are fundamental in SMP. The 
mathematical constructs known as qua
tern ions, which are generalizations of 
the complex numbers, are not funda
mental. They can nonetheless be defined 
in SMP, and rules can be specified for 
their addition and mUltiplication. In this 
way the mathematical knowledge of SMP 
can be extended. 

Some of the advantages of a language 
such as SMP can be compared to the ad
vantages of using a calculator instead of 
a table of logarithms. By now the wide
spread availability of electronic calcula
tors and computers has made such ta
bles obsolete: it is far more convenient 
to call on an algorithm in a computer to 
obtain a logarithm than it is to look up 
the result in a table. Similarly, with a 
language such as SMP it has become pos-

ALGORITHMIC DESCRIPTION 
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COMPUTATIONAL METHODS alone are used in the study of self-avoiding random walks. 
Self-avoiding random walks, which arise as models for physical processes such as the folding 
of polymer molecnles, differ from ordinary random walks in that each step mnst avoid all pre
vious steps. The complication makes it impossible to construct a simple differential equation 
that describes the average properties of the walk. Conventional 'mathematical approaches are 
thus ineffective. Properties of the self-avoiding random walk are found by direct simulation. 
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sible to make the entire range of mathe
matical knowledge available in algorith
mic form. For example, the calculation 
of integrals, conventionally done with 
the aid of a book of tables, can increas
ingly be left to a computer. The comput
er not only carries out the final calcula
tions quickly and without error but also 
automates the process of finding the rel
evant formulas and methods. 

In SMP an expanding collection of defi
nitions is being assembled in order to 
provide for a wide variety of mathemat
ical calculations. One can now find in 
SMP the definition of variance in statis
tics, and one can immediately apply the 
definition to calculate the variance in a 
particular case. Such definitions enable 
programs written in the SMP language to 
call on increasingly sophisticated math
ematical knowledge. 

Differential equations give adequate 
models for the overall properties of 

physical processes such as chemical re
actions. They describe, for example, the 
changes in the total concentration of 
molecules; they do not, however, ac
count for the motions of individual mol
ecules. These motions can be modeled 
as random walks: the path of each mole
cule is like the path that might be taken 
by a person in a milling crowd. In the 
simplest version of the model the mole
cule is assumed to travel in a straight 
line until it collides with another mole
cule; it then recoils in a random direc
tion. All the straight-line steps are as
sumed to be of equal length. It turns out 
that if a large number of molecules are 
following random walks, the average 
change in the concentration of mole
cules with time can in fact be described 
by a differential equation called the dif
fusion equation. 

There are many physical processes, 
however, for which no such average de
scription seems possible. In such cases 
differential equations are not available 
and one must resort to direct simulation. 
The motions of many individual mole
cules or components must be followed 
explicitly; the overall behavior of the 
system is estimated by finding the aver
age properties of the results. The only 
feasible way to carry out such simula
tions is by computer experiment: essen
tially no analysis of the systems for 
which analysis is necessary could be 
made without the computer. 

The self-avoiding random walk is an 
example of a process that can apparent
ly be studied only by direct simulation. 
It can be described by a simple algo
rithm that is similar to the ordinary ran
dom walk. It differs in that the succes
sive steps in the self-avoiding random. 
walk must not cross the path taken by 
any previous steps. The folding of long 
molecules such as DNA can be mod
eled as a self-avoiding random walk. 

The introd uction of the single con-

© 1984 SCIENTIFIC AMERICAN, INC



Who does a 12-Iear-old turn to 
when his daas on drugs? 

What happens to a 
youngster with problems, 
when the parents who 
should help have problems 
of their own?_ 

Like drugs or alcoholism. 
Or emotional crises 

that threaten a family's very 
existence. 

It's hard to deal with 
painful situations like this at 
any age. But especially when 
you're underage. 

And speaking practically, 
these family problems have 
a way of becoming business 
problems. 

In economic terms, call us, our Program people 
workers crippled by drug or hear them out. Then we 
alcohol addiction cost U.s. refer them to somebody near-
industry and society over 135 by who can help. 
bIllion dollars a year. It's all done in strict con-

That's why we at ITT fidence, without anybody 
created the Employee Assist- knowing but the employees 
ance Program. To try and give themselves. 
constructive help to people A number of our people 
who need it. have turned to this ITT pro-

We maintain telephone gram since it began. And 
hotlines around the world - most are still with us, produc-
24 hours a day, 7 days tive and happy members of 
a week. our corporate family. 

When employees or But more important, 
members of their families in happy members of their own 
participating ITT companies families. 

Thebestideas arethe Imm 
ideas that help people. .L.L 

For details, write: Director-lTT Employee Assistance Program, Personnel Dept., 320 Park Ave., NY, NY 10022. Or call 212-940-2550. 
01984 In Corporo!ltlon. 320 Park Avenue, New York, NY 10022 

193 
© 1984 SCIENTIFIC AMERICAN, INC



straint makes the self-avoiding random 
walk much more complicated than the 
ordinary random walk. Indeed, there is 
no simple average description, analo
gous to the diffusion equation, that is 
known for the self-avoiding random 
walk. In order to investigate its prop-
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erties it seems one has no choice but 
to carry out a direct computer experi
ment. The procedure is to generate a 
large number of sample random walks, 
choosing a random direction at each 
step. The properties of all the walks are 
then averaged. Such a procedure is an 
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CHAOTIC BEHAVIOR is seen in many natural systems. A familiar example is the dripping 
faucet, described by a mathematical model formulated in terms of a differential equation by 
Robert Shaw of the Institute for Advanced Study. When the rate at which water flows through 
the faucet is very low, drops of equal size are formed at regular intervals (left). The model im
plies that if the position of the top of each drop that forms (arrows) is plotted against the mass 
of the drop, a simple closed curve called a limit cycle is obtained (right). The evolution of the 
system is represented by a point that traces the curve with time. If the flow is increased, the 
behavior of the system suddenly becomes more complicated. A phenomenon known as period 
doubling occurs, and pairs of drops, often of different sizes, are formed in each cycle. If the 
flow is further increased, there is a sequence of additional period doublings. Finally, just be
fore the water flowing from the faucet becomes continuous an irregular stream of drops is 
produced. The drops have an entire range of sizes, and the intervals between the formation of 
consecntive drops appear to be random. The behavior of the system is then described by an ir
regular curve called a strange or chaotic attractor. The form of the curve is implied by the differ
ential equation, but in practice it can be found only by numerical-approximation techniques. 
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example of the Monte Carlo method, so 
called because its application depends 
on the element of chance. 

Several examples have been given of 
systems whose construction is quite 

simple but whose behavior is extremely 
complicated. The study of such systems 
is leading to a new field called complex
systems theory, in which the computa
tional method plays a central role. The 
archetypal example is fluid turbulence, 
which develops, for example, when wa
ter flows rapidly around an obstruction. 
The set of differential eq uations satisfied 
by the fluid can easily be stated. Nev
ertheless, the patterns of fluid flow to 
which the equations give rise have large
ly defied mathematical analysis or de
scription. In practice the patterns are 
found either through observation of the 
actual physical system or, as far as pos
sible, through computer experiment. 

It is suspected there is a set of mathe
matical mechanisms common to many 
systems that give rise to complicated 
behavior. The mechanisms can best be 
studied in systems whose construction is 
as simple as possible. Such studies have 
recently been done for a class of mathe
matical systems known as cellular au
tomata. A cellular automaton is made 
up of many identical components; each 
component evolves according to a sim
ple set of rules. Taken together, how
ever, the components generate behavior 
of essentially arbitrary complexity. 

The components of a cellular automa
ton are mathematical "cells," arranged 
in one dimension at a seq uence of eq ual
ly spaced points along a line or in two 
dimensions on a regular grid of squares 
or hexagons. Each cell carries a value 
chosen from a small set of possibilities, 
often just 0 and 1. The val ues of all 
the cells in the cell ular automaton are 
simultaneously updated at each "tick" 
of a clock according to a definite rule. 
The rule specifies the new value of a cell, 
given its previous value and the previ
ous values of its nearest neighbors or 
some other nearby set of cells. 

Consider a one-d imensional cell ular 
automaton in which each cell can have 
the value 0 or 1. Even in such a simple 
case the overall behavior of the cellular 
automaton can be quite complex; the 
most effective way to investigate the be
havior is by computer experiment. Most 
of the properties of cellular automata 
have in fact been conjectured on the ba
sis of patterns generated in computer ex
periments. In some cases they have later 
been established by conventional math
ematical arguments. 

Cellular automata can serve as explic
it models for a wide variety of physical 
processes. Suppose ice is represented on 
a two-dimensional hexagonal grid by 
cells with the value 1 and water vapor is 
represented by cells with the value O. 
A cellular-automaton rule can then be 
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30 ECONOMICAL AND FLEXIBLE WAY TO EARN VALUABLE CME CREDITS 

Accredited by the Stanford University School of M edicine, the program provides eight tests per year (two per 
disk) worth up to 32 Category 1 or prescribed credits.* You complete the tests when you choose, without 
sacrificing valuable patient-care time. And, you can save the time and expense of review courses. 

1..0 AN ENJOYABLE, USER-FRIENDLY PROGRAM 

DISCOTEST 's interactive, user-friendly software makes it easy and enjoyable to earn CME credits on your 
personal computer. Available on 5 W' floppy disks, DISCOTEST'M can be run on an IBM PC® or Apple® lIe or II + 
(or compatible models); it requires a minimum of 64K RAM , a single disk drive, and an 80-column screen. 

SO IF .0, 20, 30,1..0 = YOUR NEEDS, GO TO bO 

bO HERE'S HOW IT WORKS 
Your first year's subscription includes four disks, containing two patient management problems each; a hand
some binder to store your disks; and a printed user's manual. giving an introduction to DISCOTEST TM, step-by
step operating instructions, and answers to common questions. Disks are sent on a quarterly schedule. In 
addition, we will send you a bonus review disk, with a sample test similar to those you will be taking for credit. 

DISCOTESpM costs a modest $148, or less than $5 per credit. T he software is backed by a money-back guaran
tee, with free replacement of defective disks. Take this opportunity to subscribe to DISCOTEST'M and combine 
the advantages of high-caliber CME instruction with the immediate interaction of the computer. 
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I SCIENTIFIC MEDICINE I 
I AMERICAN 415 MADISON AVENUE, NEW YORK, N.Y. 10017 I 
I 0 Yes, please enroll me in DISCOTESTTM at a price of $148 DISCOTEST™ will be compatible with several personal I 
I per year. My one-year subscription includes: computer operating systems. Please indicate which one of I 
I • A bonus review disk the following personal computers you would use or with I 
I . Four disks containing two CME tests each which your system is compatible. I 

• A comprehensive user's manual 0 IBM PC with DOS 2.0, or compatible I I
I 

• A handsome binder for the disks and manual 0 Apple IIe with Apple DOS 3.3, or compatible I 
• 8 certification cards (one per test) to record and submit 0 Apple II + with Apple DOS 3.3, or compatible 

I my computer-generated code for CME credit Name 
I 

I . A total of up to 32 Category 1 or prescribed credits Address I 
I 0 Check enclosed" 0 Bill me 0 MasterCard 0 VISA City State Zip I 
I Account No. Exp. Date Medical Specialty I 'Please add applicable sales lax if resident of California, Il linois, Michigan, Mas sachu-
I selts, or New York. Al l payments mus t  be in U.S. dol l ar s. Signature t 
L __________ _________________ _____________ � 
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This program h as been reviewed and is acceptable for 32 prescribed hour s by the American Academy of Family Physicians. 
Apple II + and Apple IIe are registered trademarks of Apple Computer, Inc. 
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INPUT 
6+17 

6/7+8/9 

2x-3x+l 

Ex[{x-l) (x+l)] 

Ex[{x-aY'2 {x+2aY'5] 

Fac[x"2 -1] 

Fac[x"6 -6x"4 + 4x"3 + 9x"2 -12x+ 4] 

Sol [x"2 -3x+ 1 =O,x] 

Sol [{x+ 3a y= 4,y-15x= 6b).{x,Yl] 

Ps[{1 + x"3) E"x,x,0,6] 

t:x-2a 
t"2-2t+l 

[[2]:6x+l 
[[3]:4-x 
a 1[2]+b 1[3]+c 1[1] 

I 

1[1]:7 
I 

1"2-8 

l[p]:5x 
I (p"2]:6x 
I 

I [$x]:$x"2 
I 

1[P] + 1[2] + I[a] 

g[$x_ = Natp[$x]]:$x g[$x-l] 
g[l]:l 
9 

g[5] 

Abs[3] 
Abs[ -3] 
Abs[ -x] 

Abs[$x $$x] : Abs[$x] Abs[$$x] 

Abs[$x"($n _ = Nalp[$n])]:Abs[$x]"$n 

Abs[a b"2 c] 

Graph[Sin[E"x],x, -3,3] 

OUTPUT 
23 

110/63 

l-x 

-1+x2 

8a x6+21a2 x"+ 10a3 x4-40a4 x"- 48a5 X2 
+ 16a6 x+32a7+x7 

(-l+x) (1+x) 

{-1 +X)4 (2 + x)' 

3_5'12 3+51'2 {x->-2-' x->-2-1 

{x 4 18a b y-> 60 + 6b I -> t + 45a 
-

1 + 45a' 1 + 45a 1 + 45a 

1 + x+ x\ 7x3 + 25)[' + 61x5 + 121x" 
2 6 24 120 720 

1+4a-2x+( -2a+x)2 

a {l+6x)+b (4-x)+c 1[1] 

{[2]:1 + 6x,[3]:4 -xl 

{7,1+6x,4-xl 

{41, -8+{1 +6X)2, -8+{4-x),1 

{[P2]:6x,[p]:5x,[l]:7,[2]:1 + 6x,[3]:4 -xl 

{[P2]:6x,[p]:5x,[l]: 7,[2]:1 + 6x,[3]:4 -x,[$x]:$x"l 

1 + 11x+a2 

{[l]:l,[$x-= Nalp[$x]]:$x g[$x-l]l 

120 

3 
3 
Abs[x] 

Abs[a] AbS[b]2 Abs[c] 

� D � 
-

- 3 

��O -VVV 

COMMENT 
Evaluate a numerical expression. 

Evaluate a numerical expression with exact 
fractions. 

Simplify an algebraic expression. 

Expand algebraic expressions made up of prod-
ucts of terms. The notation x"y stands for x raised 
to the power of y. A space between two non-
numerical expressions stands for multiplication. 

Factor algebraic expressions. 

Solve an equation for the variable x. 

Solve a pair of simultaneous equations for the 
variables x and y. 

Find a power-series approximation for the expres-
sion e'(1 + X)3 for x close to 0, keeping terms up 
to order x". 
Assign the value x- 2a to the symbol t; simplify 
the expression t2-2t+ 1 for this value. 

Assign the value 6x+ 110 f[2] and the value 4 -x 
to f[3]; evaluate an expression involving f[1], f[2] 
and f[3], where f[1] is not yet specified. 

Print the object f, which is a list whose elements 
are indexed by the numbers shown in the 
brackets. 

Assign the value 7 to f[1] ; print the object f, which 
is now given as a vector, or ordered list of 
elements. 

Find the square and then subtract 8 from each 
element of the vector f; the result is a new vector. 

Assign values for elements of f that have non-
numerical indexes; print the object f. 

Assign a value for f[$x], where $x is any expres-
sion; the general definition is placed at the end of 
the list f and is used only when none of the pre-
ceding special cases apply. Print the object f. 

Evaluate the expression f[p] + f[2] + f[a]; the 
general definition for f[$x] is applied in order to 
evaluate f[a]. 

Define the factorial function g [x] for natural num-
bers x, where g[ N] is equal to 1 x 2 x ... x N. The 
definition is given by a recursive formula in which 
g[x] is specified in terms of g[$x-1] . The expres-
sion $x_ = Natp[$x] indicates that $x must be a 
natural, or positive whole, number. 

Evaluate g[5 ], the factorial of 5 .  

Find the absolute values of -3, 3 and - x. 

Define the absolute value of the product of two 
arbitrary expressions $x and $$x to be the prod-
uct of their absolute values. 

Define the absolute value of the arbitrary expres-
sion $x raised to the natural-number power $n to 
be the absolute value of $x to the power $n. 

Find the absolute value of the product a x b2 x c 
according to the standard rules of algebra and the 
definitions given for the absolute-value function. 

Plot a graph of the function sin(e') for values of x 
from -3t03. 

MATHEMATICAL CALCULATIONS are carried out by a com
puter in this example of a dialogue in the SMP computer language de
veloped by the author. The computer manipulates algebraic formulas 
and other symbolic constructs as well as numbers. The commands in 

the language include all the operations of standard mathematics. The 
last few panels show how new operations can be defined. Properties 
of the absolute-value function are defined and then are applied by 
the computer to simplify any expression that includes the function. 

196 
© 1984 SCIENTIFIC AMERICAN, INC



used to simulate the successive stages in 
the freezing of a snowflake. The rule 
states that once a cell is frozen it does 
not thaw. Cells exposed at the edge of 
the growing pattern freeze unless they 
have so many ice neighbors that they 
cannot dissipate enough heat to freeze. 
Snowflakes grown in a computer experi
ment from a single frozen cell according 
to this rule show intricate treelike pat
terns, which bear a close resemblance 
to real snowflakes. A set of differential 
eq uations can also describe the growth 
of snowflakes, but the much simpler 
model given by the cellular automaton 
seems to preserve the essence of the 
process by which complex patterns are 
created. Similar models appear to work 
for biological systems: intricate patterns 
of growth and pigmentation may be ac
counted for by the simple algorithms 
that generate cellular automata. 

Simulation by computer is the only 
method now used for investigating 

many of the systems discussed so far. It 
is natural to ask whether simulation, as a 
matter of principle, is the most efficient 
possible procedure or whether there is a 
mathematical formula that could lead 
more directly to the results. In order to 
address the question the correspondence 
between physical and computational 
processes must be studied more closely. 

It is presumably true that any physical 
process can be described by an algo
rithm, and so any physical process can 
be represented as a computational proc
ess. One must determine how compli
cated the latter process is. In cellular 
automata the correspondence between 
physical and computational processes is 
particularly clear. A cellular automaton 
can be regarded as a model of a physical 
system, but it can also be regarded as 
a computational system closely analo
gous to an ordinary digital computer. 
The sequence of initial cell values in a 
cellular automaton can be understood 
as abstract data or information, much 
like the sequence of binary digits in the 
memory of a digital computer. During 
the evolution of a cellular automaton 
the information is processed: the values 
of the cells are modified according to 
definite rules. Similarly, the digits stored 
in the memory of the digital computer 
are modified by rules built into the cen
tral processing unit of the computer. 

The evolution of a cellular automaton 
from some initial configuration may 
thus be viewed as a computation that 
processes the information carried by the 
configuration. For cellular automata ex
hibiting simple behavior the computa
tion is a simple one. For example, it 
may serve only to pick out sequences of 
three consecutive cells whose initial val
ues are equal to 1. On the other hand, 
the evolution of cellular automata that 
show complicated behavior may corre
spond to a complicated computation. 

It is always possible to determine the 
outcome of a given number of steps in 
the evolution of a cellular automaton 
by explicitly simulating each step. The 
problem is whether or not there can be a 
more efficient procedure. Can there be a 
short cut to step-by-step simulation, an 
algorithm that finds the outcome after 
many steps in the evolution of a cellular 
automaton without effectively tracing 
through each step? Such an algorithm 
could be executed by a computer, and it 
would predict the evolution of a cellular 
automaton without explicitly simulat
ing it. The basis of its operation would 
be that the computer could carry out 
a more sophisticated computation than 
the cellular automaton could and so 

0--70 2 

- . • 
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achieve the same result in fewer steps. It 
would be as if the cellular automaton 
were to calculate 7 times 18 by explicitly 
finding the sum of seven 18's, while the 
computer found the same product ac
cording to the standard method for mul
tiplication. Such a short cut is available 
only if the computer is able to carry out 
a calculation that is intrinsically more 
sophisticated than the calculation em
bodied in the evollJtion of the cellular 
automaton. 

One can define a certain class of prob
lems called computable problems that 
can be solved in a finite time by fol
lowing definite algorithms. A simple 
computer such as an adding machine 
can solve only a small subset of these. 

b, 20 1 1 2 0 

CODE NUMBER 12011203 

STEP 1 

.. 
STEP 2 

STEP 3 

STEP 4 

STEPS 

� � 
CELLULAR AUTOMATA are simple models that appear to capture the essential features of 
a wide variety of natural systems. A one-dimensional cellular automaton is made up of a line 
of cells, shown in the diagram as colored squares. Each cell can take on a number of possi
ble values, represented by different colors. The cellular automaton evolves in a series of steps, 
shown as a sequence of rows of squares progressing down the page. At each step the values of 
all the cells are updated according to a fixed rule. In the case illustrated the rule specifies the 
new value of a cell in terms of the sum of its previous value and the previous values of its im
mediate neigbbors. Such rules are conveniently specified by code numbers defined as shown in 
the diagram; the subscript 3 is given because each cell can take on one of three possible values. 
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RULE 

EXPERIMENTAL MATHEMATICS is an exploratory technique made possible largely 
through the use of computers. Any set of mathematical rules can be applied repeatedly by a 
computer and their consequences explored in an experimental fashion. For example, in order 
to study a pattern generated by the cellular automaton defined by the rule shown, one begins 
by explicitly simulating on a computer many steps in the evolution of the cellular automaton. 
Inspection of .the pattern obtained then leads to the conjecture that it is fractal, or self-similar, 
in the sense that parts of it, when enlarged, have the same overall form as the whole. The con
jecture, once made, is comparatively easy to prove by conventional mathematical techniques. 
The proof can be based on the fact that the initial conditions for growth from certain cells 
in the pattern are the same as the conditions for growth from the very first cell. There are 
an increasing number of mathematical results that were discovered in computer experiments. 
Some of them have subsequently been reproduced by conventional mathematical arguments. 
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problems. There exist universal, or gen
eral-purpose, computers, however, that 
can solve any computable problem. A 
real digital computer is essentially such 
a universal machine. The instructions 
that can be executed by the central proc
essing unit of the computer are rich 
enough to serve as the elements of a 
computer program that can embody any 
algorithm. A number of systems in addi
tion to the digital computer have been 
shown to be capable of universal com
putation. Several cellular automata are 
among them: for example, universal 
computation has been proved for a sim
ple two-dimensional cellular automaton 
with a 0 or a 1 in each cell. It is strongly 
suspected that several one-dimension
al cellular automata are also universal 
computers. The simplest candidates 
have three possible values at each cell 
and rules of evolution that take account 
only of the nearest-neighbor cells. 

Cellular automata that are capable of 
universal computation can mimic 

the behavior of any possible computer; 
since any physical process can be repre
sented as a computational process, they 
can mimic the action of any possible 
physical system as well. If there were an 
algorithm that could work out the be
havior of these cellular automata faster 
than the automata themselves evolve, 
the algorithm would allow any compu
tation to be speeded up. Because this 
conclusion would lead to a logical con
tradiction, it follows there can be no 
general short cut that predicts the evo
lution of an arbitrary cellular automa
ton. The calculation corresponding to 
the evolution is irreducible: its outcome 
can be found effectively only by simu
lating the evolution explicitly. Thus di
rect simulation is indeed the most effi
cient method for determining the be
havior of some cellular automata. There 
is no way to predict their evolution; one 
must simply watch it happen. 

It is not yet known how widespread 
the phenomenon of computational irre
d ucibility is among cell ular automata 
or among physical systems in general. 
Nevertheless, it is clear that the ele
ments of a system need not be very com
plicated for the overall evolution of the 
system to be computationally irreduci
ble. It may be that computational irre
ducibility is almost always present when 
the behavior of a system appears com
plicated or chaotic. General mathemati
cal formulas that describe the overall 
behavior of such systems are not known, 
and it is possible no such formulas can 
ever be found. In that case, explicit sim
ulation in a computer experiment is the 
only available method of investigation. 

Much of physical science has tradi
tionally focused on the study of com
putationally reducible phenomena, for 
which simple overall descriptions can be 
given. In real physical systems, however; 
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COMPLEX BEHAVIOR can develop even in systems with simple components. The eight cellular 
automata shown in the photographs are made up of lines of cells that take on one of five possible 
values. The value of each cell is determined by a simple rule based on the values of its neighbors on 
the previous line. Each pattern is generated by the rule whose code number is given in the key 
(see illustration on page 197). The patterns in the upper four photographs are grown from a sin
gle colored cell. Even in this case the patterns generated can be complex, and they sometimes ap
pear quite random. The complex patterns formed in such physical processes as the ftow of a tur
bulent ftuid may well arise from the same m echanism. Complex patterns generated by cellular 
automata can also serve as a source of effectively random numbers, and they can be applied to en
crypt messages by converting a text into an apparently random form. The patterns in the lower 
four photographs begin with disordered states. Even though the values of the cells in these initial 
states are chosen at random, the evolution of the cellular automata gives rise to structures of four 
basic classes. In the two classes shown in the third row of photographs the long-term behavior of 
the cellular automata is comparatively simple; in the two classes shown in the bottom row it can 
be highly complex. The behavior of many natural systems may well conform to this classification. 
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computational reducibility may well be 
the exception rather than the rule. Fluid 
turbulence is probably one of many ex
amples of computational irreducibility. 
In biological systems computational ir
reducibility may be even more wide
spread: it may turn out that the form of a 
biological organism can be determined 
from its genetic code essentially only by 
following each step in its development. 
When computational irreducibility is 
present, one must adopt a methodology 
that depends heavily on computation. 

One of the consequences of computa
tional irred ucibility is that there 

are questions that can be asked about 
the ultimate behavior of a system but 
.that cannot be answered in full generali
ty by any finite mathematical or compu
tational process. Such questions must 
therefore be considered undecidable. 
An example of such a question is wheth
er a particular pattern ever dies out in 
the evolution of a cellular automaton. It 
is straightforward to answer the ques
tion for some definite number of steps, 
say 1,000: one need only simulate 1,000 
steps in the evolution of the cellular au
tomaton. In order to determine the an
swer for any number of steps, however, 
one must simulate the evolution of the 
cellular automaton for a potentially infi
nite number of steps. If the cellular au
tomaton is computationally irreducible, 
there is no effective alternative to such 
direct simulation. 

The upshot is that no calculation of 
any fixed length can be guaranteed to 
determine whether a pattern will ulti
mately die out. It may be possible to tell 
the fate of a particular pattern after 
tracing only a few steps in its evolution, 
but there is no general way to tell in 
advance how many steps will be re-

UNDECIDABLE PROBLEMS can arise in 
the mathematical analysis of models of physi
cal systems. For example, consider the prob
lem of determining whether a pattern gener
ated by the evolution of a cellular automaton 
will ever die out, so that all the cells become 
black. The patterns generated by the cellular 
automaton shown above are so complicated 
that the only possible general approach to the 
solution of the problem is to explicitly simu
late the evolution of the cellular automaton. 
The pattern obtained from the initial state 
shown at the left is found to die out after just 
16 steps. The initial state in the center yields 
a pattern that takes 1,016 steps to die out. The 
initial state at the right gives rise to a pattern 
whose fate remains unclear even after a sim
ulation carried out over many thousands of 
steps. In general no finite simulation of a fixed 
number of steps can be guaranteed to deter
mine the ultimate behavior of the cellular au

tomaton. Hence the problem of whether or 
not a particular pattern ultimately dies out, or 
halts, is said to be formally undecidable. The 
cellular automaton shown here follows a rule 
specified by the code number 331 1 1 003204, 
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Try to find software that 
solves your problem. 

Or call BOEING. 
Acquiring mainframe and micro 
software that best fits your needs isn't 
easy. Today's software landscape 
seems unending. So to obtain software 
that actually achieves your specific 
objectives, you need programs with 
proven problem-solving capabilities. 
Like software from Boeing. 

Every software package from Boeing 
Computer Services is backed by Boeing 
expertise and experience. That's why 
both users and data processing 
professionals appreciate our solutions to 
a myriad of computing needs. Executives 
in many industries depend on our 
fmancial modeling and decision support 
software for accurate, up-to-the-minute 
pictures of business activity and for 
reliable forecasts. Production managers 
turn to Boeing for on-line manufacturing 
software that can keep track of all 
elements in the production cycle . . . 

even in exacting make-to-order plants. 
Engineers increase their productivity 
with dynamic analysis and simulation 
using Boeing software. Boeing 
computer-based instruction software 
and courseware is central to the 
education and training programs of 
many companies, large and small. It is 
used cross-company and cross-discipline. 

One of the newest relational data base 
management systems on the scene 
comes from Boeing. Its cost is low; its 
function is extensive. It runs on IBM, 
CDC, DEC V AX, Data General and 
Prime computers, and interfaces with 
a micro version. 

For more information about Boeing 
software solutions, call (206) 763-5000. 
Or write BOEING COMPUTER 
SERVICES, MI S 7K- l l ,  P.O. Box 
24346, Seattle, WA 98 124. Ask about 
our "TRY IT" evaluations. 

For information about Boeing's other 
integrated information services -includ
ing enhanced remote computing, distrib
uted processing, network services, office 
automation, consulting, and education 
and training - call toll free 
1-800-447-4700. Or write BOEING 
mMPUIERSERVlCES, M/S CV-26-18C, 
7980 Gallows Court, Vienna, VA 22180. 
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Casio's solar-powered scientif ic cal
culators put space-age technology 
easily within you r reach .  

O u r  FX-91 0 i s  the logical 
choice for students and engineers 
al ike. At only $24.95,  it gives you 
algebraic logic, 48 functions and an 
8-digit + 2-digit exponent display
in a size that wil l  fit as easily in you r  
pocket as its price wi l l  suit your 
pocketbook. 

At the same time, our credit 
card-size FX-90 ($29. 95) has 
members of the scientific commu
nity f l ipping-over its 49-function 
f l ip-open keyboard . Made possible 

by Casio's innovative sheet key 
technology, this handy feature 
makes compl icated scientif ic equa
tions easier to solve because the 
major function keys are displayed 
oversize on their own keyboard . 

Plank's constant and atomic mass. 
It also makes computer math calcu
lations and conversions in binary, 
octal and hex equally easy to use. 

Casio has more space-age 
instruments at down-to-earth 
prices than there is space for here. 
However your Casio dealer wi l l  
gladly let you get your hands on 
technology that ,  unti l  now, only the 
future held . 

Like our FX-90, our FX-450 
($34.95) has a 1 0 +  2-digit LCD 
display and a keyboard with touch
sensitive keys . But the keys are 
double size and the n umber of 
functions increases to 68. Most im
portantly, it  lets you calculate with CAS I 0 the speed of l ight-and eight other 
commonly used physical Wh · I ® 
constants , i ncluding ere mlrac es never cease 

Casio, Inc. Consumer Products Division: 1 5  Gardner Road, Fairfield , N.J. 07006 New Jersey (201 ) 575-7400 , Los Angeles (21 3) 803-341 1 . 
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q uired. The ultimate form of a pattern is 
the result of an infinite number of steps, 
corresponding to an infinite computa
tion; unless the evolution of the pat
tern is computationally reducible, its 
consequences cannot be reproduced by 
any finite computational or mathemat
ical process. 

The possibility of undecidable ques
tions in mathematical models for physi
cal systems can be viewed as a manifes
tation of Godel's theorem on undecida
bility in mathematics, which was proved 
by Kurt Godel in 1931. The theorem 
states that in all but the simplest mathe
matical systems there may be proposi
tions that cannot be proved or disproved 
by any finite mathematical or logical 
process. The proof of a given proposi
tion may call for an indefinitely large 
number of logical steps. Even proposi
tions that can be stated succinctly can 
require an arbitrarily long proof. In 
practice there are many simple mathe
matical theorems for which the only 
known proofs are very long. In addition 
the cases that must be examined to 
prove or refute conjectures are often 
quite complicated. In number theory, 
for example, there are many cases in 
which the smallest number having some 
special property is extremely large; the 
number can often be found only by test
ing each whole number in turn. Such 
phenomena are making the computer 
an essential tool in many mathematical 
investigations. 

Computational irreducibility implies 
many fundamental limitations on 

the scope of theories for 'physical sys
tems. It may be possible to model a sys
tem at many levels, from simulating 
the motions of individual molecules to 
solving differential equations for over
all properties. Computational irreduc
ibility implies there is a highest level 
at which abstract models can be made; 
above that level results can be found 
only by explicit simulation. 

When the level " of description be
comes computationally irreducible, un
decidable questions also begin to ap
pear. Such questions must be avoided in 
the formulation of a theory, much as the 
simultaneous measurement of the posi
tion and velocity of an electron-impos
sible according to the uncertainty prin
ciple-is avoided in quantum mechan
ics. Even if such questions are eliminat-' 
ed, there is still the practical difficulty 
of answering questions that in principle ' 
can be answered. The degree of difficul
ty depends strongly on the nature of the 
objects involved in the simulation. If the 
only way to predict the weather were to 
simulate the motions of every molecule 
in the atmosphere, no practical calcula
tions could be carried out. Nevertheless, 
the relevant features of the weather can 
probably be studied by considering the 
interactions of large volumes of the 

COMPUTATIONAL IRREDUCIBILITY is a phenomenon that seems to arise in many 

physical and mathematical systems. The behavior of any system can be found by explicit simu
lation of the steps in its evolution. When the system is simple enough, however, it is always pos
sible to find a short cut to the procedure: once the initial state of the system is given, its state at 
any subsequent step can be found directly from a mathematical formula. For the system shown 
schematically at the left, the formula merely requires that one" find the remainder when the 
number of steps in the evolution is divided by 2. Such a system is said to be computationally 
reducible. For a system such as the one shown schematically "at the 'right, however, the behavior 
is so complicated thaUn general no short-cut description of the evolution can be given. Such a 
system is computationally irreducible, and its evolution can effectively be determined only by 
the explicit simulation of each step. It seems likely that many physical and mathematical sys
tems for which no simple description is now known are in fact computationally irreducible. Ex
periment, either physical or computational, is effectively' the only way to study such systems. 

atmosphere, and so useful simulations 
should be possible. 

The efficiency with which a computa
tionally irreducible system can be simu
lated depends on the computational so
phistication of each step in its evolution. 
The steps in the evolution of the sys
tem can be simulated by instructions 
in a computer program. The fewer the 
instructions needed to reproduce each 
step, the more efficient the simulation. 
Higher-level descriptions of physical 
systems typically call for more sophisti
cated steps, much as single instructions 
in higher-level computer languages cor
respond to many instructions in lower
level ones. One " time step in the nu
merical approximation of a differential 
equation that describes a jet of gas re
quires a computation more sophisticat
ed than the one needed to follow a colli
sion between two molecules in the gas. 
On the other hand, each step in the high
er-level description given by a differen
tial equation accounts for an immense 
number of steps in the lower-level de
scription of molecular collisions. The 
resulting gain in efficiency more than 
makes up for the fact that the individual 
steps are more sophisticated. 
, In general the efficiency of a simu
lation increases with higher levels of 
description, until the operations need
ed for the higher-level description are 
matched with the operations carried out 
directly by the computer doing the sim
ulation. It is most efficient for the com
puter to be as close an analogue to the 
system being simulated as possible. 

There is one major difference between 
most existing computers and physical 
systems or models of them: computers 
process information serially, whereas 

physical systems process information in 
parallel. In a physical system modeled 
by a cellular automaton the values of all 
the cells are updated together at each 
time step. In a standard computer pro
gram, however, the simulation of the 
cellular automaton is carried out by a 
loop that updates the value of each cell 
in turn. In such a case it is straightfor
ward to write a computer program that 
performs a fundamentally parallel proc
ess with a serial algorithm. There is a 
well-established framework in which al
gorithms for the serial processing of in
formation can be described. Many phys
ical systems, however, seem to require 
descriptions that are essentially parallel 
in nature. A general framework for par
allel processing does not yet exist, but 
when it is developed, more effective 
high-level descriptions of physical phe
nomena should become possible. 

The introduction of the computer in 
science is comparatively recent. Al

ready, however, computation is estab
lishing a new approach to many prob
lems. It is making possible the study of 
phenomena far more complex than the 
ones that could previously be consid
ered, and it is changing the direction 
and emphasis of many fields of science. 
Perhaps most significant, it is introduc
ing a new way of thinking iri science. Sci
entific laws are now being viewed as al
gorithms. Many of them are studied 
in computer experiments. Physical sys
tems are viewed as .computational sys
tems, processing information much the 
way computers do. New aspects of. nat
ural"ppenomena have been· made acces
sible to investigation. A new paradigm 
has been born. 
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Computer Software 
for Intelligent Systems 

The key to intelligent problem solving lies in reducing the random 

search for solutions. To do so intelligent computer programs must 

tap the same underlying {{sources of power" as human beings do 

On your way to San Francisco one 
summer evening you come to an 
intersection in Nebraska. The 

road continues straight ahead. To your 
left the crossroad trails off through the 
cornfields; shielding your eyes from the 
sun, you see it doing the same to the 
right. Having no map, you might decide 
to pick one of the three roads at random 
and turn, say, to the left. Soon you 
would reach another intersection, and 
then another, and would be forced to 
make a series of random choices; at 
some point you would hit a dead end 
and would have to return to the preced
ing intersection and strike out on a dif
ferent route. If you were both long-lived 
and extremely lucky, you might eventu
ally reach San Francisco, but the odds 
against -it would probably be on the or
der of 1030 to one. Because you know 
something about the world, however, 
you are not forced to pick a random 
path throl,lgh the countryside, and at the 
first intersection you take a right. 

Most problems, including many far 
more interesting than this one, can be 
cast in the same form: as the search for a 
path from some initial state to a desired 
final state. Most interesting problems 
also share the characteristic that they 
are too complex to be solved by random 
search, because the number of choices 
increases exponentially as one proceeds 
from the first intersection, or decision 
point. The classic example of this is 
chess, in which the number of possible 
board positions has been estimated at 
10120. A good player, however, red uces 
the problem of choosing his next move 
to manageable proportions by consider
ing only 100 or so positions, correspond
ing to the most promising lines of attack. 
Therein, as I see it, lies the essence of 
intelligence: finding ways to solve other
wise intractable problems by limiting 
the search for solutions. 

For about 30 years a small communi
ty of investigators has been trying, with 
varying degrees of success, to program 
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computers to be intelligent problem 
solvers. By the mid-1970's, after two 
decades of humblingly slow progress, 
workers in the new field of artificial 
intelligence had come to a fundamen
tal conclusion about intelligent behav
ior in general: it requires a tremendous 
amount of knowledge, which people 
often take for granted but which must 
be spoon-fed to a computer. Standing 
at the Nebraska intersection, a human 
traveler would know that San Francisco 
lies to the west of Nebraska, that in the 
evening the sun is in the western sky and 
that by heading toward the sun one 
would be heading in the right general 
direction. He would thus not have to try 
the other two possible paths . 

. Moreover, the relative simplicity of 
this problem is not representative of 
other everyday tasks that people com
plete without a second thought. Under
standing even the easiest passages in 
common English, for example, requires 
a knowledge of the context, the speaker 
and the world at large that is far beyond 
the capabilities of present-day computer 
programs. The central role of knowl
edge in intelligence explains why the 
most successful programs so far have 
been "expert systems," which operate in 
highly specialized domains, such as the 
diagnosis of meningitis, and game-play
ing programs. In contrast, early efforts 
to design a "general problem solver" as
sumed that the core of intelligence lay in 

a reasoning ability that could be applied 
across all domains. These efforts proved 
less fruitful and for the most part have 
now been abandoned. 

In attacking a complex problem peo
ple draw on various methods-I call 
them sources of power-of using their 
knowledge of the world's regularities to 
constrain the search for a solution. They 
may invoke mathematical theorems or 
less formal ·rules of thumb; they may 
break up the problem into more tracta
ble subproblems, or they may reason by 
analogy to problems that have already 
been solved. To the extent that comput
er programs already exhibit intelligence 
it is because they draw on some of these 
same sources of power. The future of 
artificial intelligence lies in finding ways 
to tap those sources that have only be
gun to be exploited. 

Many programs written in the first 
two decades of artificial-intelli

gence research depended heavily on for
mal reasoning methods. When a task is 
well defined in a highly constrained do
main, such methods can provide power
ful ways of prl,lning or even eliminating 
the search tree. For example, no one 
need ever again waste time searching for 
a way to trisect an angle or seeking the 
best method of calculating the motion 
of a projectile, because well-established 
theorems and algorithms have settled 
those questions once and for all. 

INTELLIGENT PROGRAM is seen running on a machine that displays varions aspects of its 

operation in different windows. The program, called EURISKO, was written by the anthor and his 

colleagnes and has been applied to a nnmber of topics, including those named in the small win

dow near the bottom of the display; here it is engaged in designing a fleet of ships to compete 

in'Traveller T.C.S., a war game. The program's knowledge base includes the complex rnles of 

the game as well as general heuristics to gnide it in its search for ever better designs. EUR1SKO 

has just finished simulating a battle in which "sidel" decisively defeated "side2," and the cur

rent heuristic has directed it to learn from the results of the battle by analyzing the differences 

between the two fleets to determine the cause of sidel's victory. Because the main difference 

is that side! has only one type of ship, EURISKO hypothesizes that it is desirable to minimize the 

number of ship types and suggests an experiment to test the hypothesis. In competition EURIS

KO'S fleet, made up predominantly of small, fast ships, defeated the fleets of human players. 
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Beginning task 459-110: 
Analyze the DifferenceBetween 
side1 and side2 in the recent 
TravellerFleetBattleGame played, 
looking for Caui e. 

The main difference is that 
side1 has ships of one type, 
while side2 has ships of nine 
types. 4 other hypotheses. 

1 is more likely to be special 
than 9. So consider': If 
designing a fleet for TFBG, 
minimize the types of ship. 

Experiment: reduce side2's 
number of ships, and increase 
side1's number of ship types. 

(IF the �ut"t'etlt task was to find an Applic of a 
6ame, THEN tr\' to Ie am from the results) 

'" '" '" CONDITIONS '" '" '" 
If Po tentially Relevant : (P I a yin 9 (a 6 a me)) 
IfFinishedWorkingOnTask: (a 6smePlaying) 
IfResultsSatisfied: (a 0 e cis i I' e Viet 0 r\') 

"''''''' ACTIONS "''''''' 
ThenCompute: (Oifferetl�eBetweetl sidel side2) 
ThenPrintToUser: (6ueSsed the csuses in the recetlt --

) 
ThenAddToAgenda: (AnSI\'Ze the differences for CSUS€!) 

'" '" '" DESCRIPTIONS '" '" '" 
IsA: (Heuristi� Op An\'thing MUltiValuedOp Abstt'a�tOp) 
Worth: 5 � 2  
Abbrev: (It's wotth fitlding out Wh\' one --) 

TOPICS 

(RunMOre Tra'JelierFleetBattle) 
7 Reasons 

(A n a Iyz e Batt I e321 ) 
7 Reasons 

(Analyze Battle31S) 
2 Reasorls 

(Mutate ShipType37 fln�rease Agility)) 

7 Reasons 
(Analyze Battle811i) 

S Reasons 

IiSO 
ToPlay: (Plal'T r:�l'elierF leetB:attle) 
Rules: (T ra I' e II e R u I e s 

RulesOfF airPlsy) 
IsA: (6ame Anything T'IIoPerson6sme 

Fsir6sme Wsr6sme FleetBattie 
Oice6ame) 

Adding a task to the Agenda, 
to Analyze the diffe.rences 

arId 

• tI:ul1,More -TravelierFleetBattle 

Priority: 373 
IsA: (T s s k S i fil lJ I at i 0 nT s s k 

6smeTaSk) 
ConceptToWorkOn: 

T rs I' e II e rF I e et B att Ie 
AspectToWorkOn: P.IS�I 
CreditTo: (HelJfistic3S 

Heuristic13 TheUser) 
PastHistory: ((Rurt112 TaH: 1203 

C re at e d (S h i pTy P e 3 0 ::; rd pT y P e 31 
1; 10 oth-ers))) Arity: 1 

InitiaIW�rth: � 0 0 
lastRunOn: PI ayT ral'ellerF leet Battle 
ThenAddT oAgendaRecord: (75 Ii 0 • Ii) 
ThenPrintToUserRecord: (1i7 21i . 21) 

lu,.,eralltl;ecord: (351537 . 21) 
ThenComputeF ailedRecord: (501 . 1) 
ThenComputeRecord: (31 � 97 2 . 1 5) 

ElemMa thematics 
Heuristics 

Representa tion 
OilS pills 

Programming 
::::::::::::::::G4im�:::::::::::::::: 

NReasons: 7 
Reasons: ((Bec:ause it is a 

I'aluable concept) (Because the 
user is interested in it) ( 
Because in the past it led to 
useful flew --) (Because there 
is not much else interesting to 
do --)) 1:i .. ·n .. ·rOl,1I7010W".OI'<;: (P rot 00 p) 

FocusTask: (FocuSOnHlil) 

......................... . 
DevicePhysics 

Plumbing 
Plane T essella tion 

Plus � 
properties w�li';h :are rIot slot n:ames: 

(II Res s 0 rls P s st H i st 0 ry 
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One of the most popular formal meth
ods has been logical deduction by means 
of a proof technique called resolution, 
which proves by refutation. To apply 
resolution one must first convert the 
statement to be proved into the logical 
formalism of predicate calculus. The 

statement is then negated, and the nega
tion is "resolved" with a series of ax
ioms: statements known to be true for 
the particular problem area. If the infer
ences drawn by combining the negation 
with the axioms yield a contradiction, 
the negation must be false and the orig-

inal statement therefore must be true. 
In 1964 J. A. Robinson showed that 

the resolution method is "complete": in 
every case it will eventually generate a 
contradiction if the original theorem is 
true. (If the theorem is false, the series of 
inferences produced by resolution is not 

"DID MARCUS HATE CAESAR?" 

1 MAN(MARCUS) 
2 POMPEIAN(MARCUS) 
3 - POMPEIAN(X,) V ROMAN(X,) 
4 RULER(CAESAR) 
5 -ROMAN(X,)VLOYALTO(X,.CAESAR) V HATE(X,.CAESAR) 
6 - MAN(X3)V-RULER(Y,)V-TRYASSASSINATE(X3.Y,)V-LOYALTO(X3.Y,) 
7 TEYASSASSINATE(MARCUS.CAESAR) 
8 -STEALWIFE(Y,.X,) V HATE(X,.Y,) 

9 -WIFE(Z,.X5)V-AlIVE(X5)V- MARRY(Y3.Z,)V STEALWIFE(Y3.X5) 

10 WIFE(LUCRETIA.MARCLJS) 

11 AlIVE(MARCUS) 

-HATE(MARCUS.CAESAR) 5 

1 Marcus was a man. 
2 Marcus was a Pompeian. 
3 All Pompeians were Romans. 
4 Caesar was a ruler. 
5 All Romans were either loyal to Caesar or hated him. 

. 6 People only try to assassinate rolers they are not loyal to. 
7 Marcus tried to assassinate Caesar. 
8 A person hates someone who steals his wife. 

9 If the wife of a man who is alive marriAs a second man. 

then the second man stole the first miln·s wife 

10 LucrAtia WilS Milrcus·s wife 

11 Marcus was alive 

V = OR 

- = NOT 

�CUSlX' 

-ROMAN(MARCUS) 

3 V LOYALTO(MARCUS.CAESAR) 

�CUSiX 

-POMPEIAN(MARCUS) 
V LOYALTO(MARCUS.CAESAR) 2 

� 
6 LOYALTO(MARCCS.CAESAR) 

� �ARCUS/X3 � CAESARIY, 

-MAN(MARCUS)V -RULER(CAESAR) 
V -TRYASSASSINATE(MARCUS.CAESAR) 

� 
-RULER(CAESAR) 

4�TE(MARCUS' CAESARI 

-TRYASSASSINATE(MARCUS.CAESAR) 7 

� 
D 

RESOLUTION, a proof technique of formal logic, can be used to 
deduce answers to questions, but it is prohibitively time-consuming 
when the problem is complex. Resolution proves by refutation: a hy
pothesis is shown to be valid by showing that its negation, when it is 
compared with axioms, or statements known to be true, leads to a 
contradiction. First the negated hypothesis and the axioms are con
verted into logical notation: clauses consisting of a disjunction of 
terms called literals. The set of axioms is then searched for one in
cluding a literal that, after appropriate substitutions have been made 
for variables, contradicts a literal in the negated hypothesis. When 
the two statements are "resolved," the contradictory literals cancel. 
This procedure is subsequently repeated with the resulting statement; 
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-HATE(MARCUS.CAESAR) 8 

� �CUS/X. � �;ESARIY, 

9 -STEALWIFE(CAESAR.MARCUS) 

MARCU� ./ 
CAESAR/Y; � 

-WIFE(Z"MARCUS) 
V-AlIVE(MARCUS) 
V-MARRY(CAESAR.Z,) 11 

� 
-WIFE(Z"MARCUS) 

10 V-MARRY(CAESAR.Z,) �CRETINZ' 

-MARRY(CAESAR.LUCRETIA) 

eventually, if the original hypothesis was valid, the process termi
nates in an unadorned contradiction. In the example shown the hy
pothesis is "Marcus hated Caesar." In the idealized case in which lit
tle is known about the world (left), only one axiom (5) includes a 
literal contradicting the negation of the hypothesis, and a computer 
program can quickly complete a ptoof. When more information is 
available (colored axioms), including a different cause of hatred (8), 
the program may choose the wrong axiom and proceed to a dead end 
at which no contradiction has been generated (right). In a real-world 
problem the number of possible choices is an exponential function of 
the number of axioms, which is very large, and finding a solution by 
blind search is infeasible. The example was provided by Elaine Rich. 
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guaranteed to end.) Robinson's work 
touched off a decade-long surge of ac
tivity in applying resolution and other 
closely related formal methods to au
tomatic theorem proving. It turns out 
that computer programs are capable of 
proving statements of moderate difficul
ty and that the resolution method can 
also be adapted to programs whose pur
pose is to answer questions rather than 
to prove theorems. The great flaw of the 
resolution method is that it is subject 
to "combinatorial explosion": the num
ber of resolutions the program must at
tempt increases exponentially with the 
complexity of the problem. Programs 
that successfully apply resolution to 
small test cases have consistently failed 
to "scale up" to more interesting real
world problems. 

The same difficulty plagues software 
based on a different logical technique 
called structural induction. Such pro
grams are given a large amount of data 
on the objects in a particular domain 
and told to construct a decision tree 
for discriminating between objects. The 
problem with structural induction algo
rithms, however, is that they incorpo
rate no information enabling them to 
decide which variables are important or 
to deal with noisy data or exceptional 
cases. If the number of objects and asso
ciated features in a domain is large, the 
decision tree generated by the program 
becomes unwieldy. 

For formal reasoning to work as the 
sole source of power in a program, the 
problem must be small. One application 
of a formal method that may prove 
fruitful in the near future is in the simu
lation of qualitative physical reasoning. 
John Seely Brown and Johan de Kleer 
of the Xerox Palo Alto Research Cen
ter have written a program that models 
changes in a pressure-regulating valve 
by means of qualitative equations. If the 
program is told, say, that the pressure on 
the left side of the valve has increased, 
the equations are changed accordingly 
and the program predicts the pressure 
change on the other side of the valve and 
the eventual equilibrium state of the sys
tem. This is a very simple example, but a 
similar approach is being used in the 
analysis and design of electrical circuits. 

Most interesting problems, however, 
cannot be solved by relying on formal 
reasoning alone. The power of logical 
methods lies in their representation of 
the world in symbols that can be manip
ulated in well-understood ways (such as 
resolution) to produce inferences. That 
power is also their greatest weakness: 
many types of knowledge, including the 
uncertain and incomplete knowledge 
characteristic of most real-world prob
lems, do not lend themselves to repre
sentation through precise logical for
malisms. Programs that draw exclusive
ly on logic are capturing only part of 
the understanding an intelligent person 

43 MILLION CANDIDATES 

CHEMICAL TOPOLOGY 

15 MILLION CANDIDATES 

MASS SPECTROMETRY 

1.3 MILLION CANDIDATES 

CHEMICAL HEURISTICS 

1.1 MILLION CANDIDATES 

NUCLEAR MAGNETIC RESONANCE 

H H H H H H H H H H H H H H H H H H \JJ 
I I I J I I I I I 1 J I I I I I I I / 'H 

H�-C���-C-C-C�-C-C-C-C-C-C-C-C-C-N 
I I I I I I I I I I I I I I I I I I '- /H 

HHHHHHHHHHHHHHHHHH p, 
H H 

N,N - DIMETHYL -n- OCTADECYL 
MONOAMINE 

EXPERT SYSTEMS exploit knowledge of a specialized domain to constrain tlie search for 
solutions. DENDRAL, the first expert system and one of the most successful, relies on the syner
gistic interaction of four types of knowledge to narrow the field of candidate structures for a 
particular organic molecule. If only the molecular formula C2oH43N is known, 43 million 
configurations of the atoms are possible mathematically. Knowledge of basic chemical topolo
gy, such as the fact that a carbon atom has four bonds, reduces the number of candidates to 15 
million. The molecule's fragmentation pattern in a mass spectrometer, along with heuristic 
knowledge of what structures are most stable and thus most plausible, further limits the search. 
Finally, nuclear-magnetic-resonance data enable DENDRAL to identify the correct structure. 

would bring to bear in attempting to 
solve a difficult problem. 

Today there are dozens of large pro
grams at work on difficult technical 

problems in fields as diverse as medi
cal diagnosis, the planning of genetic ex
periments, geologic prospecting and au
tomotive design. The primary source 
of power in these expert systems is in
formal reasoning based on extensive 
knowledge painstakingly culled from 
human experts. In most of the programs 
the knowledge is encoded in the form of 
hundreds of if-then rules of thumb, or 
heuristics. The rules constrain search by 
guiding the program's attention toward 
the most likely solutions. Moreover
and this distinguishes the heuristically 
guided programs from those relying on 
more formal methods-expert systems 
are able to explain all their inferences in 
terms a human being will accept. The 
explanation can be provided because 
decisions are based on rules taught by 
human experts rather than on the ab
stract rules of formal logic. 

Consider MYCIN, a program devel
oped by Edward H. Shortliffe of Stan-

ford University to diagnose bacterial 
blood infections. The problem it faces is 
to determine which of many possible or
ganisms might be responsible for a par
ticular infection and to recommend a 
course of treatment on the basis of its 
diagnosis. To accomplish this MYCIN 

draws on a knowledge base of 500 heu
ristic rules, of which the following is a 
typical example: "If ( 1) the stain of the 
organism is gram-positive and (2) the 
morphology of the organism is coccus 
and (3) the growth conformation of the 
organism is clumps, then there is sugges
tive evidence (.7) that the identity of 
the organism is staphylococcus." As the 
program operates it converses with the 
user, asking for additional information 
on the patient that will allow it to apply 
different rules, and sometimes suggest
ing laboratory tests. At any time the user 
may ask MYCIN to justify a question or 
an inference by referring to the rule it is 
invoking. The program has shown itself 
capable of performing on a par with hu
man practitioners. 

In addition to heuristic reasoning, ex
pert systems tap other sources of power, 
some of which are such staples of com-
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mon sense that people rarely think of 
them consciously. Many programs, for 
instance, are able to focus their search 
by virtue of being oriented toward more 
or less specific goals. Again MYCIN is a 
good example. Starting with general in
formation on the patient, MYCIN reasons 
backward from its goal of finding the 
identity of the disease-causing organ-

ism, asking questions to ferret out the 
specific symptoms that might substanti
ate a diagnosis. Having determined, say, 
that "the stain of the organism is gram
positive," MYCIN would without further 
search inquire about the morphology 
of the infecting organism, in the course 
of deciding whether the bacteria might 
be staphylococci. Such goal-directed-

ness does not mean a program has had 
its decision sequence "wired in," as is 
sometimes suggested by those who ar
gue that expert systems do not really 
show intelligence; programs such as MY

CIN are actually adaptable to situations 
unforeseen by the programmer, who 
does not strictly predetermine the use a 
program will make of its knowledge. 

SOUND 
SEGMENTS 

WAVEFORM 

ARE ANY BY FEIGENBAUM 

BLACKBOARD provides a way to organize a large amount of knowl
edge in an intelligent program. The information is stored in indepen
dent modules, each of which monitors only a small region of the black
board and is activated only when entries are posted in that region by 
another module. The modular design helps to solve the problem of 
deciding which part of the knowledge base to apply at a given mo
ment. In the example shown, adapted from a speech-understanding 
system developed by Raj Reddy, Lee D. Erman and their colleagues, 
the horizontal axis represents time, starting at the beginning of an ut-

208 

: . 

FELDMAN ? 

• • • 

terance, and the vertical axis represents the level of abstraction, start
ing with the sound waves and proceeding to the complete sentence. 
The third dimension indicates the level of certainty associated with 
each hypothesis posted on the blackboard; the most plausible of the 
many hypotheses possible at each time and at each level of abstrac
tion are near the front of the cube. The blackboard allows knowledge 
modules at different levels to interact; for instance, once the program 

infers from pitch that the sentence is a question, that information 
guides the formation of hypotheses at the word or the phrase level. 
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Another powerful strategy exploited 
by intelligent human beings, including 
software designers, is to break up a com
plex problem into more tractable sub
problems: it is the strategy of divide and 
conquer. A group at Carnegie-Mellon 
University has built four related pro
grams, each of which is guided by heu
ristics to rediscover well-known physi
cal and chemical laws. The programs 
are enabling the group to make progress 
toward understanding and mechanizing 
different aspects of scientific theory for
mation; eventually the workers will knit 
these solutions together into a single 
model of the entire process. 

In a relatively narrow sense the di
vide-and-conquer approach is implic
it in intelligent software itself. Goal
directed programs divide the search 
into more or less independent subgoals 
(nodes in the search tree). At a higher 
level, heuristically driven systems dis
tinguish the problem itself from the 
meta-problem: the difficulty of deciding 
at any given moment which of hundreds 
of different rules should be "firing." The 
meta-problem is solved separately by an 
often complex process-sometimes re
quiring its own heuristics-of matching 
the search state with the preconditions, 
or "if " part, of an if-then rule. 

Formal methods, although they are 
not the engine of inference, can also be 
helpful in managing an expert system. 
Some systems, for example, rely on logi
cal or statistical procedures in deciding 
when it is no longer cost-effective to 
continue a search. Furthermore, since 
the if-then heuristics in an expert system 
generally do not express relations that 
are always true, each rule may have 
a confidence rating associated with it 
(".7" in the abovl< example from MY

CIN). The ratings linked to each step in 
a sequence of inferences are combined 
to produce a confidence measure for 
the final conclusion. This is done using 
Bayes' law or some other formal pro
cedure of probability theory. 

Each rule in an expert system may be 
simple, and sometimes there may be lit
tle or no organization among rules. Still 
the set as a whole is capable of per
forming difficult technical tasks with 
an expert's level of competence. This 
is a form of synergy, the whole being 
greater than the sum of its parts. Syn
ergy is so pervasive that it is taken for 
granted, but almost all expert systems 
rely on it as a source of power. 

One of the most successful intelligent 
programs was also the first expert 

system to be developed: DENDRAL, writ
ten by Edward A. Feigenbaum and his 
colleagues at Stanford in the late 1960's. 
Along with its successor, GENOA, it is 
now in use in organic-chemistry labora
tories throughout the world. DENDRAL 

deduces the structure of organic mole-

cules from mass spectra, nuclear-mag
netic-resonance data and other kinds 
of information. 

Like MYCIN, DENDRAL is essentially di
agnostic. A different type of expert sys
tem altogether is one that seeks to dis
cover new information, or to rediscover 
from basic principles information al
ready known. An example of such a pro
gram is EURISKO, which I developed with 
my students at Stanford. After giving it 
a relatively small amount of basic infor
mation on a subject, we have turned EU

RISKO loose in domains as diverse as set 
theory, a war game, computer program
ming and the cleanup of chemical spills. 

EURISKO is guided in its search, which 
consists of synthesizing, analyzing and 
evaluating new concepts, by hundreds 
of fairly general heuristics. One of these 
is "look at extreme cases." This heuris
tic led EURISKO, while it was pondering 
the function "divisors of " in set theory, 
to consider numbers that have only a 
few divisors. In doing so it rediscovered 
prime numbers, which are numbers with 
only two divisors, as well as the fact 
that any number can be factored into a 
unique set of primes. The same simple 
heuristic also proved invaluable when 
EURISKO and I entered the national war 
game Traveller T.C.S., in which the ob
ject is to design a fleet that will defeat 
one's opponents in battles waged under 
a large set of rigid rules. After consider
ing the rules EURISKO produced a fleet 
consisting almost entirely of small, swift 
attack vessels rather like PT boats and 
including one ship so fast and so tiny 
that it was virtually indestructible. Hu
man Traveller players scoffed at this 
strategy and fielded more conventional 
fleets with a balance of ship sizes; EU

RISKO won. 
Another widely applicable heuristic is 

"coalesce," which leads the program to 
consider what happens to a function of 
two variables x and y when the variables 
are assigned the same value. After EU

RISKO had already derived the functions 
of addition and mUltiplication from set 
theory, the coalesce rule prompted it to 
discover doubling (x plus x) and squar
ing (x times x). Applying "coalesce" to 
Traveller, EURISKO developed a novel 
strategy: it directed a disabled ship to 
fire on and sink itself. Because the 
game's stylized rules defined overall 
fleet agility in terms of the slowest ves
sel, this was a reasonable method of in
creasing the fleet's power. Finally, in 
studying computer programming EURIS

KO considered the function "x calls y," 

where x is a program element that acti
vates y, another element. The coalesce 
heuristic led EURISKO to define the im
portant notion of recursive program
ming elements, or components of a piece 
of software that call themselves. 

"Coalesce" and "look at extreme cas
es" are examples of heuristics that guide 

a discovery program to define new con
cepts. If the program's mission is taken 
to be the search for interesting ideas, it 
must also have a second type of heuris
tic to help it decide which of the many 
concepts it generates are significant. 
Concept-synthesis rules steer search at 
the outset; evaluation heuristics channel 
the search along worthwhile paths once 
it has begun. EURISKO includes rules 
of the form "If all members of a set un
expectedly satisfy some rare property, 
then increase the 'interestingness' rating 
of that set and of the heuristics that led 
to its definition." Another rule directs 
the program, when it is deciding which 
of two very similar concepts to study, to 
pick the one that requires less computer 
time or questioning of the user. 

From using heuristics to discover (or 
rediscover) new concepts or facts it 

is a short theoretical step to using them 
to discover new heuristics. The latter 
endeavor relates to what has long been 
a central goal of artificial-intelligence 
research: writing programs that learn 
from.experience. In recent years a num
ber of workers have in fact developed 
programs that draw general rules from 
their experience in solving individual 
problems. The generalization process is 
controlled by meta-heuristics. 

The success of DENDRAL prompted 
its authors to write a new program, 
META-DENDRAL, whichformulatesgener
al rules of mass spectrometry based on 
observations of how particular com
pounds are fragmented in the spectrom
eter. An example of a meta-heuristic in 
this case is the simple statement that the 
features of a molecule that are most im
portant in determining its fragmentation 
pattern are those near the break points. 
Applying this heuristic, META-DENDRAL 

might formulate a rule to the effect that 
organic molecules tend to break where 
carbon and oxygen atoms are linked by 
single bonds. The new heuristic would 
then be helpful in deducing the structure 
of unknown molecules from their mass 
spectra. Similarly, Thomas M. Mitchell 
and Paul E. Utgoff of Rutgers Universi
ty have written a program called LEX2 

that derives problem-solving heuristics 
in integral calculus from its experience 
in computing particular integrals. 

Designing more proficient learning 
programs depends in part on finding 
ways to tap a source of power at the 
heart of human intelligence: the ability 
to understand and reason by analogy. A 
little introspection and an attentive ear 
are all it takes to realize that people 
draw on analogy constantly in explain
ing and understanding concepts and in 
finding new ones. This source of power 
is only beginning to be exploited by in
telligent software, but it will doubtless 
be the focus of future research. 

I do not mean to suggest that no prog-
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ress has been made so far. Twenty years 
ago Thomas G. Evans of the Massachu
setts Institute of Technology wrote a 
program capable of recognizing analo
gies between geometric figures, the kind 
of ability required by certain problems 
on I.Q. tests. Getting programs to find 
conceptual analogies' is harder, and a 
number of investigators are working on 
this problem. Jaime G. Carbonell of 
Carnegie-Mellon has a program that 
recognizes the similarity between two 
algorithms that are written in different 
computer languages but have the same 
purpose. EURISKO, on the other hand, 
does not so much find analogies as use 
low-level analogical reasoning. In work
ing on the design of integrated circuits, 
for example, EURISKO stumbled on the 
fact that symmetry is a desirable prop
erty for such chips, although it did not 
understand why; when it was later in
structed to design fleets for the Traveller 
game, EURISKO decided to make them 
symmetrical and justified its decision by 
referring to its earlier experience in de
signing circuits. 

Compared with human capabilities, 
however, this is extraordinarily meager. 
The poor performance of computer pro
grams in finding and using analogies 
may be attributable more to the nar
rowness of their knowledge than to the 
inability of programmers to come up 
with suitable algorithms. People have an 
enormous store of concepts to draw on 
as possible analogues: perhaps a million 
distinct memories of objects, actions, 
emotions, situations and so on. This rich 
repertoire is not built into existing soft
ware, nor do programs have a chance to 
accumulate a large set of experiences 
from which to draw comparisons. Pro
grams that run for a long time before 
they are.stopped and restarted typically 
do not keep adequate records of their 
search experience, and when they are 
stopped, they lose all or most of the les
sons they learned. Even EURISKO, which 
has run for weeks at a time and is restart
ed with most of its records intact, has 
had a short mental life, with experiences 
that are not nearly as varied as those of 
a human infant. 

The prescription for improving a pro
gram's analogical reasoning is therefore 
the same as the one for raising the gener
al performance of intelligent software: 
expand the knowledge base. Ideally an 
entire encyclopedia would somehow be 
stored in computer-accessible form, not 
as a text but as a collection of thousands 
of structured, multiply indexed units. 
Preliminary work toward this goal by a 
few investigators has revealed that it is . 
even more elusive than it sounds: the 
understanding of encyclopedia articles 
itself req uires a large body of common
sense knowledge not yet shared by com
puter software. 

On the one hand, computer programs 

"FRED IS LIKE A BEAR" 

NAME FRED NAME TYPICALBEAR 

ISA MAN ISA BEAR 

HOME 15 MAIN ST. HOME CAVE 

SIZE LARGE < SIZE LARGE 

GAIT LUMBERING < GAIT LUMBERING 

EATS HONEY < EATS HONEY 

AGE AGE 5 

FINGERNAILSIZE LONG �--------- CLAWSIZE LONG 

FRAMES are a way of representing knowledge of a particular concept; among their other ad
vantages, they can facilitate the drawing of analogies by an intelligent program. A frame con
sists of slots filled with attributes and associated values. If two objects have some of the same 
attribute names, an analogy can be drawn simply by filling empty slots in one frame with ap
propriate attribute values from the other frame. Heuristics guide the program in determining 
which values to transfer, leading it, for example, to consider extreme qualities' of the source 
frame. When a slot in the source is absent in the target, the program may.sel.ecta similar slot. 

will have to become a lot more knowl
edgeable before they will be able to 
reason effectively by analogy. On the 
other hand, to acquire knowledge in 
such bulk it would seem that computers 
must at least be able to "understand" 
analogy when it is presented to them; 
certainly that is one of the most power
ful learning techniques available to hu
man beings. The problem is thus of the 
chicken-and-egg sort. Fortunately it is 
easier for a computer, as it is for a per
son, to understand an analogy put be
fore it than to find one itself, and ongo
ing research gives some reason to hope 
that the dilemma will not prove com
pletely intractable. 

The key to getting a machine to un
derstand an analogy is to represent in
formation about the objects to be com
pared in a convenient way: for example, 
as frames .consisting of sets of slots, 
where each slot contains a value for a 
particular attribute of an object. When 
the computer is told that two objects are 
analogous ("Fred is like a bear"), it can 
then simply fill in empty slots in one 
frame with values taken from the eq uiv
alent slots of the other. The hard part for 
an ignorant program, of course, is decid
ing which values it should transfer. (In 
which of his attributes is Fred like a 
bear?) Such decisions can be guided by 
heuristics. The. "look at extremes" rule, 
for instance, is again useful; when an 
analogy is apt, it is often because certain 
unusual characteristics of the source ap
ply to the target as well. 

The use of frames in mechanizing the 
understanding of analogy illustrates 

a general fact, namely that the repre
sentation of knowledge can itself be a 
source of power in an intelligent system. 
A piece of knowledge can be represent-
ed in many ways in software, and I do 
not intend to go into them aU here. The 
point is merely that each mode of repre
sentation makes it efficient to do certain 
operations and inefficient to do others. 

Drawing.·analogies, for 'example, might 
entail a long and cumbersome search if 
each attribute of each object were repre
sented in a program's knowledge base 
as a separate statement in formal logic. 
Choosing the right representation for a 
given problem reduces search. 

Human beings, though, go 'well be
yond a simple, one-time choice: we have 
the ability to switch back and forth be
tween several forms of representation
words, symbols, pictures-and to look at 
a problem from different perspectives as 
we seek a solution.Such flexibility is dif· 
ficult for software to emulate. In 1962 
Herbert L. Gelernter designed a pro
gram that- solv.ed high school problems 
in plane geometry; each problem was 
represented both axiomatically and by 
a diagram. The logical representation 
enabled the program to construct for
mal proofs. The diagrams, on the other 
hand, suggested methods of proof and 
enabled the program to test conjectures; 
for instance, it could recognize when 
two line segments were parallel, when 
two angles were equal or complementa
ry and so on. Although a coincidence of 
this kind could be an artifact of a partic
ular diagram, the likelihood of such a 
coincidence was so small that it made 
the multiple-representation techniq ue 
quite effective at eliminating search. 

Unfortunately Gelernter's prescient 
thoughts about multiple representation 
have not yet been extended into other 
domains, although recently a few inves
tigators have begun classifying forms 
of representation and working on tech
niques that would enable a program to 
convert from one form into another. 
The diagrams in Gelernter's program, 
however, were effective not only be
cause they were a different form of rep
resentation but also because they were 
analogical: their pieces corresponded to 
real entities, and distances between piec
es matched real distances, as on a road 
map. That is an advantage a logical rep
resentation cannot offer, and a number 
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of workers are looking for ways to ex
ploit the potentially large power of ana
logical representation. 

One line of this research deserves spe
cial mention. "Blackboards" are not a 
way of representing individual pieces of 
knowledge but of organizing the pieces 
into a large program; a blackboard rep
resents the problem space itself. In 
speech understanding, to which this ap
proach was first applied, the horizontal 
axis of the board represents time, with 
the beginning of a sentence at the left 
and the end at the right. The vertical axis 
measures the level of abstraction, which 
increases from sound wave to syllable to 
sentence as the program's understand
ing of an utterance progresses. Each if
then rule or set of rules in the program 
monitors a particular part of the black
board and is triggered only when infor
mation is posted in that space; the black
board thus helps to solve the meta-prob
lem of deciding which rules should be 
firing at a given moment. Moreover, 
the knowledge modules, which operate 

CONSISTENCY 

independently, need not all be if-then 
rules. A blackboard structure is there
fore a natural way of exploiting the syn
ergy among different types of knowl
edge in a single system. 

Decently another source of power po
n. tentially available to intelligent sys
tems has become something of a buzz
word in artificial-intelligence circles: 
parallelism. At present most computers 
process information seq L1entially, one 
operation at a time. Several groups, 
however, including those working on 
the Japanese "fifth generation" and 
American "strategic computing objec
tive" projects, are designing machines 
that will include on the order of a mil
lion processors operating in parallel. 
The possibility that processing speeds 
will increase by a factor of a million has 
prompted some workers to forecast rev
olutionary improvements in the per
formance of intelligent software. 

The improvements will undoubtedly 
be significant. The rise in processing 

PREDICTABILITY 

CONTINUITY OVER SITUATIONS 

REGULARITY 
DECOMPOSABILITY 

DENSITY OF SOLUTIONS 

SHARING OF ATTRIBUTE NA MES 

CONTINUITY OVER ATTRIBUTES 

IMMENSITY 

I 
COMPLEX ITY 

VARIETY 

SPARSENESS OF SOLUTIONS 

UNPREDICTABILITY 

speed may bring within reach the so
lutions to some interesting problems, 
such as getting a computer to under
stand speech as quickly as it is spoken; 
it should also be enough to enable a 
machine to beat the best human player 
at chess. Yet before predicting miracles 
from the fifth generation one should re
member that most hard problems have 
search trees that grow exponentially. 
Even a millionfold increase in com
puting power will not change the fact 
that most problems cannot be solved by 
brute force but only through the judi
cious application of knowledge to limit 
the search. 

A second reason for not treating par
allel processing as a panacea is more 
subtle and is based on empirical evi
dence obtained by my colleagues and 
me. When we had EURISKO simulate 
the action of a progressively increasing 
number of parallel processors working 
simultaneously on tasks from its agen
da, we found that once fOLlr processors 
had been simulated the rate at which 

I 
FORMAL METHODS 

1 

:1 HEURISTIC REASONING 

I J FOCUS : 1 

J 
DIVIDE AND CONQUER 

I 

1 
J PARALLELISM 

I 

I 
.1 REPRESENTATION 

I :::. ANALOGY 
/ 

J SYNERGY 1 

J I SERENDIPITY 

"I 
SOURCES OF POWER in problem solving are made meaningfnl 
(gray lilies) and actually nsefnl or cost-effective (colored lilies) by cer
tain properties of the problem domain. For example, it is possible to 
apply heuristic reasoning or the divide-and-conqner approach to a 
problem if the problem is regnlar in the sense that it can be decom
posed into subproblems. It is cost-effective to do so, however, only if 
the domain is complex and immense; if the domain is more limited 

and regular, it may be better to apply a formal logical approach. Sim
ilarly, analogies can be drawn most readily in a domain (snch as med
ical diagnosis) in which objects (diseases) have many attribnte names 
in common. Reasoning by analogy is cost-effective only when there 
is a continnity of attribnte valnes (diseases with similar symptoms 
and causes oli'ten require similar treatment) and when a problem has 
few solutions (a set of symptoms is linked to only a few illnesses). 
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the program made significant discover
ies did not increase further. The reason 
for this was that in completing its top
ranked task EURISKO usually discov
ered a new task it found more interest
ing than the rest of its original agen
da. Where good heuristics allow such 
a "best first" search, parallel processing 
may have diminishing returns. 

There is a final source of power in 
human problem solving that I should 
like to mention, at the risk of sounding 
tongue-in-cheek: serendipity. Although 
one cannot count on luck to solve specif
ic problems, it is often reliable in the 
statistical sense. For example, Wood
row W. Bledsoe of the University of 
Texas at Austin has found it worthwhile 
to include the following "fortuitous ac
cident" heuristic in his theorem-prov
ing program: "Whenever a new proposi
tion is deduced, regardless of whether it 
solves the current subproblem, check to 
see whether it solves any of the higher
level goals." 

To a certain extent all empirical scien
tists rely on luck when they gather data 
in the hope of finding some pattern. Em
pirical learning programs such as EURIS

KO, whose mission it is to seek new con
cepts and regularities, depend on seren
dipity in the same way. This open-ended 
activity can be made less risky by confin
ing the search to a problem space in 
which interesting findings are known to 
be densely packed. The full exploitation 
of serendipity, however, demands a will
ingness on the part of software design
ers and their sponsors to use programs 
whose performance is far from guaran
teed. Although universities and corpo
rations routinely do this with human sci
entists, it may be many years before they 
and program designers themselves lose 
their reluctance to take such chances 
with intelligent programs. 

Each source of power I have described 
is made meaningful and applicable 

by certain properties of a problem do
main and cost-effective by others. The 
two types of properties are rather like 
necessary and sufficient conditions for 
the application of a particular source of 
power. Consider analogy: it is meaning
ful between two concepts only if they 
share many of the same attribute names, 
and it is useful or cost-effective if in ad
dition the concepts are actually similar 
in some of their qualities, that is, if cer
tain of their attribute values are compa
rable. Most diseases, for example, have 
attribute names in common-"cause," 
"symptoms," "treatment" and so on
and it is therefore possible to draw anal
ogies among them. It is useful to do so 
because illnesses that have similar caus
es frequently turn out to require similar 
treatments. In fact, medical students of
ten learn about new diseases by analogy 
to ones they have already studied, and 

medical-diagnosis programs may one 
day do the same. 

One property common to many inter
esting problem domains is that of being 
immense. Immensity is usually regarded 
as a hurdle to be overcome, but it pre
sents an opportunity to the problem 
solver as well. If the search space is 
large, pieces of it may be summarized 
in the form of statistics, theorems or 
heuristic rules. This opportunity does 
not arise in the case of problems that 
are not immense but are difficult in the 
sense of being time-consuming; the test
ing of drugs for long-term side effects 
is a good example. 

When human beings are confronted 
with a complex problem, they intuitive
ly draw on all appropriate sources of 
power . Early artificial-intelligence pro
grams, in contrast, were seriously weak
ened by their reliance on a single ap
proach, usually some formal method. 
Many software designers now recognize 
the importaI)ce of exploiting the gamut 
of human problem-solving techniques
as well as the synergy that arises when 
different sources of power are allowed 
to function together . 

With the exception perhaps of syner
gy and serendipity, the sources of power 
I have discussed are all methods of orga
nizing and applying knowledge to re
duce search. If the future of artificial 
intelligence lies in making these human 
tools available to machines, it depends 
just as certainly on the ability of pro
grammers to provide their systems with 
the right raw material: the huge knowl
edge base of facts and experience from 
which human beings reason. To a cer
tain extent such knowledge can be incor
porated in a system "by hand," with the 
programmer doing all the work. The 
duplication by machines of many of 
the most impressive human intellectual 
feats will remain impractical, however, 
until programs become more like hu
man beings in two fundamental ways: 
in their ability· to accum ulate their own 
experiences over a long mental lifetime 
and in their ability to communicate with 
and learn from one another. 

Designing software that fits this de
scription is a tremendous challenge, but 
I believe it will be accomplished some
day. Most existing programs were de
signed with a static environment in 
mind. In areas where the state of the art 
and therefore the problems are chang
ing rapidly-computer architecture, in
tegrated-circuit design and biotech
nology are examples-this property is 
already revealing itself as a serious 
drawback: programs working in these 
problem areas quickly become obso
lete. The ability to adapt to a changing 
environment demands intelligence. In 
my view intelligence will increasingly 
be perceived as a necessity rather than 
a luxury in computer software. 
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PERSOMAL COMPUTING 
MAKES GOOD 
BUSINESS ·.SENSE. 

ONE WAY. ·OR THE OTHER. 

2 1 4  

. Read this  . . .  i f  you want to learn 
more about persona l computers 
before you buy one. 

Read this . . .  if you want to get 
more out of the personal 
computer you already own . 

Turn to the c o m p u t i n g  magaz i n e  for b u s i ness peo
p le ,  not tec h n i c a l  wizards _  Personal Computing_ 
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Success in racquetball is enhanced by knowing 
the physics of the collision of ball with wall 

by J earl Walker 

A four-wall game such as racquet.n. ball, squash or handball de-
mands of the player a great deal 

of skill in judging angles and bounces. 
The ball comes off the wall in a direction 
determined by the physics of the colli
sion. An understanding of this physics 
enables a player to predict the ricochet 
of a ball approaching him and to cal
culate the ricochet he would like to 
achieve in order to put the ball out of 
the reach of his opponent. In discussing 
these phenomena I shall call to my aid 
some strange related tricks that can be 
demonstrated with a highly elastic solid 
ball sold in toy stores. 

(The total kinetic energy is said to be 
conserved.) Only an ideal ball and colli
sion follow this rule. In practice some 
kinetic energy is lost by being converted 
into other forms of energy. For exam
ple, some of it might end up in the vibra
tions of the ball. I shall ignore such los
ses and concentrate on the movements 
of a totally elastic ball. 

The collision of the ball with the floor 
changes the perpendicular velocity in a 
simple way: it reverses the direction but 
leaves the magnitude and the associat
ed kinetic energy unaltered. The paral
lel velocity and the spin are altered in 
more complicated ways. Still, the total 
kinetic energy is unchanged. An elastic 
collision might decrease the spin, but 
the parallel velocity would then be in
creased just enough to keep the total ki-

netic energy constant. This requirement 
of conserving the total kinetic energy is 
a strong tool for predicting the rebound. 

Another important point is that the 
total angular momentum is conserved. 
One contribution to the angular mo
mentum comes from the spin. This con
tribution is equal to the rate of spin mul
tiplied by the ball's moment of inertia. 
The spin angular momentum is consid
ered to be negative if the spin is clock
wise and positive if it is counterclock
wise. The moment of inertia depends 
on the mass of the ball and the way the 
mass is distributed. For a solid ball of 
uniform density the moment of inertia is 
two-fifths of the product of the mass and 
the square of the radius. 

The other part of the angular momen
tum depends on how fast the ball is 
moving parallel to the floor at the in
stant it touches the floor. This contribu
tion to the angular momentum is equal 
to the product of the ball's mass, the 
parallel velocity and the radius. If the 
parallel velocity is toward the right, the 
contribution is negative; toward the left 
it is positive. The collision may change 
the two contributions to angular mo
mentum in both magnitude and sign, 
but the total angular momentum re
mains. In sum, regardless of how the 
ball is thrown to the floor or how it 
spins, the total kinetic energy and the 
total angular momentum must remain 
constant in an ideally elastic collision. 

The easiest demonstration is to drop 
the ball to the floor. If it has no spin 
initially, it must bounce back to your 

The toy ball is almost perfectly elas
tic: if you drop it, it bounces back nearly 
all the way to your hand. (A perfectly 
elastic ball would return to its initial 
height.) The ball also has a rough sur
face, so that when I throw it along the 
floor, it does not slip. Because of the 
ball's elasticity and roughness, it can be 
bounced in some surprising ways. 

Front wall 

When I throw the ball downward at an 
angle, it bounces across the floor in a 
repeated pattern of high, short hops and 
low, long hops. If I put some spin on 
the ball as I throw it, it bounces to the 
left and right until it runs out of energy. 
The most startling demonstration in
volves throwing the ball under a table. 
A smooth ball would bounce between 
the table and the floor until it reached 
the far side of the table. A rough elastic 
ball bounces back to the thrower. 

To study how a ball collides with a 
surface I first considered a uniformly 
solid ball bouncing on a floor. Suppose 
the ball approaches the floor moving to 
the right and downward. It helps to de
scribe the velocity as being in two parts, 
one part parallel to the floor and the 
other part perpendicular. In addition 
the ball can be spinning about its center. 
A clockwise spin is a negative rotation 
and a counterclockwise spin is positive. 

The ball's kinetic energy is in three 
parts, one part for each component of 
the velocity and one for the spin. If the 
ball is completely elastic, the collision 
does not change the total kinetic energy. 

Left ::>ide 
wall 

Boll rebounds poro\\e.1 
to bock wall. 

\ 

R.ight oide.. 
'/'Jol\ 

-i------------------

The troublesome Z shot ill racquetball 
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hand without spin 'because of the con
servation rules. The only kinetic energy 
it has is associated with its perpendicu
lar velocity. Since that velocity is only 
reversed by the collision, without any 
change in magnitude, the kinetic energy 
is unchanged. N one of it can be trans
ferred to the spin or to parallel velocity, 
and so the ball must travel straight up
ward. This result also satisfies the re
quirement that. angular momentum be 
conserved. Before the collision and after 
it the ball's angular momentum is zero. 

Suppose you put a clockwise spin on 
the ball. The collision directs the ball 
onto a new path. At the collision with 
the floor the spin creates a friction force 
toward the right, reversing the direction 
of spin. Because of the friction force, 
the ball also acquires a parallel velocity, 
so that it bounces to the right. The en
ergy for the parallel velocity is taken 
from the energy of the initial spin. . 

Energy is also transferred when the 
ball is thrown to the floor at an angle and 
without spin. I had expe.cted the path' 
after such a bounce to be just as.steep as 
the initial path, but it is steeper because 
the collision reduces the· parallel veleci
ty, converting-some of its kinetic ener
gy into spin eneI:gy. In terms of angu
lar momentum the collision reduces the 
amount associated with the parallel 
velocity and increases (from zero) the 
amount associated with the spin. The to
tal kinetic energy and the total angular 
momentum are conserved. 

The steepness of the path after a colli
sion depends.ol} the initial steepness. and 
the spin. When the initial spin is negative . 
(clockwise), th'e final. steepness is less 
than it is when the ball 'is thrown down· 
without spin. A strong spin directs the 
ball along a low path over the ft.oor. 
When the initial spin is positive (coun
terclockwise)" the balLmay bounce for
ward in a steep path, upward. perpen
dicular to the floor "or 'even backward, 
depending on the, stren-gth of·the initial 
spin. The bounce is straight-up if the ball 
initially has just the right amount of pos
itive spin. (The product of the spin and 
the radi us of the ball must be eq ual to 
three-fourths of the ball's initial parallel 
velocity.) With more counterclockwise 
spin the ball rebounds to the left: If the 
spin is less than the' threshold amount, 
equal to zero or negative (clockwise), 
the rebound,is to the right. 

The steepness of the rebound can be 
understood' in terms of the friction 
where the ball touches the floor. The 
friction force is opposite to the direction 
in which the surface of the ball is mov
ing. At the moment of contact the sur
face motion has two sources: parallel 
velocity and spin. The, friction opposes 
the sum of these two motions .. For ex
ample, if the ball is thrown down at 
an angle and without spin, the surface 
touching the floor is moving to the right. 
The friction force acting orr the surface 

(' opinle.s.s 

The odd bounces of a rough. elastic ball 

is toward the left, which reduces the par
allel velocity. The ball bounces toward 
the right with less rightward velocity 
than it had before the collision. Since the 
amount of perpendrcular velocity is un
altered by the friction, the ball bounces 
in a path steeper than the one it followed 
in approaching the floor. 

I also considered events in which the 
ball makes several bounces on the floor. 
Suppose the ball is thrown to the right 
without spin. The first bounce reverses 
the perpendicular velocity (so that the 
ball goes upward), decreases the parallel 
velocity and imparts a clockwise spin. 
The ball rises to its maximum height 
and falls'back to the floor. The surpris
ing feature is that this second bounce 
restores the initial spin (which was zero) 
and parallel velocity. The result is the 
same regardless of. the initial values of 
spin and' parallel velocity. If the ball 
continues to bounce along the floor, its 
initial values of spin and parallel veloci
ty are restored after every even number 
of bounces. 

The phenomenon was readily appar
ent in the'action of the elastic toy ball. I 
painted the equator of the ball so that 
I could monitor the spin. When I threw 
the ball to the floor with no initial spin, 
the first bounce was high and short, so 

that the ball did not move very far hor
izontally before the next bounce. The 
spin was clockwise. The second bounce 
was low and long. The. ball had essen
tially no spin. Thereafter the ball repeat
ed the pattern of a high, short bounce 
followed by a low, long one. Since the 
ball was not totally elastic, each bounce 
was less energetic than the preceding 
one. A perfectly elastic ball would peri
odically resume its initial spin of zero 
and its initial parallel velocity. 

The interactions of spin and parallel 
velocity account for the strange actions 
of a,ball throwrr to the floor so that it 
strikes the underside of a table. If the 
ball is initially without spin, it bounces 
from the floor on a steep path with a 
rapid clockwise spin; when it hits the 
table, it rebounds to the left with a coun
terclockwise spin. The second bounce 
from the floor is also to the left with a 
counterclockwise ·spin. The perpendic
ular velocity has been reversed three 
times but is unchanged in amount. The 
parallel velocity is now toward the left 
and is almost unchanged in amount. 
Hence the ball almost returns to. the 
launch site. 

Suppose the 'ball were smoother and 
. less elastic. The first bounce would re

sult in a weak spin and the second (from 
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the underside of the table) would not be 
to the left. The ball would continue to 
travel to the right until it exhausted its 
kinetic energy. 

I next turned my attention to an ideal
ly elastic, hollow racquetball. Such a 
ball should perform all the tricks of a 
solid ball, although the spin values differ 
because the hollow ball has a different 
moment of inertia. If the ball is thrown 
at an angle to the floor (toward the 
right), it will hop straight up provided 
the spin is counterclockwise and the 
product of the spin and the ball's ra
dius is equal to one-fourth of the paral
lel velocity rather than three-fourths. 

In racq uetball the serve comes off the 
front wall of the court. The ball re
bounds to the opponent either directly 
or by bouncing from the side walls. The 
opponent must return the ball to the 
front wall before it bounces twice on 
the floor. Except on the serve, the ball 
can also be bounced from the back wall 
and the ceiling. I shall consider the shots 
that are allowed after the serve. 

A player can impart spin to the ball 
with the racquet in only two ways: by 
stroking forward and over the top of the 
ball (achieving topspin) or forward and 
along the bottom of the ball (achiev
ing backspin). The illustration at the 
left on page 222 depicts the spins from 

Weak 

--------
a view 0 the right s' / o

f the court. 
Consider hit hard and low 

toward the front wall with topspin. The 
collision is similar to one I described for 
a solid ball. The topspin (clockwise in 
the illustration) creates an upward fric
tion force that directs the ball upward 
and reverses the spin. When the ball re
turns to the floor, the counterolockwise 
spin forces a low bounce toward the rear 
of the court. The potential advantage of 
such a shot is that your opponent may 
not expect the high rebound from the 
front wall or the low hop from the floor. 

If you hit the ball hard and low 
toward the front wall with backspin, 
which is counterclockwise, it bounces 
toward the floor with a clockwise spin. It 
hits the floor close to the front wall and 
rebounds steeply upward. The potential 
advantage of this shot is that your oppo
nent may not be able to reach the ball 
before it bounces from the floor a sec
ond time. 

Usually my stroke gives the ball little 
or no spin, but it ends up spinning as 
soon as it bounces from a wall or from 
the ceiling. Consider a ceiling shot, 
which I often make to change the pace 
of the game. My opponent must ad-

_just not only to the new path but also 
to strange hop� off the floor. Suppose I 
make the ball bounce from the front 

. .  . po.sltive-lnlholly :;,trong -spin positive -SPinG\ t Initioll)' 
.spi n \e.5.s 

� �) .) 
• 

lnitio\ :;,p'lnj 
determi nes 

. re-bound. 

� In'ltially weak negative ::>pin 
/ /!J .strong negati\lc spin 

/ (no final spin) 
• 

How the boullce depellds 011 the illitial spill 

Pcrpc.nd iCl.llar 
vC:\ocity 

Para \ I c.\ 
ve.locity 

The two compOllellts of a ball's velocity 
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How spill deflects a boullce 

wall to the ceiling. It leaves the ceiling 
with a clockwise spin. When it hits the 
floor, its parallel velocity is sharply re
duced, making it bounce almost straight 

up. My opponent, who is expecting a re
bound path resembling the path of the 
approach to the floor, waits too far 
back in the court. 

If I make the ball bounce from the 
ceiling to the front wall, it approaches 
the floor with a counterclockwise spin. 
The collision with the floor increases the 
parallel velocity, sending the ball into a 
low hop. Again my opponent misjudges 
the rebound path and misses the ball. 
Both ceiling shots are better jf I start 
them from about midcourt. Then the 
spin as the ball approaches the floor is 
strong and the strange hop is enhanced. 

Suppose the ball is bounced off the 
front wall so that it moves toward the 
left side of the'court. If you take an over
head view and ignore the curvature of 
the path due to gravity, the arrangement 
is similar to the one in which a solid ball 
is thrown at an angle to the floor. The 
collision reverses the perpendicular ve
locity (in this case the velocity perpen
dicular to the front wall), decreases the 
p.arallel velocity (the velocity toward 
the left side wall) and imparts a clock
wise spin. In the overhead view the final 
path is steeper with respect to the front 
wall than the initial path because of the 
reduction in the parallel velocity. An 
opponent can quickly learn how to deal 
with this type of rebound in racquetball. 

A more difficult shot to anticipate is 
one that bounces from two walls. Con
sider an overhead view of a shot in 
which the ball bounces from the front 
wall and then from the left side wall. 
The first bounce gives the ball a clock
wise spin and a velocity directed toward 
the rear wall. Can you make the ball 
rebound from the side wall in any direc
tion you choose or is the final angle of 
rebound fixed? Can the final spin be 
zero or any value of clockwise or coun
terclockwise rotation? To answer these 
questions I employed some mathemat
ics published independently by Rich
ard L. Garwin of Columbia University 
and George L. Strobel of the Univer
sity of Georgia. 

Assume the ball is launched toward 

the front wall with no spin and has 

a small initial perpendicular velocity. 

You can make such a shot if you are 

near the front of the right side wall. 

Then an ideally elastic racquetball re

bounds from the left side wall at an an

gle of about 12 degrees. If you are closer 

to the center of the court, the initial 

perpendicular velocity is larger and the 

angle of the rebound from the left side 

wall is smaller; the ball travels along 

the wall to the rear of the court. 
You can use this arrangement to ad

vantage. Suppose your opponent is near 
the middle of the right wall. By bounc
ing the ball off the front wall and into the 
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A comprehensive 
software approach to sYIl!bolic 
mathematIcal computations. 

Computer algebra, whereby a computer 
manipulates symbolic mathematical 
expressions, has always been some
thing people have thought about, but it 
was never something people thought 
would work for them. 

Now there is a newly available soft
ware tool,one that can do not only rudi
mentary algebraic problems but also' 
extremely complex analyses. 

It has been under continual devel
opment since 1969 at M.I.T., the result 

An engineer working for a major aero
space company needed to evaluate the 
following integral dealing with turbu
lence and boundary layers: 

I (k log(x) - 2x3 + 3x2 + b)4 dx 

He had worked on this problem for 
more than three weeks with pencil and 
paper, always arriving at a different 
result. He was never sure which of the 
many results he had come upon was 
correct. 

copter blade motion studies, solid state 
physics, maximum likelihood estima
tion, and atomic scattering cross sec
tion analysis. The range of use is 
expanding every day. 

MACSYMA'" currently operates on 
Symbolics'3600\DEC's** VAX.** 
series, TOPS 20* * and Honeywell 
Multics** computer systems. 

So if you're still solving problems 
the old fashioned way with pencil and 
paper, or trying to approximate results 

Can your computer software evaluate this integral in closed form? Can you even find it in a table of integrals? 

�rf( ax) erf(bx) dx = _ Va2 + b2 erf(x Va2 + b2) + J t abV;-
x erf( ax) erf(bx) + e-a2 x2 erf(bx) e-b2 x2 erf(ax) ---��+ aV;- bV;-

where erf(x) 
MACSYMA solved this problem in seconds. 

of research in the area of artificial 
intelligence. 

The program is called MACSYMA.'" 
It's the most comprehensive 

approach to symbolicmathematics. 
The outgrowth of more than 100 man
years of development, it contains more 
than 3 00,000 lines of code and is sup
ported by more than 500 pages of care
fully maintained documentation. 

More important than any of that, 
though, it's available today. 

From Symbolics. 

Symbolics presents MACSYMA'" 
for computer algebra. * 

In only a few minutes,you can use 
MACSYMA'" to do meaningful work. 

As an interactive tool, it can help you 
explore problems in basic or advanced 
mathematics, problems that you can't 
begin to approach using pencil and 
paper or any numerical software. 

In-less than 10 seconds after entering 
the problem in the computer, MACSYMA'" 
gave him the correct answer, not in 
numerical terms, but in symbolic terms 
that gave him real insight into the physi
cal nature of the problem. 

Applications for the real world. 
Potential for new worlds. 
MACSYMA'" has hundreds of practical, 
real world, immediate applications. It 
can simplify, factor or expand expres
sions, solve equations analytically or 
numerically, differentiate, compute defi
nite and indefinite integrals, expand 
functions in Taylor or Laurent series, 
compute Laplace transforms, manipu
late matrices and tensors, plot functions 
in 2 and 3 dimensions, generate FOR
TRAN output from MACSYMA'" expres
sions, provide most of the standard 
numerical techniques, and much more .. 

with numerical systems, make it your 
business to find out about MACSYMA:" 

We'll send you a complete literature 
kit including an article published in 
the December 1981 issue of Scientific 
American, the solution to the integral 
dealing with turbulence and boundary 
layers, and a full capabilities brochure. 
Simply clip the coupon below. 

r-----------------l 
I Symbolics Inc.. II Cambridge Center. SA 9 I 
I Cambridge.MA02142 I 
I Name I 
I I 
I Titte I 
I I 
I Company I 
I I 
I Address I 
I City State Zip I 
I I 
I Telephone Ext I 
I MACSYMA" is available 10 colleges and universities I 
I at special rates. I 
L _________________ J 

For all its sophistication, however, a 
novice with no prior programming 
experience can use MACSYMA:" The 
user doesn't have to learn a new lan
guage either. As a matter of fact, users 
can interact with MACSYMA'" in an 
almost conversational manner. 

Right now, more than 1,000 scien
tists, engineers and mathematicians 
throughout the world use MACSYMA'" 
in a range of aplications as diverse as 
acoustics, plasma physics,antenna the
ory, VLSI circuit design, control theory, 
numerical analysis, fluid mechanics, 
genetic studies, ship hull design, ballis
tic missile defense systems design, 
underwater shock wave analysis, heli-

Macsym8 
An example: Three weeks long-hand 

vs.IO seconds processing time. 

from syrnbolics • As titled in the December 1981 issueo! Scientific American. 
-*DEC. VAX and Tops 20 are registered trademarks of Digital 

Equipment Corporation. 
Multics is a registered trademark of Honeywell�nc. 
MACSYMA is a trademark of Symbolics, Inc. 
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Path fo, initial 
top.spln <:. 

Top,:,pin Back.spin 
The energetics of topspill and backs pill 

left side wall so that it travels along the 
side wall to the back of the court, you 
can make it almost impossible for him 
to return the shot. Even if he is not far 
from the final path of the ball, the re
bound off the side wall might at least 
prove confusing. 

When I tested my calculations with 
a real racquetball, I found an approxi
mate agreement. The steepest angle of 
rebound from the side wall was larger 
than the 12 degrees I had predicted. 
As I increased the initial perpendicu
lar velocity by moving from the right 
wall toward center court, the angle of 
rebound decreased until the ball almost 
hugged the left wall on its way to the 
rear of the court. 

The discrepancy between the actual 
and the predicted rebound off the side 
wall arises from the inelastic collisions 
of a real racquetball. If the ball hits a 
wall squarely, it compresses uniformly, 
storing its energy as elastic potential en
ergy. Only part of the energy is recon
verted into kinetic energy as the ball 
pushes off from the wall, again taking 
the shape of a sphere. A racquetball 
might bounce back with 60 percent of its 
energy in such a collision. The perpen
dicular velocity would then be about 80 
percent of the initial value. (The change 
in velocity is proportional to the square 
root of the change in energy.) 

A glancing collision is more difficult 
to interpret because the compression 
of the ball is not uniform and depends 
on the angle of the collision. The loss of 
kinetic energy and angular momentum 
reduces both the spin and the parallel 
velocity. (When the ball skims along the 
wall or the floor in an extreme glancing 
shot, you can hear the energy loss as 
a high-pitched squeal as the ball skips 
over the surface.) In my calculations I 
chose to reduce the spin and the paral
lel velocity after a collision by .4. With 
these reductions I found closer agree
ment between my predictions and the 
actual rebounds. 

I was also able to explain why a real 
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racquetball does not return to me when I 
throw it under a table. The reductions in 
energy and angular momentum in the 
bounces from the floor and the under
side of the table trap the ball into bounc
ing almost vertically until it exhausts its 
kinetic energy. 

Is there a way to hit the ball to the 
front wall so that it rebounds from a 
side wall parallel to the front wall? With 
such a shot you could win every game 
because your opponent could not possi
bly get to the ball in time. As it turns out 
such a shot is impossible. A rebound 
from a side wall is always toward the 
rear of the court. 

Can a rebounding ball have any direc
tion of spin or even no spin? Yes, be
cause its final spin depends on the initial 
ratio of perpendicular and parallel ve
locities. For a perfectly elastic racquet
ball a spin of zero results when the ratio 
is 1 to 5. A smaller ratio yields a clock
wise spin (from an overhead view), a 
larger ratio a counterclockwise spin. 

The Z shot is a three-wall rebound 
that is marvelous to watch. When it was 
first introduced in the early 1970's, it 
confounded even the most experienced 
players. The ball is hit to the top left side 
of the front wall, bounces to the left side 
wall, crosses the court to the rear of the 
right side wall and then rebounds par
allel to the back wall. An opponent will 
need experience to anticipate the final 
rebound, but even then the ball will be 
difficult to return to the front wall. If 
I hit the Z shot less than perfectly, the 
ball might still be difficult to return if it 
hits the floor and then the back wall. 
My opponent must catch it near the 
back wall before the ball makes its sec
ond bounce on the floor. 

Initially I thought a perfect Z shot was 
impossible. I doubted that the final re
bound could be made to move parallel 
to the back wall. Armed with my mathe
matics l set out to follow the bounces. 

I immediately met a problem. If the 
ball is assumed to be perfectly elastic, 
it rebounds ftom the left side wall at 

such a small angle that it hits the back 
wall instead of the right side wall. I fac
tored an extra-long court into my calcu
lation. I also ignored the curve result
ing from gravity and made the calcula
tion as though the ball remained in a 
plane parallel to the floor. 

To launch the Z shot a player stands 
near the right wall at about midcourt. 
The ball is hit to the top left side of the 
front wall about three feet from the cor
ner and three feet from the ceiling. Since 
such a shot makes the ball leave the left 
side wall with a clockwise spin, its colli
sion with the right side wall creates a 
friction force toward the front wall. 

Consider the velocity and the spin of 
the ball just before and just after the 
collision with the right side wall. The 
perpendicular velocity is reversed, di
recting the ball toward the opposite side 

.wall. What happens to the spin and the 
parallel velocity? The collision is similar 
to one I considered earlier. The friction 
during the collision opposes both the 
spin and the parallel velocity, reducing 
the parallel velocity and reversing the 
spin. Under the proper conditions the 
parallel velocity can be reduced to zero, 
so that the ball's path is perpendicular 
to the side wall. This is how a perfectly 
executed Z shot makes the ball travel 
parallel to the back wall. 

When my calculations include the loss 
of energy with each collision, my predic
tions are closer to the actual path of a Z 
shot in a court of the proper dimensions. 
The possibility of a final rebound paral
lel to the back wall is still present. My 
calculations are flawed, however, since 
the actual path has three dimensions. 
My assumption of a flat trajectory sim
plifies the calculations because the axis 
about which the ball spins is always kept 
parallel to the wall. In the actual flight of 
the ball the spin axis is often at an angle 
with respect to the side walls. 

The around-the-walls shot also hits 
three walls. The ball is bounced from 
the right side wall to the front wall and 
then off the left side wall. The shot is 
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How our $2,000 CAD 
frotn burning up 

Until now, high-quality, 
professional computer-aided
design could only be done on 
expensive, large-scale mini or 
mainframe computers. 

But now there's AutoCAD:" 
A full-function graphics pro
gram that turns your low-cost 
personal computer into a full
fledged CAD workstation. So 
that designing an AUTO
MATIC 50-350 GPM-class fire 
nozzle has never been easier. 
Or more cost-effective. 

90% of mainframe CAD 
at 5% of the price. 
AutoCAD is designed 

especially tq work on today's 
most popular microcomputers 
to fully automate the drawing 
process. For just about any 

Zoom in on a part 
tofocus on the details 

AutoCAD automatically 
dimensions distances and angles 

drawing job you 
can think of. 

With its exten
sive, push-button 
editing facilities, 
AutoCAD lets you 
DRAW an object 
(or any part of one); 
ROTATE or SCALE 
it; DRAG it; ZOOM 
in and out on it; 
STORE it away in 
your own parts 
library and call 
it up whenever 
you need it; FILL 
an area; use an 
unlimited num
ber of LAYERS; 
even automat
ically DIMEN
SION distances 
and angles in in. the right di-
any part of your 9 __ L����� rection. A HELP com-
drawing. t mand is always available 

And, at only $2,000 for the to keep you on track. And 
complete AutoCAD program, AutoCAD even lets you choose 
you can have all this power in 
a fully-configured, top-of-the
line desktop workstation for 
less than $15,000. 

You'll learn it 
in two days. 

The beauty of AutoCAD 
is that you don't have to know 
a about 
Even you never 
a keyboard, you'll pick it up in 
a matter of days, and feel 
comfortable inside a week. 

Sound too good to be true? 
A simple one-touch command 
structure always points you 

Would the Pantry be better where the 
stove is? Use the MOVE command 

from among a wide variety 
of input devices to suit your 
particular needs: including 
pointing devices, mice and 
easy-to-use electronic drawing 

Architectural layout courtesy of Lansing Pugh, Architect Solar Panel Assembly plot courtesy of Future Technology, Inc. 
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software can keep you' 
your design budget 

(As well 
as printers, plotters, 

and microcomputers 
from a growing number 

of manufacturers.) 

Circles, arrays and area 
fills are easy with AutoCAD 

boards, 
skyscrapers, 

and 
everything 
in between. 

No matter 
hat type of 

drafting your 
work involves-from electro
mechanical circuit layout to 
structural schematics to archi
tectural design -Auto CAD 
can give you a whole new 
perspective on the draWing 
process. 

And on saving money. 
Because whether you're in a 
two-person shop or a two
billion dollar company, you'll 
find that the AutoCAD system 
pays for itself in just a few 

Beyond that, your Auto
CAD software will run on 
newer, and more powerful com
puters when they become 
available-so that you can be 
sure your investment in creat
ing drawings and training staff 

Fire nozzle and nozzle designs provided 
courtesy of TASK FORCE TIPS, Inc. 

will never go up in smoke. 

Fire off a letter. 
There are currently over 

7000 AutoCAD users world
wide. If you'd like more infor
mation, write or call your 
nearest AutoCAD dealer. He or 
she can provide you with all 
the details, including literature, 
specifications, and hands-on 
demonstrations. 

AutoCAD. For deSigners, 
it's why the personal computer 
was invented. 

AUTOCAD 
AUTODESK, INc. 

2658 BRIDGEWAY 
SAUSALITO, CA 94965 

(415) 331-°356 
'TELEX 756521 AUTOCAD UD 

-. ':.--.. 
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t1fyou are wondering why Berlin is the 

( CENTER OF CRD/CRrl ] 
�----------�------------------------------------------� 

in Germany, let us enlighten you:' 
Economic Development 

BERLIN 
11 % of all people engaged in R + D in the Federal Republic of Germany 

work in the City of Berlin. As a center for the conversion 
of scientific knowledge into economic practice Berlin has the leadership 

position, e. g. within thefield of CAD/CAM, laser and software. 
By the way: The City of Berlin is the only location in the European Community, 

where you get a bonus up to 14 % for Berlin products and serv,ices. 
Ask for the free CAD/CAM leaflet or mark the code number. 

Wolfe 1. Frankl, Berlin Economic Development Corp., 767 3 rd Ave., New York, N. Y. 
10017 -2079, Tel. (i12) 980 1545. 

�- Ci)fluclv 
Uv 4984 · � Uv O/.Y Iuf/k 

0/.Y9�fjJav.udtand 
f!/JalcIv rkdt.? 

$O/I/��caIt$Jtd at.
(649) 434=6465 
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designed to confuse an opponent, but if 
the ball ends up at midcourt, he may 
have an easy chance of returning it to 
the front walL I wondered if there was 
any way I could set up the around-the
walls shot to make the ball rebound· 
from the left side wall parallel to the 
front wall. Expecting the ball to come 
to the rear of the court, my opponent 
would surely be caught off. guard by 
this strange rebound. 

I tried the shot in many ways without 
success. I wondered if the problem was 
my lack of playing skill, and so I turned. 
again to mathematics. My calculatrons 
showed that such a rebound is possible 
if the ball begins with much energy and 
makes a small angle with. the right side 
wall. If I had made the calculations ear- , 
lier, I could have saved myself many 
futile swings of the racquet. 

Many more shots can be.studied with 
either a.solid ball or a' hollow racquet
ball. Perhaps there are some clever shots 
that even the professional racquetball 
players have,yet to discover. You may 
be interested.in studying how a ball los
es energy in a glancing. collision with· 
a wall. You may' also be interested in 
following the flight .of a ball in three 
dimensions, so that the spin axis is no 
longer parallel to the walls. For this 
purpose a computer simulation of rac
quetball would be helpful. Be careful if 
you experiment with a solid, highly elas
tic ball in a racquetbaU court. I tried it 
just once. The ball moved and rebound
ed so fast that all r could do was get out 
of the way. 

Left 
side 
wall 

Front woll--./ 

Bock wall 

'. 
Initially 
5pinlc55 

The Z shot as it would be seell from overhead 
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THE DOMINO CHAIN 
REACTION SETS 

Described in last issue's 
"The'Amateur Scientist" 

by Jearl Walker 

Developed by 
Professor Lorne A. Whitehead 

Department of Physics 
University of British Columbia 

This se.t is a startling and memorable 
demonstration of the chain reaction con
cept. It serves. as an analogy for such 

I diverse phenomena 'as nuclear explo
, sions, electronic· amplification, popula

tion growth, and even the political 
"domino theory." No classroom should 
be without one! The largest domino in 
the full set releases about 50 joules of 
energy when it topples-an amplifica-

, tion factor of 2 billion. 

Complete 13 piece set 
Economy 10 piece set 

$165.00' 
$ 39.00' 

* Plus Postage 

Please send all orders to: 
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Ginsberg Scientific Company 
Route 1, Box 104 AB 

Macks Creek, MO 65786 
(314) 363-5260 

On the leading edge 

of computer 

communication potentials 

• Professional Partner in 
your Project Since 1972 

• Research 

• Training 

• Project Coordination 

• Courseware 
Development 

• Consultation 

People's Computer 
A Non Profit Corp. 

2682 B.ishop Drive Suite 107 
San Ramorl, CA 94583 
415 833-8604 
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Miami (5. Florida), FL 

New York, NY 

Philadelphia, PA, 

Tampa, FL 
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The 

one

Step 
thesaurus. 

Open it once-there's 
the word you're after! 
No time-wasting cross
references. Sample sen
tences for each entry! 
Available with The Random 
House College Dictionary 
in a boxed gift set. 

. 

� Now at your bookstore. 

RANDOM HOUSE 

Explore NEW curves, relations, transformations & 
problems in the Euclidean plane through ..... 

STRUCTURAL EQUATION GEOMETRY 
by J. Lee Kavanau, UCLA 

The author has discovered innumerable new worlds with
in that innocuous-looking .... Euclidean plane ...... contains a 
wealth of geometrical reflection & insight:' Prof.Alex.Grothendieck 

Nov.,1983, 512 pages, 61 pp.offigs. $19.95+$3p/h 

A UNIQUE SOURCEBOOK no geometry instructor can afford to be without 

.. Introduces Prof. Kavanau's companion tr eatis es 
on the analysis of general algebraic cur v es that.. . ...... 

"open up fields of seeming- "represent tremendous am-
ly inexhaustible wealth" ounts of new information' 

Prof. Alexander Grothendieck Prof. Morris Newman 

SYMMETRY, An Analytical Treatment CURVES & SYMMETRY, vol.1 
August,1980, 656pp., illus.,$29.95+$4p/h Jan.,1982,448pp., illus., $ 21.95 + 

$3.50p/h, all 3 books,$62+$7p/h "One of the most original treatments of plane 
curves to appear in modern times. The author's 
new and deeper studies ... reveal a great number 
of beautiful & heretofore hidden properties of al
gebraic plane curves." Prof. Basil Gordon 

"Provides sharp new tools for studying the prop
ert ies of general algebraic curves." 

Prof. Richard Fowler 

"Striking new results on symmetry & classifi
cation of curves ... Read this book for more in sym
metry than meets the eye." Amer. Math. Mont h1Y.1981 

Send SASE for $3,OOOGeometry Competition details. 

1983 Co-Awardees: Prof s. J.F. Rigby, Cardiff; 
J.B.Wi Iker, Toronto; W. Wunder I ich, Vienna 

"Casts much new light on inversion & 
its generalization, the linear fraction
al (Moebius) t ra n s f o r m ation,with 
promise of increasing their utility by 
an order of magnitude!' Prot. Richard Fowler 

"Replete with fascinating, provocative 
new findings ... accompanied by a wealth 
of beautiful & instructive illustrations:' 

Prof. Basil Gordon 

"Ex tends the idea of inversion into quite 
a new field." E. H. Lockwood 

VISA, M/C, 213-477-8541, OUTSIDE U.S., 

PREPAID DNLY, +ADDIT'L $1!BOOK p/h 
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pages 101-108; July, 1945. 
THE ART OF COMPUTER PROGRAMMING, 

VOL. 3: SORTING AND· SEARCHING. 

Donald E. Knuth. Addison-Wesley 
Publishing Company, Inc., 1973. 

TOWARD PAPERLESS INFORMATION SyS

TEMS. F. W. Lancaster. Academic 
Press, 1978. 

COMPUTER SOFTWARE 

FOR PROCESS CONTROL 

MODERN CONTROL ENGINEERING. Kat
suhiko Ogata. Prentice-Hall Book 
Company, 1970. 

DIGITAL CONTROL OF INDUSTRIAL PROC

ESSES. Cecil L. Smith in Computing 
Surveys, Vol. 2, No.3, pages 211-241; 
September, 1970. 

MINI- AND MICROCOMPUTER CONTROL 

IN INDUSTRIAL PROCESSES: HANDBOOK 

OF SYSTEMS AND ApPLICATION STRAT

EGIES. Edited by M. Robert Skro
kov. Van Nostrand Reinhold Compa
ny, 1980. 

SOFTW ARE FOR INDUSTRIAL PROCESS 

CONTROL. Computer, Vol.' 17, No. 2; 
February, 1984. 

COMPUTER SOFTWARE 

IN SCIENCE 

AND MATHEMATICS 

ORDER IN CHAOS. Edited by David 
Campbell and Harvey Rose. North
Holland Physics Publishing, 1983. 

SMP REFERENCE MANUAL. Stephen 
Wolfram. Inference Corporation, Los 
Angeles, 1983. 

DOING PHYSICS WITH COMPUTERS. Phys
ics Today, Vol. 36, No.5; May, 1983 .. 

CELLULAR AUTOMATA: PROCEEDINGS OF 

AN INTERDISCIPLINARY WORKSHOP, 

Los ALAMOS, NEW MEXICO. Edited 
by Doyne Farmer, Tommaso Toffoli 
and Stephen Wolfram. North-Hol
land Physics Publishing, 1984. 

COMPUTER SOFTWARE 

FOR INTELLIGENT SYSTEMS 

ARTIFICIAL INTELLIGENCE. Patrick Hen
ry Winston. The MIT Press, 1982. 

KNOWLEDGE-BASED SYSTEMS IN AR

TIFICIAL INTELLIGENCE. Randall Da
vis and Douglas Lenat. McGraw-Hill 
Book Company, 1982. 

ARTIFICIAL INTELLIGENCE. David L. 
Waltz in Scientific American, Vol. 247, 
No.4, pages 118-133; October, 1982. 

ARTIFICIAL INTELLIGENCE. Elaine Rich. 
McGraw-Hill Book Company, 1983. 

THE AMATEUR SCIENTIST 

KINEMATICS OF AN UL TRAELASTIC 

ROUGH BALL. Richard L. Garwin in 
American Journal 0/ Physics, Vol. 37, 
pages 88-92; 1969. 

THE DYNAMICS OF SPORTS. David F. 
Griffing. Mohican Publishing Com
pany, Loudonville, Ohio; 1982. 
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ACCOUNTING PARTNER II'" 
THE NEW KING OF SMAIl. 
BUSINESS SOFlWARE. 

What makes Accounting 
Partner n the best way 
for a small business to 
leap into computerizing? 

Star Software Systems has proba
bly studied the micro-computer soft
ware needs of the small business to 
a more in-depth degree than anyone 
else around. Maybe that's why 
nearly 50,000 small businesses 
turned to Star last year alone. 

Now Star introduces Accounting 
Partner II for the small businessman 
who needs to keep on top of his 
business. Who needs a profit and 
loss statement every month. Who 
needs to know if his customers are 
paying their bills. Who needs to 

know when to pay his own bills. 
Who has to know what the cash 
flow looks like. Who wants to 
automate his payroll system. 

Who hungers for better 

inventory control. 
The Accounting Part

ner II does it all ... in one 
package. Even if you are all 
thumbs around computers, 
you'll still be up and running 
in a single day. It's that easy. 

If that isn't enough, Account
ing Partner II costs only $995. 

Complete. Less than half of what a 
comparable package goes for. And 

it's compatible with almost any 
micro-computer on the market. 

The Accounting Partner II ... 
it's some kind of animal. Check it 

out today. 
For the dealer nearest you, call 

(213) 538-2511. 

��CCOUNTING 
P-ARlNERII 

STAR SOFTWARE SYSTEMS� 20600 Gramercy Place. Torrance. California 90501 • 12131538-2511 
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Designed to do everything 
a modern car should. 

It just looks better doing it. 

Technology never 
looked so good. 

Tempo, the car that com
bines form and function. 

Tempo's aerodynamic 
shape manages the flow of 
air over and around it to 
reduce overall lif t  and 
improve stability and direc
tional control. 

Tempo technology 
includes features like front
wheel drive for all-weather 
traction, four-wheel inde
pendent suspension for a 
smooth ride, and a High 
Swirl Combustion engine 
for quick power response. 

You can now get 
a new tachometer 
in your Tempo as 
part of the optional 
Sports Appearance 
Group. T his option 
includes new low
back bucket sport 
seats, a sports instru
ment cluster, 3-oval 
spoq steering wheel, 
contoured rear seat 
and package tray. 

T his Sports 
Appearance Group 
offers a sporty new 
flair for those who 
like their Tempo a bit 
more upbeat. 

New diesel option. 

Ford Tempo now has a 
new optional diesel engine. 

It is a true diesel engine, 
not merely a modified 
gas engine. T his new diesel 
has additional sound insula
tion. Cold weather starting 
problems usually associated 
with most diesels are 
eliminated. And, of course, 
it has strong diesel 
mileage: 

1411�. 56�y 

Front-wheel drive. 

Tempo's front-wheel drive 
configuration is practical for 
all driving conditions. It 
gives you good traction in 
rain, snow and mud. 

Tempo's front-wheel drive 
is powered by its own effi
cient High Swirl Combustion 
engine. And the whole oper-

ation is coordinated by the 
most advanced automotive 
computer in the world. 

T he EEC-IY. It monitors 
and controls engine opera
tion precisely and instantly 
for optimum power output 
and fuel efficiency 

T he inside story. 

Tempo's 
five-passenger computer
refined interior has more 
room than a Mercedes 300D. 

It provides an excellent 
combination of head, 
shoulder, hip and leg room. 

Reduced 
insurance rates. 

T he Allstate Insurance 
Company offers reduced 

Ford Tempo 

rates on collision and com
prehensive coverages to 
Tempo owners, because 
of Tempo's construction with 
features like 5 mph impact 
bumpers. 

Reduced rates are realistic 
testimony to Tempo's struc
tural integrity 

Best-built 
American cars .. 

W hen we say "Quality is 
Job I;' we are talking about 
more than a commitment. 
We are talking about results. 

A recent survey concluded 
Ford makes the best-built 
American cars. 

T he survey measured 
owner-reported problems 
during the first three months 
of ownership of1983 cars 
designed and built in the 
U.S., and the commitment 
continues in 1984. 

Lifetime Senice 
Guarantee. 

As part of Ford 
Motor Company's com
mitment to your total 
satisfaction, participat
ing Ford Dealers stand 
behind their work in 
writing with a free 
Lifetime Service Guar
antee. No other vehicle 
company's dealers, for
eign or domestic, offer 
this kind of security 
Nobody 

See your participat
ing Ford Dealer for 
details. 
"'For comparison. Your mi leage 

may differ depending on speed. 
distance and weather. Actual 
highway ratings will probablv 
be lower. Not available with NC 

Have you driven a Ford ... 
lately? 
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